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Abstract 
 
 

An investigation of the recently proposed theory of quantum thermodynamics which 
encompasses both mechanics and thermodynamics within a single mathematical structure 
is presented. 
 
The first part of the investigation is devoted to establishing the mathematical expression 
for entropy.  Upon determining the conditions that must be satisfied by entropy, we find 
that the only expression suitable for the purposes of quantum thermodynamics is the one 
proposed by von Neumann. 
 
In the second part of this dissertation, we investigate the dynamical law of quantum 
thermodynamics.  Several conditions that must be satisfied by the equation of motion are 
determined, and equations proposed in the literature are investigated in the light of these 
conditions.  We conclude that only an equation proposed by Beretta satisfies all the 
requirements. 
 
The third part of our investigation involves a comparison of experimental results on 
relaxation phenomena with the predictions of the Beretta equation.  We show that the 
predictions are consistent with experiments performed on dilute systems, and suggest 
additional specific experiments for more definitive validation of quantum 
thermodynamics. 
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Chapter 1 
 

1. Introduction 

 

 Recently a new theory that encompasses within a single mathematical structure 

both mechanics and thermodynamics has been proposed [Hatsopoulos, Gyftopoulos, 

1976; Beretta, 1982].  It is called quantum thermodynamics and is a non-statistical 

interpretation of thermodynamics.  It describes both reversible and irreversible 

phenomena. 

 The first objective of this dissertation is to establish the mathematical expression 

for entropy in quantum thermodynamics.  It is shown that the expression suggested by 

Hatsopoulos and Gyftopoulos [1976] is the only acceptable one among the candidate 

expressions found in the literature. 

 The second objective is to establish a set of necessary conditions that need to be 

satisfied by the equation of motion of quantum thermodynamics.  These conditions can 

be used in judging whether a proposed equation of motion is acceptable.  Several 

equations of motion have been proposed in the literature but only the Beretta equation 

[Beretta et al 1984, 1985] satisfies all the known necessary conditions to date.  A special 

class of solutions of the Beretta equation is described and studied. 

 The third objective is to provide experimental evidence of the validity of quantum 

thermodynamics.  Because quantum thermodynamics admits quantum mechanics as a 

special case, every experiment that can be explained by quantum mechanics is also 

explained by quantum thermodynamics.  But the converse is not true.  Hence a set of 

experiments in which the predictions of quantum thermodynamics differ substantially 

from the predictions of quantum mechanics is included.  In addition, we discuss the 

inadequacy of statistical quantum mechanics in explaining these experiments. 
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 Moreover, we investigate some implications of quantum thermodynamics 

regarding the smallest value of entropy admitted by the stable equilibrium states of a 

grand system.  Finally, we present an unresolved problem related to the triple-point of a 

pure substance. 

 The dissertation is structured as follows: 

 Chapter 2 is devoted to background considerations.  In Section 2.1 we present the 

definition of thermodynamics adopted in this dissertation.  In Section 2.2, we review the 

notions of system, property, state, preparation, ensemble, and measurement.  They are 

essential in formulating any physical theory. 

 Throughout this dissertation, we use ideas of quantum physics rather than 

classical physics.  The reasons for this choice are presented in Section 2.3, the postulates 

of quantum mechanics and statistical quantum mechanics in Section 2.4, the currently 

prevailing statistical understanding of thermodynamics in Section 2.5.  It is shown that 

the current statistical understanding of thermodynamics leads to inconsistencies.  Various 

remedies suggested in the literature are studied and shown to be unsatisfactory. 

 In Chapter 3 we present a non-statistical approach to thermodynamics which is 

done in two steps: in Section 3.1, we give the implications of this new understanding of 

thermodynamics and in Section 3.2, the postulates of a new theory, called quantum 

thermodynamics, which provides us the mathematical framework to express our ideas. 

 In Chapter 4 we establish the mathematical expression for entropy in quantum 

thermodynamics.  To achieve this goal, in Section 4.1 we determine a set of conditions 

that need to be satisfied by the expression for entropy in quantum thermodynamics.  In 

Section 4.2, we review many of the candidates proposed in the literature, and in Section 

4.3 we use the criteria to decide which expression is valid.  It turns out that only the von 

Neumann entropy passes this test and, therefore we conclude that it is the desired 

expression.  Upon determining the expression for entropy, we end this chapter by 
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presenting, in Section 4.4, certain mathematical conditions imposed on the Hamiltonian 

operator of a system by the expression for entropy. 

 In Chapter 5 we investigate the dynamical law of quantum thermodynamics.  We 

present a set of conditions that need to be satisfied by the equation of motion in Section 

5.1, and proposed equations of motion in Section 5.2.  Upon investigating the proposed 

equations in Section 5.3, we conclude that only one suggested by Beretta satisfies all the 

stated conditions.  In Section 5.4 we present, for the first, a special class of solutions of 

the Beretta equation. 

 In Chapter 6 we provide experimental evidence of the validity of quantum 

thermodynamics.  In Section 6.1 we present two spin-relaxation experiments reported in 

the literature.  We show that the results of these two experiments are consistent with the 

dynamical law of quantum thermodynamics.  In Section 6.1.4 we suggest a variation of 

these two experiments which, we believe, can give an excellent quantitative verification 

of quantum thermodynamics.  In Section 6.2 we show that under suitable conditions the 

Beretta equation reduces to phenomenological equations of irreversible thermodynamics 

whose validity is shown in innumerable experiments. 

 Chapter 7 contains our reflections on two unresolved problems.   In Section 7.1, 

we address a problem related to the value of entropy assigned to stable equilibrium states 

with zero temperature.  In Section 7.2,  we investigate an intriguing problem related to 

triple points of pure substances. 

 Chapter 8 contains a summary and recommendations for future work. 
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Chapter 2 
 

2. Background 

 

 This chapter contains background considerations that are used frequently in the 

remaining portions of this dissertation.  In Section 2.1, the definition of thermodynamics 

adopted in this dissertation is presented.  Section 2.2 is devoted to a review of the notions 

of system, property, state, preparation, ensemble, and measurement.  These notions are 

essential in formulating any physical theory. 

 Throughout this dissertation, we use ideas of quantum physics rather than 

classical physics.  The reasons for this choice are presented in Section 2.3, the postulates 

of quantum mechanics and statistical quantum mechanics in Section 2.4, the currently 

prevailing statistical understanding of thermodynamics in Section 2.5.  It is shown that 

the current statistical understanding of thermodynamics leads to inconsistencies.  Various 

remedies suggested in the literature are studied and shown to be unsatisfactory. 

 

2.1 Thermodynamics 

 

 In this thesis, we adopt the definition of thermodynamics given by Gyftopoulos 

and Beretta [1993]: "the study of motions of physical constituents (particles and 

radiations) resulting from externally applied forces, and from internal forces (the actions 

and reactions between constituents)."  This is identical to the definition of mechanical 

dynamics [Timoshenko and Young, 1948], and implies that thermodynamics deals with 

the time evolution of a system in addition to considering the values of the properties of 

the system at a given instant of time.  By virtue of the second law of thermodynamics, the 

definition encompasses a much broader spectrum of phenomena than mechanical 
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dynamics.  In other words, thermodynamics accounts for phenomena with zero and 

positive values of entropy, whereas mechanical dynamics accounts only for phenomena 

with zero values of entropy [Gyftopoulos and Beretta, 1993]. 

 According to this definition, thermodynamics applies to equilibrium as well as 

non-equilibrium situations.  However, the current definition of thermodynamics found in 

the literature is more restrictive.  For example, Guggenheim [1967] defines it as "that part 

of physics concerned with the dependence on temperature of any equilibrium property."  

In this dissertation, the branch of thermodynamics restricted to equilibrium situations is 

called "thermostatics". 

 Like any physical theory thermodynamics has two parts.  The first part is called 

kinematics, and determines the conditions of a system at a given instant of time.  The 

second part is called dynamics, and establishes relations between the conditions of the 

physical system at different instants of time.  Furthermore, the validity of 

thermodynamics (as well as any other physical theory) relies on the reproducibility of its 

results. 

 Among the phenomena that we would like to describe using thermodynamics are: 

acceleration of a solid ball in a gravitational field; motion of an electron in the vicinity of 

a proton; internal discharge of a well-insulated battery; a bunch of gas molecules filling a 

container of fixed volume; mixing of hot and cold water resulting in luke-warm water. 

 

2.2 Definitions 

 

 In this section we give definitions of several concepts - physical constructs - 

which play a major role in formulating the postulates of the physical theories presented in 

this dissertation. 
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2.2.1 System 

 

 In any physical study we always focus attention on a collection of constituents 

that are subject to a nest of forces.  When the constituents and the nest of forces are well 

defined, we call such a collection a system.  Everything that is not included in the system 

we call the environment of the system. 

 A system is defined [Gyftopoulos and Beretta, 1991a] as a collection of 

constituents, provided it can be determined by the following specifications. 

1. The type of each constituent and the range of values of the corresponding amount. 

2. The type and the range of values of the parameters that fully characterize the 

external forces exerted on the constituents by bodies other than the constituents, such as 

the parameters that describe an airtight container.  The external forces do not depend on 

coordinates of bodies other than those of the constituents of the system. 

3. The internal forces between constituents, such as intermolecular forces, and forces 

that account for chemical and/or nuclear reactions. 

 For example, a system can be a hydrogen atom in an airtight container of 

specified dimensions, subject to an external force (e.g., an external magnetic field of 

known strength), or a ball made out of lead of mass 1 kg, in a gravitational field of 

specified strength. 

 

2.2.2 Properties 

 

 A property is defined as [Gyftopoulos and Beretta, 1991b]: Property is a (system) 

attribute that can be evaluated at any given instant of time by means of a set of 

measurements and operations performed on the system which result in a numerical value 
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- the value of the property.  This value is independent of the measuring devices, other 

systems in the environment, and other instants of time. 

 Two properties are independent  if the value of one can be varied without 

affecting the value of the other. 

 

2.2.3 States and Types of States 

 

 A novel definition of the concept of state is given by Gyftopoulos and Beretta 

[1991c]: For a given system, the types and the values of the amounts of all the 

constituents, the values of the parameters, and the values of a complete set of independent 

properties encompass all that can be said about the system at an instant of time and about 

the results of any measurements that may be performed on the system at that instant of 

time.  We call this complete characterization of the system at an instant of time the state 

of the system. 

 States can be classified in different categories.  One is in terms of their evolution 

as a function of time [Gyftopoulos and Beretta, 1991d].  An unsteady state is one that 

changes as a function of time because of interactions of the system with other systems.  A 

steady state is one that does not change as a function of time despite interactions of the 

system with other systems in the environment.  A nonequilibrium state is one that 

changes spontaneously as a function of time, that is, a state that evolves as time goes on 

without any effects on or interactions with any other systems.  An equilibrium state is one 

that does not change as a function of time while the system is isolated - a state that does 

not change spontaneously.  An unstable equilibrium state is an equilibrium state that may 

be caused by to proceed spontaneously to a sequence of entirely different states by means 

of a minute and short lived interaction that has only an infinitesimal temporary effect on 

the state of the environment.  A stable equilibrium state is an equilibrium state that can be 

altered to a different state only by interactions that leave net effects in the environment of 
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the system.  If a system is in a stable equilibrium state and is a composite of two or more 

subsystems, the subsystems are said to be in mutual stable equilibrium.  These definitions 

are identical to the corresponding definitions in mechanics but include a much broader 

spectrum of states than those encountered in mechanics. 

 

2.2.4 Preparation 

 

 To prepare a physical system for study we use, in general, a series of operations.  

For example, we separate the system from its surrounding by washing the impurities 

away, we put the system in an oven at a specified temperature, and keep it there for some 

specified length of time.  A set of such operations is called a preparation scheme Π.  A 

preparation scheme is physically acceptable if it is reproducible, since reproducibility is 

an essential feature of physics.  Our aim in repeating the same preparation scheme Π is to 

achieve the same state.  However, the preparation may be such as not to yield the same 

state. 

 

2.2.5 Ensemble 

 

 The validity of any physical theory relies on the reproducibility of its results.  This 

necessitates the study of a set of replicas of a physical system rather than an individual 

system.  Furthermore, the probabilities inherent to the nature of a system can only be 

investigated using a statistical analysis involving a large number of replicas.  Therefore, a 

set of identically prepared replicas of a physical system plays an essential role in physics, 

and is called an ensemble E. 

 In generating the ensemble E, we repeat the same preparation scheme Π aiming at 

having the same state.  If we are successful, then every member of the ensemble E is in 

the same state, and the ensemble is called a homogeneous ensemble.  However, if we fail 
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to achieve the same state, different members of the ensemble E are in different states than 

the rest of the members.  Such an ensemble is called a heterogeneous ensemble. 

2.2.6 Measurement 

 

 Measurement is a reproducible ordered set of operations performed on a system at 

a given instant of time, in order to gain information about a definite property of the 

system at that instant of time.  In this dissertation, a measurement result is a precise 

numerical value. 

 Measurements are the essential tools in determining the state of a system.  Hence 

they are indispensable to establish whether an ensemble E generated by repeating the 

same preparation scheme Π is homogeneous or heterogeneous.  This point has been 

especially emphasized by von Neumann [1955].  We can always conceive of many 

subdivisions of the ensemble E into subensembles; each subensemble must contain an 

'effectively infinite' number of systems so that we can get an accurate statistical 

description of the measurement results obtained from each of the subensemble.  The 

ensemble E is homogeneous if the probabilistic description of all measurement results 

obtained from each of its subensemble is identical to the probabilistic description of 

measurement results obtained from the ensemble E itself.  Otherwise, the ensemble E is 

heterogeneous.   

 

2.3 Quantum Physics versus Classical Physics 

 

 In this dissertation, we base our discussions on quantum physics rather than 

classical physics.  There are several reasons for this choice.  The first is the success of 

statistical quantum mechanics in describing properties of thermodynamic equilibrium 

states [Gyftopoulos and Beretta, 1993].  Statistical classical mechanics was not as 

successful as statistical quantum mechanics.  For example, Gibbs' paradox can only be 
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resolved if quantum effects are taken into account.  There are other examples where the 

predictions of statistical quantum mechanics and statistical classical mechanics are 

extremely different and even contradictory.  To show that, consider a bunch of gas 

molecules in an airtight container.  If the system is in thermodynamic equilibrium, i.e., 

the gas is at some temperature T and pressure P, according to the classical kinetic theory 

of gases the molecules move continuously.  However, statistical quantum mechanics 

predict that the value of linear momentum associated with every molecule is zero, hence 

not even a single gas molecule moves.  Clearly, only one of these two pictures can be 

correct, and it is the latter one that is consistent with the definition of equilibrium given in 

Section 2.2.3. 

 The second reason is that serious difficulties are encountered with the statistical 

classical mechanical expression for entropy.  Here, we mention briefly these difficulties 

without presenting any details.  A more complete discussion can be found in the "General 

Properties of Entropy" by A. Wehrl [1978].  The so-called classical continuous 

expression for entropy can take negative values in contrast to the thermodynamic entropy 

which is always non-negative.  This difficulty leads Wehrl to conclude that " not every 

classical probability distribution can be observed in nature."  Among the probability 

distributions that cannot be observed in nature are the pure states of classical mechanics 

(delta functions in the phase space).  However, this implies that classical mechanics 

cannot be used in describing natural phenomena, and yet we know that classical 

mechanics has been a very successful theory.  Another difficulty with the classical 

continuous expression for entropy is its lack of ‘monotinicity’. 

 These difficulties can be overcome by using the classical discrete entropy, but 

then an approximation is introduced and the value of entropy depends on both the 

probability distribution and the discretization scheme. 

 The third reason for working within the framework of quantum physics is its 

broader application range compared to classical physics.  For example, the results of 
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classical mechanics can also be described by quantum mechanics.  However, there are 

phenomena that can be described by quantum mechanics but not by classical mechanics, 

such as the two-slit experiment.  Therefore, if the motions of physical constituents 

resulting from externally applied and internal forces can be described within the 

framework of quantum physics, there is no need to study these motions in classical 

physics. 

2.4 Postulates of Quantum Mechanics and Statistical Quantum Mechanics 

 

 In this section we present the postulates of conventional quantum mechanics and 

statistical quantum mechanics.  Time evolution of a system whose initial state is known 

with certainty is studied within the framework of quantum mechanics.  However, if some 

uncertainty is involved about the initial state, we use the laws of statistical quantum 

mechanics to describe the behavior of the system. 

 

2.4.1 Postulates of Quantum Mechanics 

 

 Postulate 1. Systems 

 With every system there is associated a complex, separable Hilbert space H.  

denoting the countable infinity by ℵ0, either dim(H)= ℵ0, or dim(H)=n in which case H 

is equivalent to an n-dimensional complex Euclidean space Cn [Conway, 1985]. 

 The Hilbert space associated with a composite system of two independent 

subsystems A and B which are associated with Hilbert spaces HA, HB, respectively, is the 

direct product HA ⊗ HB. 

 

 Postulate 2. Properties and Observables 

 Among the properties associated with a system, there is a special class of them 

called the observables.  They are associated with linear, self-adjoint, closed operators 
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{H,I,J,...} on the Hilbert space H.  Using spectral theory, we can express each of these 

operators in the following form: 

 

 J = λdE λ( )∫ , (2.1) 

 

where the set {λ} is the spectrum of J, and dE(λ) is a projection-valued measure. 

 The spectrum of each such operator is non-empty and real.  If dim(H)=n, the 

spectrum of any operator J correponding to an observable is purely point spectrum, and 

the elements of the spectrum {λ} are called the eigenvalues of J.  If dim(H)=ℵ0, because 

the residual spectrum of a self-adjoint operator is empty [Rudin, 1973], the spectrum of J 

can be decomposed into two parts: the point spectrum and the continuous spectrum.  It 

can so happen that either of these two sets is empty, in which case we say that J has 

purely continuous (or, point) spectrum, respectively.  Again, the elements of the point 

spectrum are called the eigenvalues of J [Conway, 1985]. 

 As explained in Section 2.2.6, upon measurement of a property performed on a 

system we always get a precise number.  If this property is an observable, the 

measurement result is necessarily in the spectrum of the operator which is associated with 

that observable.  For example, if the operator associated with the observable is J 

(Equation (2.1)), then the measurement result is in the set {λ}. 

 An important implication of the superselection rules [Wick et al., 1952] is the 

existence of linear, self-adjoint, closed operators that do not correspond to physical 

observables.  Furthermore, if the dimension of the Hilbert space is ℵ0, some operators 

that correspond to observables are unbounded, hence they are not continuous.  Examples 

of such operators are the Hamiltonian, the position and the linear momentum operators.  

All the linear operators on a finite-dimensional Hilbert space are bounded, hence 

continuous [Conway, 1985; Rudin, 1973]. 
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 Postulate 3. State 

 We have shown in Section 2.2 that to every system, prepared according to a 

preparation scheme Π that generates a homogeneous ensemble E, there corresponds a 

state.  State in quantum mechanics is the set ε of instantaneous operators that correspond 

to observables and an element ψ of the Hilbert space H with unit-norm (i.e., 1=ψ ).  To 

every unit vector ψ of H, there corresponds a unique operator Pψ, which is an orthogonal 

projection onto the one-dimensional subspace of the Hilbert space H, spanned by the 

vector ψ.  In Dirac notation 

 

 P ψ = ψ ψ . (2.2) 

 

Therefore, in representing the state, we can use the projection operator Pψ instead of the 

vector ψ.  By definition, a projection operator on a Hilbert space is bounded, self-adjoint, 

and idempotent [Conway, 1985], and is called a pure state. 

 If a measurement of an observable is performed on a system in state {ε,ψ}, and 

the operator associated with the observable is J (Equation (2.1)), the probability of getting 

a measurement result between j and j+dj is 

 

 

  
λ ψ, dE λ( )ψ

j

j+dj

∫ = λdEψ λ( )
j

j+dj

∫  (2.3) 

 

where < , > denotes the inner product in the Hilbert space H.  An immediate conclusion is 

that the arithmetic mean value <J> of the data yielded by measurements of the observable 

on the ensemble E is given by the inner product (or alternatively by the trace operation) 

 

   J = ψ, Jψ = Tr JPψ( ). (2.4) 
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 Postulate 4. Time Evolution 

 

 For every system there exists a linear, self-adjoint, closed operator H on the 

Hilbert space H, called the Hamiltonian operator, that is the generator of motion.  The 

time evolution of the system is unitary and is governed by the Schrödinger equation: 

 

 
  
ih

∂ψ
∂t

= Hψ  (2.5) 

 

or, equivalently, 

 

 
    
ih

∂Pψ

∂t
= H, Pψ[ ]. (2.6) 

 

2.4.2 Postulates of Statistical Quantum Mechanics 

 

 There are situations in which some uncertainty is involved about the state of a 

system.  For example, the state of a system prepared according to a scheme Π which 

generates a heterogeneous ensemble is ambiguous.  The typical situation encountered in 

statistical quantum mechanics is the following: Initially, the system is in state-1 with 

probability p1, in state-2 with probability p2, etc...  This information allows us to perform 

a statistical study of the behavior of the system using quantum mechanics and statististics. 

 A helpful way of visualizing the study of a system whose initial state is 

ambiguous involves ensembles.  We consider a heterogeneous ensemble E in which 

fraction p1 of the members are in state-1, fraction p2 of the members are in the state-2, 

etc...  We can then study the behavior of each member of the ensemble E using quantum 

mechanics. 
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 Postulate 1. Systems 

 This postulate is identical to the first postulate of quantum mechanics.  Thinking 

in terms of ensembles, members of the heterogeneous ensemble E are identical systems, 

hence the same Hilbert space H is associated with every one of them. 

 

 Postulate 2. Properties and Observables 

 This postulate is identical to the second postulate of quantum mechanics. 

 Postulate 3. Statistical State 

 For simplicity, we assume that the instantaneous operators that correspond to 

observables are identical in every member of the ensemble E (this is customary in the 

literature).  Then, in addition to the set ε of operators (common to all members of the 

ensemble E) associated with observables, the statistical state is represented by a linear, 

self-adjoint, non-negative definite, unit-trace operator on the Hilbert space H which is 

denoted by ρ and is a linear superposition of projection operators: 

 
 ρ = piPψ i

i
∑ . (2.7) 

 

where P ψ i
= ψ i ψ i  . 

 If a measurement of an observable is performed on the system described by the 

statistical state {ε,ρ}, and the operator associated with the observable is J (Equation 

(2.1)), the probability of getting a measurement result between j and j+dj is 

 

 

  
pi λ ψ i , dE λ( )ψ i

j

j+dj

∫
i
∑ = pi λdEψ i

λ( )
j

j+dj

∫
i
∑ . (2.8) 
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This implies that the arithmetic mean value <J> of the data yielded by measurements of 

the observable on the ensemble E is given by the inner product (or alternatively by the 

trace operation) 

 

 
  
J = pi ψ i , Jψ i = piTr Pψ i( )

i
∑

i
∑ = Tr J piP ψ i

i
∑

 

 
  

 
 = Tr Jρ( ). (2.9) 

 

 Postulate 4. Time Evolution 

 The time evolution in a statistical theory is uniquely determined by the time 

evolution postulated in the physical theory (quantum mechanics), since every 

homogeneous subensemble obeys that evolution.  Therefore, the equation of motion in 

statistical mechanics, called the von Neumann equation, is derived from the Schrödinger 

equation [von Neumann, 1955] and is: 

 

 
    
ih

∂ρ
∂t

= H,ρ[ ]. (2.10) 

 

2.5 Thermodynamics as a Statistical Theory 

 

 In this section, we review the prevailing statistical interpretation of 

thermodynamics.  Moreover, we examine the difficulties encountered with this 

interpretation and review the remedies suggested in the literature. 

 The prevailing understanding of thermodynamics is that it is a statistical theory of 

mechanics that applies only to macroscopic systems in equilibrium.  Said differently, it is 

a 'simplified language' that provides us with a 'reduced description' of macroscopic 

systems.  It is a practical alternative to the complicated and time consuming approach of 

studying the behavior of complex systems mechanically.  Furthermore, the initial 
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conditions of a complex macroscopic system are hard to reproduce and, therefore, it is not 

interesting to study the behavior of such systems in detail using the laws of mechanics. 

 An implication of a statistical treatment of thermodynamics has been paraphrased 

by Gyftopoulos and Hatsopoulos [1980] as follows: "In reality, matter does not have 

entropy as a property as it has, for instance, energy and momentum as properties.  

Entropy is an engineering, nonphysical concept applicable to very large systems only.  

For such systems, scientists and engineers have neither the tools nor the time to analyze 

the systems in detail.  For this reason, they resort to statistical estimates - introduce 

subjective probabilities which reflect the ignorance of the professionals - and a measure 

of the degree of ignorance in each case is entropy." 

 In statistical quantum mechanics entropy is defined by 

 

   Iv = −k  Tr ρ  Log ρ( )( ). (2.11) 

 

This formula is due by von Neumann [1927].  The meaning assigned to this expression is 

"a measure of the amount of chaos within a quantum-mechanical state" [Wehrl, 1978].  

The heterogeneous ensemble E is conceived of as a statistical mixture of homogeneous 

subensembles .  Members of a subensemble are in an eigenstate {ε,ψi} of the statistical 

state operator, and the fraction of the members of the subensemble Ei among the 

members of the ensemble E is the eigenvalue pi of the state operator that corresponds to 

the eigenstate {ε,ψi}. 

 As mentioned earlier, statistical quantum mechanics had great success in 

describing the properties of thermodynamic equilibrium states (in this dissertation 

referred as stable equilibrium states), i.e., it is a good description of thermostatics.  

However, the dynamical part of the theory is not as successful as its kinematics.  This 

point is explained by Wehrl [1978] as "A very common formulation of the second law of 

thermodynamics reads as follows: the entropy of a closed system never decreases; it can 
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only remain constant or increase... (this statement is), however, in striking contradiction 

to the fact that the entropy of a system obeying the Schrödinger equation always remains 

constant...  This result seems to be absurd since one knows by experimental experience 

that the second law is something very sensible and very useful.  There is one way out of 

this dilemma; that is, that the time evolution of a system is not described by the 

Schrödinger equation but by some other equation.  In fact, in statistical mechanics one 

uses, with great success, equations like the Boltzmann equation, the master equation, and 

other equations." 

 In the remaining part of this section, we present different remedies (or 

approaches) to resolve the problem just cited that have appeared in the literature within 

the framework of statistical quantum mechanics.  An excellent review of these different 

approaches has been given by Park and Simmons [1981].  We show that none of the 

remedies is a satisfactory explanation of the discrepancy pointed out by Wehrl. 

 

2.5.1 Information Theoretic Approach 

 

 Jaynes [1957a, b] is the chief advocate of the information theoretic approach to 

thermodynamics.  According to this school of thought, entropy is a measure of the 

amount of information that an observer has about the actual state of the system, and the 

entropy increase in a closed system represents essentially the growing obsolescence of 

past knowledge rather than an objective dynamical process. 

 According to the information-theoretic approach, the 'thermodynamic state' is 

conceived of as the best description of the state of knowledge of an observer possessing 

only partial information about the 'actual state' in which the system is.  To every 'actual 

state' {ε,ψi} of the system which is consistent with the partial information that the 

observer has, a probability pi is assigned.  A measure has been defined for the amount of 
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information that an observer has about the actual state of the system.  This measure is 

called 'entropy', denoted by IS, and given by the expression [Shannon, 1948]: 

 
 IS = −k pi Log pi( )

i
∑ . (2.12) 

 

It is postulated that the measure of information represents the thermodynamic 'entropy'.  

This expression is equivalent to Iv given by Equation (2.11), if the only actual states that 

are present in the heterogeneous ensemble are the eigenstates of the statistical state 

operator (and the mixing coefficients are the respective eigenvalues).  However, this is 

not necessarily the case in statistical quantum mechanics (due to non-unique 

decomposition of a statistical state into pure states, as explained in Appendix A).  To 

avoid this difficulty, in the information-theoretic approach of Jaynes, states other than the 

eigenstates are excluded from the study based on the belief that they do not represent 

'mutually exclusive events' [Jaynes, 1957b].   

 In Jaynes' approach to thermodynamics, a set of probabilities is assigned to 'actual 

states' of the system according to the partial information that the observer has.  The type 

of information is restricted to the values of certain properties (especially energy).  For 

example, if the observer knows the value of the energy of the system, only the 'mutually 

exclusive events' represented by the eigenfunctions of the Hamiltonian are associated 

with non-zero probabilities.  However, the system can very well be in a state with the 

specified value of energy and yet not an energy eigenstate.  This possibility is excluded in 

Jaynes' approach where 'the best, unbiased description of the system' is considered. 

 Furthermore, according to Jaynes, among the means an observer uses to get a 

partial information about the 'actual states' of the system is to perform a macroscopic 

measurement such as a temperature measurement.  Being able to find the value of energy 

upon performing a single measurement is rather contradictory within the framework of 
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quantum mechanics in which measurement results are described probabilistically (Section 

2.3.1). 

 The understanding of thermodynamics presented in this dissertation is 

incompatible with this approach.  Throughout this thesis, entropy is treated as a property 

of the system.  Therefore, we would like to emphasize the conceptual difference between 

Jaynes' and our approach: the increase in entropy of an isolated system is not due to 

growing obsolescence of past knowledge of an observer who is using a 'reduced 

description' or a 'simplified language' to study the system, but rather is a dynamical 

process undergone by the system.  We can clarify this point by studying the following 

phenomenon that is described in almost every textbook of thermodynamics.  We consider 

a gas in a well-insulated container of fixed volume V.  Initially the gas is confined in a 

region of volume V/2 by means of a partition, and is in equilibrium at pressure P and 

temperature T.  If the partition is removed, the gas fills eventually the whole container, 

and reaches an equilibrium state at pressure P/2 and temperature T.  Using well-

established thermodynamic relations we calculate that the value of the entropy at the final 

state is larger than the value of the entropy at the initial state and that the two states have 

the same energy.  Accordingly, we say that this is an irreversible process.  We believe 

that the increase in the entropy during this phenomenon did not occur in the mind of the 

observer but has occurred in the system itself.  As a strong proof of this argument, we 

note that the amount of work that can be extracted from the system in conjunction with a 

reservoir (at temperature T and pressure P/2) has diminished.   

 

2.5.2 Subsystem Dynamics 

 

 Extensive efforts have been made to describe the approach to equilibrium in 

thermodynamics, using subsystem dynamics [Kossakowski, 1972a, b; Lindblad, 1976, 

Korsch and Steffen, 1987].  Although dynamics of a closed system is represented by a 
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unitary transformation, it is argued that the dynamics of a subsystem is not necessarily 

unitary.  According to Lindblad: "It seems that the only possibility of introducing an 

irreversible behavior in a finite system is to avoid the unitary time development 

altogether by considering non-Hamiltonian systems.  One way of doing this is by 

postulating an interaction of the considered system S with an external system R like a 

heat bath or a measuring instrument... If the reservoir R is supposed to be finite (but 

large) then the time development of the system S+R may be given by a unitary group of 

transformations.  The partial state of S then suffers a time development which is not 

given by a unitary transformation in general. " 

 However, this approach is not suitable for our purposes, since in the examples of 

phenomena presented at the beginning of the chapter, isolated (closed) systems approach 

equilibrium without interacting with a heat bath or environment.  We take the point of 

view that in these examples, dissipation occurs within the system itself and not at its 

interface with the environment or at the boundaries.  The importance of dissipation in 

isolated systems has been emphasized by Gyftopoulos and Beretta [1991e], and Park and 

Simmons [1981]. 

 Park and Simmons [1981] also commented on the subsystem dynamics approach: 

"... in any bounded mechanical system obeying a unitary law of motion the total entropy 

is invariant and, since the overall motion is quasiperiodic [Percival, 1961], the entropy of 

a subsystem ... will also be quasiperiodic and hence exhibit no Second-Law 

unidirectionality...  Thus the Second-Law behavior of A (the system interacting with the 

environment) is only temporary, and highly dependent upon the choice of an initial 

condition..." 

 

2.5.3 A New Expression for Entropy 
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 In this approach, irreversible phenomena are treated by invoking special limit 

procedures or modifying the expression for entropy, but without altering conventional 

unitary quantum dynamics [Jancel, 1969].  Park and Simmons [1981] expressed their 

skepticism toward this approach as "entropy may increase indefinitely but only in 

infinite-volume, infinite-population assemblies.  Even if rigorously correct, such 

propositions can hardly be germane to the physical problem, since realistic systems in 

which entropy is observed to increase are in fact finite." 

 In addition, the time evolution implied by the dynamical law of quantum 

mechanics is reversible [Messiah, 1961; Jancel, 1969], i.e., the initial state of the system 

can be restored without leaving a net effect on the environment.  Hence, if the time 

evolution of the system is described by the Schrödinger equation, the laws of 

thermodynamics imply that the value of entropy must remain invariant.  Therefore, in 

conventional quantum mechanics, any expression which increases in time does not 

represent entropy. 

 

 Furthermore, Ochs [1975], Aczel et al [1974] have studied extensively the 

problem of defining a measure of information.  The conclusion reached in the studies of 

Aczel et  al is that the only "natural" measures of information ("natural" in the sense that 

they have all the properties expected from a measure of information) are the Shannon 

entropy IS (Equation 2.12) and the Hartley entropy IH given by the relation  

 

   IH = k  Log N ρ( )( ), (2.13) 

 

where N(ρ) is the number of non-zero eigenvalues of ρ.  The work of Aczel et al is purely 

information theoretic.  Ochs applied the results of this work to statistical quantum 

mechanics and showed that the only "reasonable measure of the intrinsic dispersion of 
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quantum states complying with the general ideas of quantum statistics" is given by the 

von Neumann entropy (Equation 2.11). 

 

2.5.4 A New Dynamical Law 

 

 In this section the difficulties encountered in modifying the dynamics of quantum 

mechanics are studied in detail.  The invariance of the von Neumann entropy in a system 

whose time evolution is described by the Schrödinger equation has led scientists to 

modify this equation.  This seems to be the most promising approach to the problem and 

hence attracted the attention of many scientists.  This is also the remedy proposed by 

Wehrl [1978]. 

 The first and most important observation is that, as long as thermodynamics is 

considered as a statistical theory of quantum mechanics, independent of the dynamical 

law chosen, probabilities assigned to possible states are time invariant.  To show this, 

consider a heterogeneous ensemble E prepared using scheme Π.  This ensemble E can 

always be divided into non-overlapping homogeneous subensembles {Ei}.  Every 

member of the subensemble Ei is associated with a unique physical state {ε,ψi}.  The 

statistical state can be expressed as {ε,ρ(t)}, where 

 
 ρ t( )= piPi   and   P i = ψ i ψ i

i
∑ . (2.14) 

 

The time evolution of every element of E is described by the dynamical law of 

mechanics.  Therefore, every system in state {ε,Pi} evolves to a uniquely determined state 

{ε,P'i} at a later instant of time t' (causality).  Hence the statistical state at t' is {ε,ρ(t')}, 

where 

 
 

  
ρ t'( ) = piP' i

i
∑ . (2.15) 
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Combining Equations (2.12) and (2.15) we see that the Shannon entropy remains 

invariant during the time evolution of the ensemble E.  It may be possible to achieve an 

increase in the value of Iv (Equation (2.11)) by altering the dynamical law of quantum 

mechanics, but this does not correspond to an increase in the amount of chaos in the 

ensemble E, since the abundances of different states (the pi's) remain constant. 

 There are additional difficulties associated with the modification of the dynamical 

law of statistical quantum mechanics.  It is shown in Appendix A that any modification 

which maintains the linearity of the equation of motion in ψ implies a unitary time 

evolution, hence both Iv and IS are time invariant.  Thus all the equations of motion 

proposed as an alternative to the Schrödinger equation are nonlinear in ψ.  As explained 

in Appendix A, however, if a nonlinear Schrödinger equation is used, the equation of 

motion of statistical quantum mechanics (similar to Equation (2.10)) becomes ambiguous 

due to non-unique decomposition of a statistical state into pure states.  Furthermore, the 

nonlinear Schrödinger equations proposed in the literature are not energy preserving and, 

most of the time, have limited validity.  A full review of nonlinear Schrödinger equations 

is given in Appendix A. 

 From these observations, we conclude that, within the framework of statistical 

mechanics, a new dynamical law will not resolve the problem of describing irreversible 

phenomena. 
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Chapter 3 
 

3. Non-Statistical Approach 

 

 In this chapter we present a non-statistical approach to thermodynamics.  This is 

done in two steps.  Implications of the new understanding of thermodynamics are 

presented in Section 3.1, and the postulates of the new theory, called quantum 

thermodynamics in Section 3.2. 

 We believe that a non-statistical approach to thermodynamics is indispensable 

because the statistical understanding of the theory leads to inconsistencies.  Furthermore, 

the definition of thermodynamics we have adopted in Section 2.1 is compatible only with 

a non-statistical approach. 

 

3.1 Implications of the Non-Statistical Approach 

 

 In this section, we present some general results of thermodynamics in view of the 

new non-statistical approach.  They are discussed in great depth by Gyftopoulos and 

Beretta [1991]. 

 The theories of mechanics and thermodynamics developed separately and without 

any explicit relation between the two.  Some of the results we present in this section, are 

obtained in thermodynamics independently of its relation to mechanics, i.e., without any 

concern whether thermodynamics is a statistical or a non-statistical theory.  Nevertheless, 

they play an important role in the foundations of the newly proposed theory of quantum 

thermodynamics. 

 We begin by presenting the statements of the first and second laws of 

thermodynamics adopted in this dissertation.  These laws imply the existence of several 
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properties of systems.  We give the definition of these properties.  Next, we describe a 

convenient and instructive graphical representation of the states of a system - the entropy 

versus energy graph - which captures many results of thermodynamics. 

 

3.1.1 First and Second Laws of Thermodynamics 

 

 We gave the definition of thermodynamics in Section 2.1, and the definitions of 

the physical constructs necessary for the discussion (system, property, state) in Section 

2.2.  We give a special name to a change of state of a system that involves no external 

effects other than the change in elevation of a weight of mass M in a uniform 

gravitational field of acceleration g.  We call it a weight process.  The change in the 

elevation of a weight is equivalent to any mechanical effect.  In terms of these concepts, 

the first law of thermodynamics is stated as follows. 

 First Law:  Any two states of a system may always be the end states of a weight 

process. that is, the initial and final states of a change of state that involves no net effects 

external to the system except the change in elevation between z1 and z2 of a weight. 

Moreover, for a given weight, the value of the quantity Mg(z1-z2) is fixed by the end 

states of the system, and independent of the details of the weight process, where M is the 

mass of the weight and g is the gravitational acceleration. 

 A very important consequence of the first law is that every system in any state can 

be assigned a property that we call energy.  For the sake of convenience, we select once 

and for all a reference state A0 of the system A and a reference weight with mass M in a 

uniform gravity field with acceleration g.  By virtue of the first law, for a given state A1 

of a system A, there exists a weight process with A0 and A1 as end states.  We denote by 

z0 and z1 the elevation of the weight when the system is in states A0 and A1, respectively.  

Again by virtue of the first law, the quantity Mg(z1-z0) is fixed by the end states.  Next, 

we evaluate the quantity E1 by means of the relation 
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 E1 = E0 − Mg z1 − z0( ) (3.1) 

 

where E0 is a constant fixed once and for all for system A.  It is straightforward to check 

that Equation (3.1) defines a property E of system A, with value E1 at any state A1, that 

we call energy.  It is an additive property provided that the value assigned to the reference 

state of the composite system is selected consistent with the values assigned to the 

reference states of its parts. 

 The statement of the second law of thermodynamics we have adopted is due to 

Hatsopoulos and Keenan [1965], and has been extended by Gyftopoulos and Beretta 

[1991f, i].  It includes all correct previous statements of the second law as special cases.  

We need to make one more definition to give the statement of the second law: A process 

is reversible if it can be performed in at least one way such that both the system and its 

environment can be restored to their respective initial states.  In Section 2.2.3, we have 

classified states in terms of their evolution as a function of time.  In the light of this 

classification, the second law introduces the concept of stability of equilibrium to the 

theory of thermodynamics.  Here, for the sake of simplicity, we give a simplified form of 

the statement of the second law. 

 Second Law: Among all the states of a system with a given value of energy, and 

given values of the amounts of constituents and the parameters, there exists one and only 

one stable equilibrium state.  Moreover, starting from any state of a system it is always 

possible to reach a stable equilibrium state with arbitrarily specified values of amounts of 

constituents and parameters by means of a reversible weight process. 

 One consequence of the first and the second law is that, starting from a stable 

equilibrium state of any system, no energy can be transferred to a weight in a weight 

process in which the values of amounts of constituents and parameters of the system 

experience no net changes.  This consequence is often referred to as the impossibility of a 
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perpetual-motion machine of the second kind.  In some expositions of thermodynamics, it 

is taken as the statement of the second law.  Here, it is only one aspect of the first and 

second laws. 

 Among the most important consequences of this law together with the first law of 

thermodynamics is the existence of properties of systems, such as adiabatic availability, 

available energy, generalized available energy, and entropy, which are defined for all 

states. 

 For example, for a given state A1 of a system A, there exists a reversible weight 

process that starts from A1 and ends in a stable equilibrium state A0 which shares the 

same values of amounts of constituents and parameters with A1.  We denote by z0 and z1 

the elevation of the weight when the system is in states A0 and A1, respectively.  We 

evaluate the quantity Ψ1 by means of the relation 

 

 Ψ1 = Mg z0 − z1( ). (3.2) 

 

It is straightforward to check that Equation (3.2) defines a property Ψ of system A, with 

value Ψ1 at any state A1, that we call adiabatic availability.  It represents the largest 

amount of energy that can be transferred to a weight in a weight process without net 

changes in the values of amounts of constituents and parameters.  It admits only non-

negative values. 

 We define an idealized kind of system that provides useful reference states both in 

theory and in applications.  A reservoir R is a system that behaves in a manner 

approaching the following limiting conditions: i) It passes through stable equilibrium 

states only; ii) in the course of finite changes of state at constant or varying values of its 

amounts of constituents and parameters, it remains in mutual stable equilibrium with a 

duplicate of itself that experiences no such changes; iii) at constant values of the amounts 

of constituents and the parameters of each of two reservoirs initially in mutual stable 
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equilibrium, energy can be transferred reversibly from one reservoir to the other with no 

net effect on any other system. 

 Given a system A and a reservoir R, each with fixed values of amounts of 

constituents and parameters, the adiabatic availability of the composite of system A and 

reservoir R is a property of system A+R called available energy of A with respect to 

reservoir R.  Like energy and adiabatic availability, it is defined for all states of a system.  

It can be shown that it is an additive property. 

 Given a reservoir R with fixed values of amounts of constituents and parameters, 

the state of the composite system A+R, in which the system A is in state A1 with values 

of amounts of constituents and parameters {n1,β1} and the reservoir R in state R1 is 

denoted by (AR)1.  By virtue of the laws of thermodynamics, given a reservoir R, a set of 

values of amounts of constituents and parameters {n0,β0} and a state A1, there exists a 

reversible weight process that starts from (AR)1 and ends in a stable equilibrium state 

(AR)0 such that A0 corresponds to {n0,β0}, and the reservoir experiences no net change 

in its values of amounts of constituents and parameters.  Again, we denote by z0 and z1 

the elevation of the weight when the composite system is in states (AR)0 and (AR)1, 

respectively.  We evaluate the quantity Ω1
R  by means of the relation 

 

 Ω1
R = Mg z0 − z1( ). (3.3) 

 

It is straightforward to check that Equation (3.3) defines a property ΩR of the composite 

system A+R, with value Ω1
R  at any state (AR)1, that we call generalized available energy 

of system A with respect to reservoir R and set of values {n0,β0}.  It can be shown that 

the difference in generalized availabilities with respect to the same reservoir R and the 

same values {n0,β0} of any two states A1 and A2, denoted by Ω1
R − Ω2

R  is independent of 

the set of values {n0,β0}.  The generalized available energy Ω1
R  of system A with respect 

to reservoir R and values {n0,β0} representes the largest amount of energy that can be 
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transferred to a weight out of the composite of a system A and a reservoir R in a weight 

process that starts with A in state A1 with values {n1,β1} and ends with A in a state with 

values {n0,β0}, while the reservoir experiences no net change in its values of amounts of 

constituents and parameters. 

 Observations of physical phenomena that can be represented as weight processes 

show that, in general, the amount of energy that can be transferred from the system to the 

weight differs from the energy of the system above the ground-state energy.  In other 

words, the capacity of a system to raise a weight is not always equal to the energy of the 

system in excess of the ground-state energy.  For example, an initially charged battery 

can raise a weight via an electric motor.  However, left idle and well insulated on a shelf, 

the battery discharges internally without transferring out any energy, and at the end, it has 

lost all its capacity to raise a weight via the electric motor.  The difference between the 

energy of a system and its capacity to raise a weight in a weight process is related to the 

difference between energy and adiabatic availability.  Similarly, the difference between 

the energy of a system and its capacity to raise a weight when in combination with a 

reservoir is related to the difference between energy and available energy.  An alternative 

and more general way of accounting for these differences is by means of the property 

called entropy. 

 For the sake of convenience, we select once and for all a reference state A0 with 

values {n0,β0} for system A, an auxiliary reservoir R with fixed values of amounts of 

constituents and parameters, and an arbitrary set of values {n,β} of the amounts of the 

constituents and the parameters for system A.  For any state A1 of system A with values 

{n1,β1}, we evaluate the difference E1-E0 between the energies of states A1 and A0, and 

the difference Ω1
R − Ω0

R  between the generalized available energies of the two states with 

respect to the auxiliary reservoir R and the set of values {n,β}.  As explained earlier, each 

of these differences is measurable by means of an appropriately defined weight process 

(Equations (3.1) and (3.3)). 
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 In terms of these differences, we compute the value S1 using the relation 

 

 S1 = S0 +
1

cR
E1 − E0( )− Ω1

R − Ω0
R( )[ ] (3.4) 

 

where S0 is a constant fixed once and for all for system A, and cR is a well-defined 

positive constant property of reservoir R. 

 Because each of the differences E1-E0 and Ω1
R − Ω0

R  is independent of the set of 

values {n,β}, we conclude that S1-S0 is independent of these values and that also their 

role is only auxiliary.  Furthermore, the choice of the constant cR is such that the value S1 

associated with state A1 is independent of the reservoir used in the set of operations and 

measurements just cited.  In other words, no matter what reservoir is used, we conclude 

that we always obtain the same values S1 for the given state A1 and therefore that the role 

of the reservoir in these operations and measurements is only auxiliary.  Because these 

conclusions are valid for any state A1 of system A, Equation (3.4) defines a property S of 

system A, with value S1 in any state A1, that we call entropy. 

 It can be shown that it is possible to assign absolute values to entropy that are 

nonnegative.  Like energy, entropy is an additive property, i.e., the entropy of a 

composite system equals the sum of the entropies of the component subsystems, provided 

that the subsystems are independent of each other.  It can be shown that in a reversible 

weight process for a system A that changes from a state A1 to a state A2, the value of the 

entropy remains unchanged, i.e., S2=S1.  In an irreversible weight process, however, in 

which system A changes from a state A1 to a state A2, the value of the entropy increases, 

i.e., S2>S1.  We know from many experiences that changes of state can occur in isolated 

systems spontaneously.  Because a spontaneous change from a state A1 to a state A2 may 

be regarded as a weight process with null effect on the weight, we conclude that S2=S1 if 

the process is reversible, and S2>S1 if the process is reversible.  This is known as the 

principle of nondecrease of entropy.  Because changes of state cannot occur 
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instantaneously, we conclude that the principle of nondecrease of entropy is a time 

dependent result, i.e., a relation between entropy values at two different instants of time 

for a system that at time t1 is in state A1 and at a later instant of time t2 in state A2. 

 

3.1.2 Entropy versus Energy Graphs 

 

 Because they are defined in terms of the values of the amounts of constituents, the 

parameters, and a complete set of independent properties, states can in principle be 

represented by points in a multidimensional geometrical space with one axis for each 

amount, parameter, and independent property.  Such a representation, however, would not 

be enlightening because the number of independent properties is very large.  

Nevertheless, useful information can be summarized by first cutting the multidimensional 

space with a hypersurface corresponding to given values of each of the amounts of 

constituents and each of the parameters, and then projecting the result onto a two-

dimensional plane.  Here we consider the entropy S versus energy E plane that illustrates 

many of the basic concepts in thermodynamics. 

 We restrict our consideration to a system with volume V as the only parameter.  

For given values of the amounts of constituents and the volume, we project the multi-

dimensional state space of the system onto the S versus E plane.  The projection has the 

shape of the cross-hatched area in Figure 3.1.  The curve of the stable equilibrium states 

is smooth and concave. 

 By virtue of the second law of thermodynamics, a point on the curve of stable 

equilibrium states represents one and only one state.  For given values of energy, amounts 

of constituents and volume, the stable equilibrium state has the largest value of entropy 

than any other state sharing the same given values.  In the literature, stable equilibrium 

states are often called thermodynamic equilibrium states.  These are the states studied in 

thermostatics.  Therefore, thermodynamics admits thermostatics as a special case - 
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maximum-entropy physics.  The slope of the curve at each point gives the inverse 

temperature associated with the corresponding stable equilibrium state. 

 Each point either inside the cross-hatched area or on the horizontal line S=0 

represents a large number of states.  They can be any state except a stable equilibrium 

state.  The zero-entropy states correspond to states contemplated in mechanics.  

Therefore, thermodynamics admits mechanics as a special case as well - zero-entropy 

physics. 
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Figure 3.1  Entropy versus energy graph 
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3.2 Postulates of Quantum Thermodynamics 

 

 Here we present the postulates of quantum thermodynamics which encompasses 

mechanics and thermodynamics within a single mathematical structure [Hatsopoulos and 

Gyftopoulos, 1976]. 

 

 Postulate 1. Systems 

 With every system there is associated a complex, separable Hilbert space H.  

Denoting the countable infinity by ℵ0, we have either dim(H)= ℵ0, or dim(H)=n=finite 

and then H is equivalent to an n-dimensional complex Euclidean space Cn [Conway, 

1985]. 

 The Hilbert space associated with a composite system of two independent 

subsystems A and B which are associated with Hilbert spaces HA, HB, respectively, is the 

direct product HA ⊗ HB. 

 This postulate is identical to the first postulate of quantum mechanics presented in 

Section 2.4.1. 

 

 Postulate 2. Properties and Observables 

 Among the properties associated with a system, there is a special class of them 

called the observables.  They are associated with linear, self-adjoint, closed operators 

{H,I,J,...} on the Hilbert space H.  Using spectral theory, we can express each of these 

operators in the form: 

 

 J = λdE λ( )∫ , (3.5) 

 

where the set {λ} is the spectrum of J, and dE(λ) is a projection-valued measure. 
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 The spectrum of each such operator is non-empty and real.  If dim(H)=n, the 

spectrum of any operator J correponding to an observable is purely point spectrum, and 

the elements of the spectrum {λ} are called the eigenvalues of J.  If dim(H)= ℵ0, because 

the residual spectrum of a self-adjoint operator is empty [Rudin, 1973], the spectrum of J 

can be decomposed into two parts: the point spectrum and the continuous spectrum.  It 

can so happen that either of these two sets is empty, in which case we say that J has 

purely continuous (or, point) spectrum, respectively.  Again, the elements of the point 

spectrum are called the eigenvalues of J [Conway, 1985]. 

 As explained in Section 2.2.6, upon measurement of a property performed on a 

system we always get a precise number.  If this property is an observable, the 

measurement result is necessarily in the spectrum of the operator which is associated with 

that observable.  For example, if the operator associated with the observable is J 

(Equation (3.5)), then the measurement result is in the set {λ}. 

 An important implication of the superselection rules [Wick et al., 1952] is the 

existence of linear, self-adjoint, closed operators that do not correspond to physical 

observables.  Furthermore, if the dimension of the Hilbert space is ℵ0, some operators 

that correspond to observables are unbounded, hence they are not continuous.  Examples 

of such operators are the Hamiltonian, the position and the linear momentum operators.  

All the linear operators on a finite-dimensional Hilbert space are bounded, hence 

continuous [Conway, 1985; Rudin, 1973]. 

 Although in conventional quantum mechanics properties other than observables 

do not play an essential role, they are indispensable in thermodynamic thinking.  Entropy 

and adiabatic availability [Gyftopoulos and Beretta, 1991g, h] are examples of such 

properties.  The mathematical representatives of some of these properties remain to be 

discovered.  For example, in Chapter 4, we search for the mathematical representative of 

entropy. 
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 Postulate 3. State 

 As described in Section 2.2, at each instant of time, to every system prepared 

according to a preparation scheme Π that generates a homogeneous ensemble E, there 

corresponds a state.  In quantum thermodynamics, the state is the set ε of instantaneous 

expressions corresponding to independent properties and a self-adjoint, non-negative 

definite, unit-trace operator ρ on the Hilbert space H, called the density operator.  If two 

systems A and B are independent, and the state of A is {εA,ρA}, and the state of B 

{εB,ρB}, then the state of the composite system A+B is {εA∪εB,ρA⊗ρB}. 

 Because it is trace-class, the density operator ρ is also compact [Conway, 1985].  

Hence, its spectrum is purely a point spectrum: {pi}.  The eigenvalues {pi} are non-

negative, the degeneracy of a positive eigenvalue pi is finite, and the only possible 

accumulation point of the spectrum of ρ is 0.  Furthermore, there exists an orthonormal 

basis {ψi} in H such that 

 

 ρψ i = piψi . (3.6) 

 

 The set of states in quantum thermodynamics is broader that the set of states in 

quantum mechanics.  The former admits states {ε,ρ} for which either ρ2 = ρ or ρ2 ≠ ρ, 

whereas the latter is restricted only to states {ε,ρ} for which ρ2 = ρ, i.e., ρ is a projection.  

The broad set of states of quantum thermodynamics was first introduced by Hatsopoulos 

and Gyftopoulos [1976], and then adopted by Park and Simmons [1981], and Beretta et al 

[1984, 1985]. 

 Independent of the work of Hatsopoulos and Gyftopoulos, Jauch [1968] used the 

set of density operators (including ρ ≠ ρ2 ) to describe states (note that his definition of 

state does not include the set of instantaneous expressions corresponding to independent 

observalbles).  However, Jauch did not investigate the problem of describing quantum 

irreversible phenomena.  He postulated that the dynamical law of quantum mechanics is 
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given by the von Neumann equation (Equation 2.10)., and showed that it implies a 

reversible time evolution. 

 Messer and Baumgartner [1978] used the set of density operators (including 

ρ ≠ ρ2 ) to describe states (they did not include the set of instantaneous operators in their 

definition of state either), and studied different modified von Neumann equations to 

describe quantum dissipative phenomena.  We will review their work in greater depth in 

Chapter 5 where we investigate the dynamical aspects of quantum thermodynamics.   

 It is noteworthy that the mathematical representation of the density operator in 

quantum thermodynamics is identical to that of the statistical state operator in statistical 

quantum mechanics.  However, the physical meaning of the former is fundamentally 

different from that of the latter.  The former is associated with a state of the system, 

whereas, the latter is a probability distribution over a large member of presumed states of 

the system, each described by a projection operator.  A helpful way of visualizing this 

difference is by means of ensembles.  In thermodynamics, a set ε and a density operator ρ 

represent the state of a member of a homogeneous ensemble.  In statistical quantum 

mechanics, the statistical operator represents probabilities associated with different 

members of a heterogeneous ensemble.  The difference between the physical meanings of 

a density operator and a statistical operator and criteria for its experimental verification 

were first recognized by Hatsopoulos and Gyftopoulos [1976], and has been emphasized 

by Park [1988].  It has also been discussed by Messer and Baumgartner [1978].  This 

recognition is a clear indication of the conceptual distinction between quantum 

thermodynamics which is a non-statistical quantal description of thermodynamics, and 

statistical quantum mechanics which is a statistical expansion of quantum mechanics. 

 If a measurement of an observable is performed on a system in state {ε,ρ}, and 

the operator associated with the observable is J (Equation (3.1)), the probability of getting 

a measurement result between j and j+dj is 
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pi λ ψi , dE λ( )ψi

j

j+dj

∫
i
∑ = pi λdEψ i

λ( )
j

j+dj

∫
i
∑ . (3.7) 

This implies that the arithmetic mean value <J> of the data yielded by measurements of 

the observable on the homogeneous ensemble E is given by the inner product or, 

alternatively, by the trace operation 

 
 

  
J = pi ψi , Jψ i

i
∑ = Tr Jρ( ). (3.8) 

 

 As mentioned earlier, properties other than observables play an essential role in 

quantum thermodynamics and may be included in the set ε.  For example, entropy, 

adiabatic availability (which are defined for all states) and temperature (which is defined 

for stable equilibrium states only) are not observables in the quantum-theoretic sense and 

yet they are properties of the system.  What we mean by the last statement is that there 

exists no linear, closed, self-adjoint operator J on H such that the measurement results of 

a property which is not a quantum observable can be given by Equation (3.7).  Therefore, 

in general, the value of such a property cannot be expressed in the form of Equation (3.8).  

In Chapter 4, we show that the expression for (the value of) entropy is 

 

 S = −k  Tr ρ  Log ρ( )( ), (3.9) 

 

which differs from Equation (3.8) because it is nonlinear in ρ. 

 At first glance, it is not clear whether the uncertainty relations established in 

conventional quantum mechanics are also valid in quantum thermodynamics, because the 

latter involves a broader set of states than the former.  Jauch [1963] studied the problem 

and showed the uncertainty relations apply without any modification even when the set of 

density operators are not restricted to projections. 
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 Postulate 4. Time Evolution 

 Because quantum thermodynamics admits quantum mechanics as a special case, 

the time evolution of a density operator corresponding to a mechanical state ,i.e., {ε,ρ} 

with ρ a projection (ρ = ρ2 ) obeys the Schrödinger equation (Equation (2.6)) or, 

equivalently, the von Neumann equation (Equation 2.10)). 

 However, the generalized dynamical law of quantum thermodynamics, valid for 

all states and not only for mechanical states, remains to be established.  A few attempts 

have been made to discover the equation of motion.  They are discussed in Chapter 5. 
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Chapter 4 
 

4. The Expression for Entropy 

 

 Because entropy is a well-defined property in thermodynamics [Gyftopoulos and 

Beretta, 1991g], the question arises "what is the mathematical expression for entropy in 

the framework of quantum thermodynamics?"  To answer this question, in Section 4.1 we 

state a set of conditions that need to be satisfied by the expression for entropy in quantum 

thermodynamics, in Section 4.2 we review many expressions that have been proposed in 

the literature, and in Section 4.3 we use the criteria to decide which expression is 

acceptable.  It turns out that only one expression passes this test which is performed for 

the first time in quantum thermodynamics.  Thus, we conclude that the expression for 

entropy in quantum thermodynamics is given by Equation (3.9).  We end this chapter by 

presenting, in Section 4.4, certain mathematical conditions imposed on the Hamiltonian 

operator of a system by the expression for entropy.  These conditions are specified for the 

first time in quantum thermodynamics. 

 

4.1 Conditions to be Satisfied by the Expression for Entropy 

 

 In this section, we state a number of conditions that are obtained from general 

considerations of thermodynamics (presented in Section 3.1), and that must be satisfied 

by any expression that purports to represent entropy. 

 1. In contrast to some approaches presented in the literature, where entropy is 

assigned only to an equilibrium state of large systems, in quantum thermodynamics, a 

value of entropy is assigned to every state, equilibrium or not, of any system, large or 
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small.  Therefore, the expression for entropy has to be well-defined in every state of every 

system. 

 2. The value of entropy should remain invariant in a reversible adiabatic process 

and increase in an irreversible adiabatic process.  More specifically, if the time evolution 

of the density operator obeys the von Neumann equation (Equation (2.10)), the 

expression should assign the same value of entropy at any instant of time because the 

process described by this equation is a reversible adiabatic process [Jauch, 1963]. 

 3. Entropy is an additive property, i.e., the entropy of a composite system equals 

the sum of the entropies of the parts of the system, provided that they are independent of 

each other. 

 4. The value of entropy in any state is non-negative, and vanishes only in 

mechanical states. 

 5. For given values of energy, amounts of constituents, and parameters, one and 

only one state should correspond to the largest value of entropy. 

 6. The curve of stable equilibrium states on the entropy versus energy graph 

should be concave and smooth. 

 7. If we denote a stable equilibrium state of a composite of two independent 

systems A and B by {εA∪εΒ,ρAB=ρA⊗ρB}, where {εA,ρA} and {εΒ,ρB} are the stable 

equilibrium states of the subsystems A and B, the entropy expression should be such that 

the entropy maximization procedure used to establish the stable equilibrium states yields 

identical temperatures, and total potentials for the three systems -composite, A, and B. 

 8. For stable equilibrium states, the expression for entropy in quantum 

thermodynamics should reduce to the relations that have been established experimentally 

and that express entropy in terms of the values of energy, the amounts of constituents and 

the parameters. 
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4.2 Candidate Expressions 

 

 In the literature many mathematical expressions have been proposed for entropy.  

Aczel et al [1974], Ochs [1975], and Wehrl [1978] gave a review of these expressions.  

Some of these expressions are as follows: 

the von Neumann entropy (Equation (2.11)) 

 

 Iv = −k  Tr ρ  Log ρ( )( ); (4.1) 

 

the Hartley entropy (Equation (2.13)) 

 

 IH = k  Log N ρ( )( ), (4.2) 

 

where N(ρ) is the number of positive eigenvalues of ρ; 

the Daróczy entropy of degree β 

 

 Iβ =
1

21−β −1
Tr ρ( )β −1( ); (4.3) 

 

where β > 0, β ≠1; 

the Rényi entropy of order α  

 

 Iα =
k

1 − α
Log Tr ρα( )( ); (4.4) 

 

where α > 0,  α ≠1; 

the infinite norm entropy 

 

 I∞ = −k  Log ρ ∞ ; (4.5) 
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where maxp=
∞

ρ   is the largest eigenvalue of ρ; 

the Tolman entropy 

 
 IT = −k ρii

i
∑ Log ρii( ), (4.6) 

 

where ρii is the diagonal element of ρ in energy representation; 

and the coarse-grained entropy [Tolman, 1938; Jancel, 1969] 

 
 Ic = −k P iLog Pi( )

i
∑ , (4.7) 

 

where Pi's are the "coarse-grained probabilities" defined by Tolman [1938]. 

 Other expressions of entropy have appeared in the literature.  They are not 

included here, because it is evident from their mathematical structure that they violate 

many of the conditions stated in Section 4.1. 

 

4.3 The Expression for Entropy 

 

 In this section, we examine which of the expressions for entropy given in Section 

4.2 meet the requirements summarized in Section 4.1.  Upon investigation, we conclude 

that only the von Neumann entropy conforms with all the conditions. 

 All the expressions included in Section 4.2 are defined for all states and, therefore, 

satisfy Condition 1. 

 The coarse-grained entropy (Equation (4.7)) increases when the time evolution of 

the system obeys the von Neumann equation (Equation (2.10)) [Jancel, 1969], hence 

violates Condition 2. 
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 The Tolman entropy (Equation (4.6)) does not assign the same value of entropy to 

every mechanical state.  But von Neumann [1955] has shown that any two mechanical 

states can be connected by means of a reversible adiabatic process.  Hence all these states 

must have the same value of entropy.  Therefore, we reject the Tolman entropy because it 

violates Condition 2. 

 The Daróczy entropy of degree β (Equation 4.3) is not additive [Ochs, 1975], i.e., 

it does not satisfy Condition 3.  Accordingly, the Daróczy entropy must be rejected. 

 It is easy to verify that all the expressions we have not rejected so far satisfy 

Condition 4.  In Appendix B, we show that the Hartley entropy (Equation (4.2)) violates 

Condition 5, and the infinite norm entropy (Equation (4.5)) Condition 6.  So the Hartley 

and infinite norm entropies are rejected. 

 Katz [1967] has shown that the von Neumann entropy (Equation (4.1)) satisfies 

Condition 5, and that the stable equilibrium state of a petit system then has the form 

{ε,ρβ}, with 

 

 ρβ =
exp −βH( )

Tr exp −βH( )( ),    β =
1

kT
 (4.8) 

 

where T is temperature at that state, and H the Hamiltonian operator.  In Appendix B, we 

show that the von Neumann entropy also satisfies Conditions 6 and 7. 

 Again in Appendix B, we show that the Rényi entropy of degree α (Equation 

(4.4)) satisfies Condition 5, and that the density operator of a stable equilibrium state of a 

petit system is of the form 

 

 ργ = λ + γH( )1/ α −1( )
  (4.9) 
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where, λ and γ are real numbers.  In Appendix B, we show also that, for 0<α<1, the 

Rényi entropy satisfies Condition 6 but not Condition 7.  Accordingly, the Rényi entropy 

is not acceptable. 

 Therefore, we conclude that among the expressions proposed in Section (4.1) only 

the von Neumann entropy satisfies Conditions 1 to 7.  As mentioned earlier, the similarity 

in the mathematical structure of statistical quantum mechanics and quantum 

thermodynamics implies that the success of the former theory in describing the properties 

of stable equilibrium states carries over to the latter.  Hence, the von Neumann entropy 

satisfies Condition 8 as well. 

 In statistical quantum mechanics, several different derivations of the expression 

for entropy (Equation (2.11)) have been given [von Neumann, 1955; Ochs, 1975].  These 

derivations are based on a set of axioms.  The similarity between the mathematical 

structures of statistical quantum mechanics and quantum thermodynamics suggests that 

these derivations can also be used to determine the expression for entropy in the latter 

theory.  Unfortunately, the set of conditions specified in Section 4.1 do not justify all the 

axioms needed for the derivations.  For example, the derivation of the expression for 

entropy by von Neumann is based on the notion of mixing of pure states, which cannot be 

justified in quantum thermodynamics. 

 In the derivation of Ochs which is based on a previous work by Aczel et al 

[1974], the assumptions (the axioms) that the expression for entropy has the "partial 

isometric invariance" and "subadditivity" features cannot be justified by general 

considerations of thermodynamics.  Their justification in statistical quantum mechanics 

makes extensive use of the meaning ad hoc assigned to entropy as "the intrinsic measure 

of the dispersion of quantum states". 

 The only attempt to establish the expression for entropy in quantum 

thermodynamics has been done by Hatsopoulos and Gyftopoulos [1976].  They conclude 

that the von Neumann entropy is the only expression acceptable in quantum 
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thermodynamics.  However, their derivation contained unnecessary assumptions that are 

not listed among the conditions presented in Section 4.1.  Therefore, this is the first time 

that the von Neumann entropy is rigorously shown to be the entropy of quantum 

thermodynamics. 

 

4.4 Implications of the Expression for Entropy 

 

 The density operator ρβ given by Equation (4.8), called the canonical distribution, 

is well-defined if and only if Tr(exp(-βH))<∞.  The same condition is valid for density 

operators established by Katz, and introduced by Gibbs under the name of grand 

canonical distributions.  To the best of our knowledge, systems other than spin systems 

are described in terms of the concept of position in ordinary space, and conform to the 

Heisenberg uncertainty principle  ∆x( ) ∆p( )≥ h / 2 .  Both the position operator (which 

admits a continuous spectrum) and the Heisenberg uncertainty principle require that the 

Hilbert space H associated with the system has countable infinite dimension, i.e., 

dim(H)=ℵ0 [Rudin, 1973; Artin, 1989].  Furthermore, it is experimentally established 

that these systems admit only positive values of temperatures in stable equilibrium states 

(i.e., β>0). 

 Therefore, if dim(H)=ℵ0, the Hamiltonian oprator H must satisfy the condition 

that Tr(exp(-βH))<∞, for some value of β>0, i.e., exp(-βH) is of trace-class.  Immediate 

implications of this condition are that: if dim(H)= ℵ0, (i) the spectrum of H must be 

purely point spectrum, i.e., H is diagonalizable; (ii) the Hamiltonian is unbounded, yet 

bounded from below, i.e., there exists a smallest eigenvalue of H, called the ground state 

energy; (iii) the spectrum of H contains no accumulation point; and (iv) the degeneracy of 

any eigenvalue of H is finite.  Because it is unbounded, the Hamiltonian operator H is 

also discontinuous [Conway, 1985]. 
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 In quantum mechanics, there are well-known examples of systems which violate 

the requirement that Tr(exp(-βH))<∞, for some value of β>0: the free particle because its 

Hamiltonian has purely continuous spectrum, and the hydrogen atom because its energy 

eigenvalues converge to 0, i.e., there exists an accumulation point in the spectrum of H.  

We can explain these discrepancies by recognizing that no particle is free in nature, i.e., 

both the so-called free particle, and the hydrogen atom are actually confined in a finite 

volume.  Because the volume is finite, if we use the Wentzel-Kramers-Brillouin (WKB) 

approximation we find that the energy eigenvalues are discrete and unbounded.  

However, both the free particle and hydrogen atom examples are extremely useful and 

valuable in quantum physics.  The free particle helps us understand the time evolution of 

a loosely held particle, and the hydrogen atom problem provides an excellent numerical 

approximation for energy eigenvalues that are not close to zero. 

 It is noteworthy that the restriction Tr(exp(-βH))<∞ is also necessary in statistical 

quantum mechanics, because of the identical mathematical representations of ρ and the 

von Neumann entropy (Equation (2.11)). 

 We would like to emphasize that the restriction imposed on the Hamiltonian 

operator H cannot be interpreted as a deficiency of the von Neumann entropy, because 

any expression which is solely a function of the eigenvalues of the density operator, and 

satisfies Conditions 3 and 6 requires the same restriction.  To show this we consider a 

system such that dim(H)=n, then an acceptable density operator according to the third 

postulate of quantum thermodynamics is given by the relation 

 

 ρn =
1
n

In , (4.10) 

 

where In is the identity operator on H.  The eigenvalues {pi} of such a ρn are all identical 

and equal to 1/n.  Hence the entropy of the state {ε,ρn} is a function of n only, i.e., 

S(ρn)=f(n).  Using the additivity of entropy (Condition 3) we find 
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 S ρnm( )= S ρn ⊗ ρm( )= S ρn( )+ S ρm( ). (4.11) 

or, equivalently 

 

 f(nm) = f(n) + f(m) . (4.12) 

 

It is easy to show that the only smooth function f(n) that satisfies Equation (4.12) is 

 

 f(n) = k  Log(n) . (4.13) 

 

When the dimension of the Hilbert space is infinite, n goes to infinite, and we conclude 

that there exists a state with infinite entropy.  This state cannot have a finite value of 

energy.  If it did, the concavity of the stable equilibrium states on the S versus E graph 

(Condition 6) would imply that all the stable equilibrium states have infinite entropy, an 

implication that is at variance with innumerable experiences.  Therefore, we conclude that 

the Hamiltonian is unbounded, and that its spectrum contains no accumulation point.  To 

the best of our knowledge, this is the first time such a restriction is imposed on the 

Hamiltonian in quantum thermodynamics. 
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Chapter 5 
 

5. Dynamics 

 

 The power of a physical theory is in its ability to make predictions.  In quantum 

thermodynamics, the time evolution of systems are described by the equation of motion 

which remains to be discovered.  Nevertheless, several features of this equation are 

known.  In this chapter, we investigate the dynamical aspect of quantum 

thermodynamics.  We present the conditions that need to be satisfied by the equation of 

motion in Section 5.1, and proposed equations of motion of quantum thermodynamics in 

Section 5.2.  Upon investigating the proposed equations in Section 5.3, we conclude that 

only one suggested by Beretta satisfies all the stated conditions.  In Section 5.4, for the 

first time, we present a special class of solutions of the Beretta equation which plays an 

important role in describing relaxation phenomena. 

 

5.1 Conditions Imposed on the Equation of Motion 

 

 As discussed in Section 3.2, in quantum thermodynamics the state is represented 

by the set ε of instantaneous expressions corresponding to properties and the density 

operator ρ.  Therefore, in dynamics, we have to describe the time evolution of both the set 

ε and the density operator ρ.  In isolated systems, the set ε is time invariant, and so all we 

need to describe is the time evolution of ρ.  This is done by establishing an equation 

which governs the evolution of ρ.  We call it the equation of motion of quantum 

thermodynamics. 

 If system A is not isolated, we need to describe the evolution of the set εA as well.  

One possible approach is to study the behavior of the isolated composite system A+B, 
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where B is the union of all systems interacting with the system A.  Then, the set εAB is 

time independent, and the time evolution of the density operator ρAB of the composite 

system is determined by the equation of motion for the composite system.  In principle, 

the set εA and the density operator ρA at any instant of time t, can be recovered from the 

state {εAB,ρAB} of the composite at time t, provided that A is an identifiable subsystem 

of the composite system. 

 As mentioned in Section 3.2, the dynamical law (postulate 4) of quantum 

thermodynamics remains to be established.  Nevertheless, we can determine several 

mathematical conditions that need to be satisfied by the equation of motion. 

 As a first condition, we believe that the equation of motion should be compatible 

with the principle of determinism, i.e., without any ambiguity it should allow us to 

determine the state at any instant of time, given the state at some specific time.  The 

simplest form of equation possessing this feature has the mathematical representation: 

 

 
∂ρ
∂t

= F ε,ρ( ), (5.1) 

 

where F(ε,ρ) is a linear operator on H which is a function of the state {ε,ρ} and remains 

to be discovered.  Note that the forms of the equations of motion of both classical and 

quantum mechanics are identical to that of Equation (5.1). 

 To be an acceptable equation of motion in the framework of quantum 

thermodynamics, the following mathematical conditions must be satisfied by Equation 

(5.1). 

 1. The equation of motion must preserve the Hermiticity of ρ.  Accordingly, 

F(ε,ρ)=F*(ε,ρ), where F*(ε,ρ) denotes the adjoint of the operator F(ε,ρ). 

 2. The equation must preserve the trace of ρ, i.e., Tr(ρ)=1 at any instant of time t.  

Accordingly, 
d
dt

Tr ρ( )= 0 = Tr F ε,ρ( )( ). 
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 3. In an isolated system, energy must be conserved, i.e., 
d
dt

H = 0, where H is 

the Hamiltonian operator of the system.  Accordingly, Tr(HF(ε,ρ))=0. 

 4. The entropy of an isolated system must not decrease, i.e., 
d
dt

S = −k  Tr Log ρ( )F ε,ρ( )( )≥ 0 .  Furthermore, there must exist a class of states for 

which the inequality becomes strict, i.e., the entropy increases, so that the equation can 

describe irreversible spontaneous processes which are part of our experiences. 

 5. The equation should preserve the non-negative definiteness of ρ. 

 6. The equation of motion should reduce to the von Neumann equation (Equation 

(2.10)) or, equivalently, to the Schrödinger equation (Equation (2.6)) when ρ is a 

projection (ρ2=ρ), because quantum mechanics is a special case of quantum 

thermodynamics. 

 7. Solutions of the equation of motion for a composite of two independent 

systems A and B should be compatible with the two equations of motion for the parts A 

and B.  If ρAB(t) denotes the solution of the equation for the composite system for the 

initial condition ρAB(0)=ρA(0)⊗ρB(0), ρA(t) and ρB(t) denote the solutions for the initial 

conditions ρA(0) and ρB(0), respectively, then we must have ρAB(t)=ρA(t) ⊗ρB(t).  This 

condition implies that the operator F(ε,ρ) of Equation (5.1) satisfies the relation: 

FAB(εAB,ρAB)=FA(εA,ρA) ⊗ρB+ρA⊗FB(εB,ρB). 

 8. The solution of Equation (5.1) must exist and be unique for any initial 

condition ρ(0). 

 9. The time evolution predicted by the equation of motion must be consistent 

with experimental observations.  Actually, this is the only way the equation of motion of 

any physical theory can be and is validated. 
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5.2 Candidate Equations 

 

 Though many attempts have been made to establish equations that describe 

quantum dissipative phenomena within the framework of statistical quantum mechanics, 

only a few equations of motion have been proposed for quantum thermodynamics.  In the 

former category are the nonlinear Schrödinger equations which are discussed in Section 

2.5.4 and are shown to be deficient.  Accordingly, in this section we present only the 

equations of motion proposed for the density operator ρ. 

 The first equation of motion proposed for the density operator ρ is the von 

Neumann equation (Equation 2.10) [1955] 

 

 
  
ih

∂ρ
∂t

= H,ρ[ ]. (5.2) 

 

In this equation, however, ρ is interpreted as a statistical operator.  Only Jauch [1968] 

considered all density operators ρ=ρ2 and ρ≠ρ2, and postulated that the dynamical law 

of his generalized quantum mechanics is given by the von Neumann equation.  Later, 

Hatsopoulos and Gyftopoulos [1976] postulated that the von Neumann equation applies 

to all density operators, ρ=ρ2 and ρ≠ρ2, but only for unitary changes of ρ. 

 In the literature there are attempts to describe quantum dissipative phenomena 

used subsystem dynamics (Section 2.5.2).  For example, several equations of motion for 

the statistical operator of the subsystem have been developed by Kossakowski [1973], 

Lindblad [1976], and Gorini et al [1976].  These equations are based on the notion of a 

quantum dynamical semi-group, are derived by using the concept of "complete positivity" 

[Lindblad, 1976; Gorini et al, 1976], and are linear in ρ.  They are all of the form 

 

 
∂ρ
∂t

= Lρ, (5.3) 
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where L is a linear operator on L1(H), that is the Banach space over the field of real 

numbers of self-adjoint trace class linear operators on H.  The operator L is sometimes 

referred to as a super-operator.  Because of its similarity with the Liouville equation of 

classical mechanics, Equation (5.3) is commonly referred to as the "Liouville equation". 

 Kossakowski's proposal is exclusively for a two-level system, and that of Gorini 

et al applies to systems associated with a finite dimensional Hilbert space.  The equation 

proposed by Lindblad is valid for all systems, and reduces to the equations proposed by 

Kossakowski and Gorini et al.  Therefore, in this dissertation, we investigate only the 

equation of motion proposed by Lindblad [1976].  He considered a super-operator L such 

that 

 

 
  

∂ρ
∂t

=
1
ih

[H,ρ] + VnρVn
* −

1
2

V n
* Vn ,ρ{ }+

 
 

 
 

n
∑  (5.4) 

 

where Vn
* Vn ,ρ{ }+

= Vn
* Vnρ + ρVn

* Vn , and {Vn} are bounded linear operators on H.  In 

the following section, we investigate if this equation of motion is suitable for quantum 

thermodynamics, interpreting ρ as a density operator rather than a statistical operator. 

 Messer and Baumgartner [1978] proposed two different equations of motion for 

the density operator, both nonlinear in ρ (see also Section 3.2).  The most important 

aspect of their work is the recognition that ρ cannot represent a statistical operator.  They 

proposed these equations as a generalization of the nonlinear Schrödinger equations 

(A.14) and (A.17)) which are valid only for pure states. 

 The first equation is a generalization of Equation (A.14), and is given by 

 

 
  

∂ρ
∂t

=
1
ih

H,ρ[ ]−
1
2

γ V ρ( ) ρ + ρV ρ( )( ), (5.5) 

 

where γ is a positive constant, and V(ρ) a linear operator such that 
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 V ρ( )xy = ρ( )xy
Log

ρ( )xy

ρ( )yx

, (5.6) 

 

and Axy denotes the "kernel" of the operator A with respect to positions x and y.  The 

kernel of an operator A is given by the inner product <δx|A|δy>, where δx and δy are 

Dirac delta functions singular at x and y, respectively. 

 The second equation of motion proposed by Messer and Baumgartner is a 

generalization of Equation (A.17) and is given by 

 

 
  
ih

∂ρ
∂t

= H,ρ[ ]− γ p x,ρ[ ], (5.7) 

 

where γ is a positive constant, and x and p are the position and momentum operators, 

respectively. 

 Park and Simmons [1981] adopted the generalized set of density operators of 

quantum thermodynamics, and proposed the nonlinear equation of motion given by 

 

 
  

∂ρ
∂t

=
1
ih

H,ρ[ ]+
1
λ

ˆ ρ ρ( )− ρ( ), (5.8) 

 

where λ>0, and ˆ ρ ρ( ) is the stable equilibrium state which shares the same values of 

energy, amounts of constituents and parameters with ρ. 

 Beretta et al [1984] proposed another nonlinear equation for ρ.  To express the 

Beretta equation in a compact form, we introduce the semi-inner product 

 

 A,B( ) = Tr A*Bρ( )− Tr A*ρ( )Tr Bρ( )= A*B − A* B , (5.9) 
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where A and B are linear, closed operators on H, and define a new operator Σ=-Log(ρ) 

with the convention Log(0)=0 which allows us to express the entropy of the system in 

state ρ as 

 

 S ρ( )= S = −k  Tr ρ  Log ρ( )( )= k Σ . (5.10) 

 

The Beretta equation reads:  To every system there corresponds a set G j{ } of n linear, 

closed, self-adjoint, commuting operators on H, called the generators of motion, such that 

 

 
  

∂ρ
∂t

=
1
ih

H,ρ[ ]+
1
2τ

ρ, D ρ( ){ }+   (5.11) 

 

 D ρ( ) =

Σ - Σ G1 − G1 ... Gn − Gn

G1, Σ( ) G1,G1( ) ... G1,G n( )
... ... ... . ..

G n, Σ( ) Gn,G1( ) ... G n,Gn( )
G1, G1( ) ... G1,Gn( )

... ... . ..

G n,G1( ) ... Gn,Gn( )

. (5.12a) 

 

where τ is a positive constant, and {ρ,D(ρ)}+=ρD(ρ)+D(ρ)ρ. 

 

Because it always contains the Hamiltonian, the set {Gj} is not empty.  The cardinality of 

the set {Gj} depends on the system.  In grand systems, i.e., systems which admit 

fractional expectation values of the amounts of constituents, the number of constituent 

operators {Ni} are also included in the set {Gj}.  Furthermore, the elements of the set 

{Gj} are always linearly independent.  For certain systems, the set {Gj} contains only the 

Hamiltonian and Equation (5.12a) reduces to 
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 D ρ( ) =

Σ − Σ H − H

H, Σ( ) (H,H)

H,H( ) . (5.12b) 

 

 The Beretta equation we have just presented applies only to systems which 

contain one type of constituent.  For more than one constituent, Beretta has proposed a 

more general equation [Beretta et al, 1985].  In the generalized form of the Beretta 

equation, to every constituent ni of the system, there corresponds a different time constant 

τi.  In this dissertation, we assume that all time constants τi are identical, in which case 

the generalized Beretta equation reduces to Equation (5.11). 

 For certain states the denominator in Equation (5.12a) can vanish and the equation 

becomes undetermined.  For those states, Beretta [1985a] postulated that D(ρ) itself 

vanishes hence the equation reduces to the von Neumann equation. 

 Finally, Korsch and Steffen [1987] proposed a nonlinear equation of motion for 

the statistical operator ρ.  The authors recognized the difficulties in interpreting the 

meaning assigned to ρ, induced by the nonlinearity of the equation.  However, they did 

not state as explicitly as Messer and Baumgartner [1978] that ρ cannot be a statistical 

operator.  The motivation behind the work of Korsch and Steffen is to describe 

irreversible dissipative time evolution of a system in contact with its environment (an 

open system).  Their equation of motion is given by 

 

 
  

∂ρ
∂t

=
1
ih

H,ρ[ ]+ γ∆ ρ( ) (5.13) 

 

where ∆(ρ) is a nonlinear function of ρ given by 

 

 either    ∆ ρ( )= Σ − Σ( )ρ   (5.14a) 
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 or    ∆ ρ( ) =
1
2

A,ρ{ }+ − A ρ  (5.14b) 

 

or a combination of Equations 5.14a and 5.14b, where A is an operator corresponding to 

an additive property of the system, and {Aρ,ρA}+=Aρ+ρA. 

 

5.3 The Equation of Motion 

 

 In this section, we examine which of the equations of motion given in Section 5.2 

meet the requirements summarized in Section 5.1.  Upon investigation, we conclude that 

only the Beretta equation conforms with all the conditions. 

 First, we observe that the von Neumann equation (Equation (5.2)) satisfies all the 

Conditions 1 to 3, and 5 to 8.  However, because it implies a unitary transformation in 

time, the von Neumann equation conserves the value of entropy and violates Condition 4.  

Accordingly, we conclude that the von Neumann equation is not acceptable. 

 The two equations of motion proposed by Messer and Baumgartner, Equations 

(5.5) and (5.7), satisfy Conditions 1 and 2.  However, they do not conserve the value of 

energy, hence violate Condition 3.  Even though this last statement alone shows that the 

equations proposed by Messer and Baumgartner are unacceptable, for the sake of 

completeness, we investigate them further.  The authors also emphasized that the question 

of whether or not these equations satisfy Conditions 5 and 8 is an open one.  Both 

equations violate Condition 6, however.  They are invented in such a way that, when ρ is 

a projection, they reduce to the nonlinear Schrödinger equations instead of the 

Schrödinger equation.  The exact forms of these nonlinear Schrödinger equations are 

given in Appendix A.  More specifically, Equation (5.5) reduces to Equation (A.14), and 

Equation (5.7) reduces to Equation (A.17) with c=0.  Furthermore, it is not known 

whether or not Equation (5.5) satisfies Condition 4.  It is easy to show that Equation (5.7) 
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conserves the value of entropy, and therefore violates Condition 4.  Based on these 

observations, we conclude that both equations proposed by Messer and Baumgartner are 

not acceptable. 

 Simmons and Park [1981a, b] have criticized the way the Liouville equations are 

derived for the statistical operator.  Here, we are not interested in how the equations are 

derived, but rather in whether they satisfy Conditions 1 to 9.  It turns out that the 

Liouville equations do not satisfy these conditions. 

 If it were possible to find a Liouville equation that satisfies the Conditions 1 to 9, 

we could have postulated it as being the equation of motion of quantum thermodynamics 

by interpreting ρ as a density operator.  This approach would have been fundamentally 

different from those of Lindblad, Kossakowski and Gorini who "derived" rather than 

"postulated" their equation.  It is noteworthy, however, that if the equation of motion 

cannot be derived from known principles because these principles do not regularize all 

experiences, then it must be postulated. 

 It is easy to verify that the Lindblad equation satisfies Conditions 1 and 2.  The 

first difficulty encountered with the Liouville equations proposed in the literature is that, 

in general, they are not energy conserving and do not conform with the principle of 

entropy non-decrease [Park and Simmons, 1981; Simmons and Park, 1981b].  In 

Appendix C, however, we give a version of the Lindblad equation (Equation (5.4)) which 

is both energy conserving and entropy non-decreasing, for the special case of a two-level 

system.  Therefore, we cannot find a definitive answer to the question of whether or not 

the Lindblad equation satisfies Condition 3 and 4 in general, with a proper choice of 

{Vn}.  As shown in Appendix C, however, the Lindblad equation does not satisfy 

Condition 5, because it preserves the non-negativity of the density operator only in the 

positive direction in time.  Given the state of a system at an instant of time t, in a 

deterministic theory, the state at any other instant of time (both after and before t) is 

uniquely determined.  The Lindblad equation fails to satisfy this criterion because it does 
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not preserve the non-negativity of the density operator in the negative direction in time 

and, therefore, we cannot recover the state of the system in the past.  Accordingly, we 

conclude that the Lindblad equation is not suitable for our purposes. 

 For the sake of completeness, we also investigate whether the Lindblad equation 

satisfies Conditions 6 to 9.  In Appendix C we show that the Lindblad equation does not 

comply with Conditions 6 and 9.  With a proper choice of {Vn}, it can be readily shown 

that Condition 7 is satisfied.  Condition 8 is satisfied because Lindblad [1976] used it in 

deriving his equation.  From this discussion, we conclude that the Lindblad equation is 

not acceptable. 

 Park and Band [1977, 1978a, b] searched for a generalized equation of motion 

linear in ρ which takes any state to a stable equilibrium state with the same values of 

energy, amounts of constituents and parameters as ρ.  They have found that such an 

equation exists for two-level systems.  An example is the Lindblad equation (C.4)).  

However, later on Simmons and Park [1981a] showed that no such linear equation exists 

for N-level systems with N>2, and concluded that any equation of motion which takes a 

state to its corresponding stable equilibrium state must be nonlinear in ρ.  They have 

proposed Equation (5.8), which clearly satisfies their criterion, and have shown that it 

satisfies Conditions 1 to 4.  Because once the initial density operator is given, ˆ ρ ρ( ) is 

determined, Condition 8 is also satisfied because the equation becomes linear in ρ and its 

solutions are known to exist and be unique [Bender and Orszag, 1978].  However, the 

Park-Simmons equation satisfies Condition 7 only in an artificial manner.  It is clear that 

the equation for a composite system takes any initial state to a stable equilibrium state of 

the composite system in which the individual parts are in mutual stable equilibrium with 

each other.  However, if the equation is solved for each individual part, the resulting 

stable equilibrium states are not necessarily in mutual stable equilibrium.  For example, 

the temperatures of the final states are not necessarily identical.  There is no reason for 

them to be identical because the parts are independent of each other.  The difficulty can 
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be avoided only by postulating that a system should first be decomposed down to its 

independent parts and then the Park-Simmons equation be applied to each part.  Even if 

the problem with Condition 7 is resolved, in Appendix C we show that the equation 

violates Conditions 5, 6 and 9 exactly in the same manner as the Lindblad equation.  

Accordingly, we conclude that the Park-Simmons equation is not acceptable. 

 The Beretta equation (Equation (5.11)) is the most promising among the 

candidates given in Section 5.2.  Beretta [1984] showed that his equation satisfies 

Conditions 1 to 6.  In Appendix C, we show that the equation satisfies Condition 7 as 

well.  The major difficulty to date has been to prove the existence and uniqueness of the 

solutions of the equation [Beretta, 1984], but as shown in Appendix C, this difficulty has 

been resolved and the Beretta equation satisfies Condition 8.  In principle, the equation 

describes both reversible and irreversible spontaneous processes [Beretta et al 1984], i.e., 

processes in isolated systems.  Because it reduces to the Schrödinger equation or, 

equivalently, to the von Neumann equation for mechanical states, the Beretta equation 

describes all the processes captured by either of these two equations.  The validity of the 

equation for more general states (ρ≠ρ2) remains to be shown.  In Chapter 6, we suggest a 

number of experiments which can validate quantitatively this equation and which can be 

used to evaluate the time constant τ.  Beretta [1985a, b] also suggested an experiment for 

a quantitative verification of his equation of motion. 

 Korsch and Steffen [1987] introduced their equation in the context of subsystem 

dynamics.  In its general form the equation results in entropy increase if initially the state 

is not equilibrium.  Upon requiring that energy be conserved, Korsch and Steffen showed 

that their equation reduces to the Beretta equation, and concluded that the latter is the 

most general equation that satisfies all the requirements of quantum thermodynamics. 

 Because the Beretta equation is the only equation which complies with all the 

conditions stated in Section 5.1, we concur with the conclusions of Korsch and Steffen. 
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5.4 About the Solutions of the Beretta Equation 

 

 In this section, we discuss the solutions of the Beretta equation.  We begin with a 

discussion of an essential feature of the solutions regarding the approach to equilibrium.  

Next, we present a special class of solutions which will be used frequently in Chapter 6. 

 

5.4.1 Approach to Equilibrium 

 

 In Appendix C, we prove that the Beretta equation preserves the zero eigenvalues 

of the density operator.  Accordingly a state having a density operator with a zero 

eigenvalue never reaches a stable equilibrium state, because none of the eigenvalues of 

the density operator of a stable equilibrium state is zero.  Some authors might 

characterize this feature of the Beretta equation as a deficiency [Simmons and Park, 

1981b].  In contrast, we believe that it is an essential and useful feature.  If we require that 

the equation of motion takes any initial state of a system to its corresponding stable 

equilibrium state, the possibility that the system admits unstable (or metastable) 

equilibrium states is excluded.  However, many experiences exist which require that they 

be represented by equilibrium states that are either unstable or metastable.  For example, 

certain chemical and nuclear reactions proceed so slowly that the reactants can be 

conceived of as they are in equilibrium for many practical purposes.  Similarly, surfaces 

of certain metals correspond to unstable crystallographic orientations, and for all practical 

purposes glasses are in equilibrium yet they are not stable.  Equilibrium states that are not 

stable exist also in mechanics. 

 There is also a mathematical difficulty associated with the requirement that the 

equation of motion takes any state without exception to its corresponding stable 

equilibrium state.  As we mentioned earlier, this requirement can be achieved only if the 
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equation of motion does not preserve the zero eigenvalues of the density operator.  It 

turns out that an equation that does not preserve the eigenvalues would violate at least 

one of Conditions 5, 6, 8, or 9.  The proof of this statement is given in Section C.4. 

 Starting with a density operator with one or more zero eigenvalue, it follows from 

this discussion that the approach to a stable equilibrium state can only be induced by 

disturbances (perturbations) that affect the dimensionality of the density operator. 

 

5.4.2 A Special Class of Solutions of the Beretta Equation 

 

 In this section, we investigate a special class of solutions of the Beretta equation 

which are useful in discussions in Chapter 6, and play a role in determining how the 

independence of two systems is described in the equation of motion. 

 We consider system A associated with Hilbert space H equal to the direct product 

of two Hilbert spaces H1 and H2, i.e., H=H1⊗H2.  We denote the identity operators on H1 

and H2 by I1 and I2, respectively, and assume that the Hamiltonian operator H of A is 

such that  

 

 H = H1 ⊗ I2 + I1 ⊗ H2  (5.15) 

 

where H1 and H2 are linear, closed, self-adjoint operators on H1 and H2, respectively.  

We call a Hamiltonian operator that satisfies Equation (5.15) separable.  Furthermore, we 

assume that at time t=0, the density operator ρ(0) of system A is given by 

 

 ρ 0( ) = ρ1 0( )⊗ ρ2 0( )  (5.16) 
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where ρ1(0) and ρ2(0) are linear, self-adjoint, non-negative definite, unit trace operators 

on H1 and H2, respectively.  We call a density operator of system A that satisfies 

Equation (5.16) uncorrelated. 

 In general, Equations (5.15) and (5.16) are necessary but not sufficient to establish 

the independence of subsystems A1 and A2.  To see this point clearly we note the 

following.  If the generators of motion of A1 and A2 are H1 and H2, respectively, the 

Beretta equation for system A is given by (see Appendix C) 

 

 
  

∂ρ
∂t

=
1
ih

H,ρ[ ]+
1
2τ

ρ, D ρ( ){ }+  5.17) 

 

where 

 

 D ρ( ) =

Σ − Σ ˜ H 1 − ˜ H 1
˜ H 2 − ˜ H 2

˜ H 1, Σ( ) ˜ H 1, ˜ H 1( ) ˜ H 1, ˜ H 2( )
˜ H 2, Σ( ) ˜ H 2 , ˜ H 1( ) ˜ H 2, ˜ H 2( )

˜ H 1, ˜ H 1( ) ˜ H 1, ˜ H 2( )
˜ H 2, ˜ H 1( ) ˜ H 2 , ˜ H 2( )

 (5.18) 

 

and ˜ H 1 = H1 ⊗ I2 , and ˜ H 2 = I1 ⊗ H2 .  As explained in Section C.3, this is equivalent to 

saying that the set of generators of motion of A is { ˜ H 1, ˜ H 2 }. 

 On the other hand, if the only generator of motion of A is H rather than H1 and 

H2, then the Beretta equation of system A is given by Equation (5.17), but now D(ρ) 

satisfies the relation 

 

 D ρ( ) =

Σ − Σ H − H

H, Σ( ) H,H( )
H,H( ) . (5.19) 
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The time evolutions resulting from the Beretta equation for the two D(ρ)'s (Equations 

(5.18) and (5.19)) are fundamentally different.  If D(ρ) is given by Equation (5.18), the 

expectation values of both H1 and H2 are conserved and subsystems A1 and A2 evolve 

only along states that preserve both energies.  Of course, the energy <H> of A is also 

conserved because <H>=<H1>+<H2>.  On the other hand, if D(ρ) is given by Equation 

(5.19), the energy <H> is conserved but, in general <H1> and <H2> are not.  Here the 

state space of system A is broader than when both <H1> and <H2> are conserved, and 

subsystems A1 and A2 can no longer be considered independent. 

 The last observation brings forth an important distinction between quantum 

mechanics and quantum thermodynamics.  In the former theory, if the Hamiltonian 

operator is separable and the initial density operator is uncorrelated, it is easy to show that 

the solution ρ(t) of the von Neumann equation satisfies at all times the relation 

 

 ρ t( )= ρ1 t( )⊗ ρ2 t( ) (5.20) 

 

where ρ1(t) and ρ2(t) is the solution of the von Neumann equation corresponding to the 

relevant subsystem, i.e., 

 

 
  

∂ρi

∂t
=

1
ih

Hi,ρi[ ]   i =1, 2. (5.21) 

 

Therefore, we conclude that the subsystems A1 and A2 are independent of each other, 

hence they are subsystems of the composite system A.  In other words, the separability of 

the Hamiltonian, combined with an initial uncorrelated density operator, is sufficient to 

establish the permanent independence of the two subsystems.  In quantum 

thermodynamics, the situation is different.  If ρ(0) and D(ρ) are given by Equations (5.16) 

and (5.19), the density operator at any instant of time t is still given by Equation (5.20), 

but each of ρ1(t) and ρ2(t) is not a solution of the equation relevant to the subsystem, i.e., 
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∂ρi

∂t
≠

1
ih

Hi,ρi[ ]+
1
2τ

ρi ,

Σ i − Σ i Hi − Hi

Hi ,Σ i( ) H i,Hi( )
Hi ,Hi( )

 

 
 

 
 

 

 
 

 
 

+

   i = 1,2 . (5.22) 

 

The reason is that, in general neither <H1> nor <H2> is conserved.  Therefore, the 

separability of the Hamiltonian, combined with an initial uncorrelated density operator, is 

not sufficient to describe independence of the two subsystems. 

 At this point, we can introduce the notion of the temperature of a subsystem 

which is necessary for discussions presented in the remaining portion of this chapter, and 

Chapter 6.  We consider a composite system A of two subsystems A1 and A2, and an 

uncorrelated density operator ρ=ρ1⊗ρ2 of system A, such that each of ρ1 and ρ2 

corresponds to a canonical distribution (Equation (4.8)) 

 

 ρi =
exp −βi Hi( )

Tr exp −βiHi( )( ),    βi =
1

kTi
   i = 1,2 (5.23) 

 

Then we call T1 and T2 the temperatures of subsystem A1 and A2, respectively, 

regardless  of the independence of the subsystems. 

 There are well-known examples of systems whose time evolutions are given by 

Equations (5.17) and (5.19).  The first is a structureless particle in a force-free rectangular 

box.  The Hamiltonian can be separated into three parts, one along each of the x, y, and z 

direction.  Therefore, we can conceive of system A as a composite of three subsystems 

Ax, Ay, and Az.  In innumerable experiments, it has been shown that if initially the 

temperatures of subsystems Ax, Ay, and Az are different, the system exhibits a relaxation 

and eventually reaches a stable equilibrium state where the temperatures of the 
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subsystems are identical.  Therefore, the time evolution of each subsystem is influenced 

by the other two subsystems, i.e., the subsystems are not independent. 

 Another example is a diatomic gas molecule in a force-free rectangular container.  

The Hamiltonian operator of the system is separable into two parts Htr and Hvib, 

associated with the translational and vibrational degrees of freedom of the molecule, 

respectively.  It is experimentally observed that any initial difference in the temperatures 

of subsystems Atr and Avib vanishes as the system evolves.  This phenomenon is called 

vibrational relaxation in a diatomic gas [Lambert, 1977].  Again, the two subsystems 

influence each other's time evolution hence they are not independent. 

 One last example is an elementary particle with non-zero spin.  The Hamiltonian 

of this one particle system can be divided into two parts Htr and Hs, associated with the 

translational and spin degrees of freedom of the particle, respectively.  Again, it is 

experimentally observed that the system exhibits a relaxation, i.e., any difference in the 

initial temperatures of subsystems Atr and As decays during the time evolution of the 

system.  This phenomenon is an example of spin relaxation observed in innumerable 

experiments [Guyer et al, 1971]. 

 Now we study the special class of solutions mentioned at the beginning of the 

section.  We consider a system A that is composite of two subsystems A1 and A2 which 

are not subsystems of A.  For the sake of simplicity, we assume that the only generator of 

the motion of system A is the Hamiltonian operator H, and that initially subsystems A1 

and A2 have different temperatures T1 and T2, respectively (Equation (5.23)).  In 

Appendix C, we show that the solution ρ(t) of the Beretta equation is uncorrelated at any 

instant of time t, i.e., it is given by 

 

 ρ t( )= ρ1 t( )⊗ ρ2 t( ) (5.24) 

 



 

74 

where ρ1(t) and ρ2(t) correspond to canonical distributions (Equation (5.23)) with time 

dependent temperatures T1(t) and T2(t), respectively.  Furthermore, the inverse 

temperatures satisfy the relation 

 

 
d β1 − β2( )

dt
= −

1
τ

β1 − β2( ),   βi =
1

kTi
  i = 1,2 (5.25) 

 

where τ is the time constant in the Beretta equation.  This result can readily be 

generalized to systems with many generators of motion, and to systems which admit 

more than two subsystems.  This class of solutions plays an important role in the 

description of relaxation phenomena, and to the best of our knowledge is identified for 

the first time. 
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Chapter 6 
 

6. Experimental Verification 

 

 The purpose of this chapter is to provide experimental evidence of the validity of 

quantum thermodynamics.  To achieve our goal, in Section 6.1 we present two spin 

relaxation experiments reported in the literature.  The results of both experiments are in 

qualitative agreement with the predictions of the Beretta equation.  The first experiment 

provides also a preliminary estimate for the time constant τ in the Beretta equation.  The 

second experiment needs to be perfected to establish a quantitative comparison with the 

predictions of the Beretta equation.  Therefore, in Section 6.1.4 we suggest a new 

experiment which is a combination of the two experiments we discuss, and which can be 

used to validate the Beretta equation to a great degree of accuracy.  We believe that the 

suggested experiment is feasible because it relies on the technologies used in the other 

two experiments.  In Section 6.2 we show that under suitable conditions the Beretta 

equation reduces to phenomenological equations of irreversible thermodynamics whose 

validity is shown in innumerable experiments. 

 

6.1 Two Spin Relaxation Experiments 

 

 In this section we present two spin relaxation experiments which are consistent 

with the premises of quantum thermodynamics.  In both experiments, the time evolution 

of the spin of the valence electron of Rubidium (Rb) is studied by means of the technique 

called "optical pumping".  Before presenting the results of the two experiments, we 

review the method of "optical pumping". 
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6.1.1 Optical Pumping 

 

 A detailed description of optical pumping is given by Bernheim [1965].  We 

consider an alkali metal atom (e.g., Na, Rb) which has a 2S1/2  ground state, and 2P1/2  

first excited state, as shown in Figure 6.1.  The radiative transition from the first excited 

state to the ground state results in the emission of a photon with energy hν1. 

 

hν1

2P1/2

2S1/2

H=0 H=Ho

mS

1/2

-1/2

1/2

-1/2
a

b

c

d

 

Figure 6.1  Energy levels of hypothetical alkali metal atom 

 

 If an alkali metal atom is placed in a magnetic field H0, the splittings in the 

energy levels are as shown in Figure 6.1.  We denote the magnetic quantum number of 

the atomic state by ms.  A typical experimental setup is shown in Figure 6.2.  A spectral 

lamp of the alkali metal studied is used in the pumping.  The component of the pumping 

light consisting of photons with energy hν1 is called the D1 resonance radiation.  The 

light emitted by the lamp is focused with lenses, and then passes through an interference 

filter where the component of the pumping light corresponding to photon energies other 
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than hν1 is attenuated.  After the interference filter, the pumping light passes through a 

circular polarizer..   The circularly polarized D1 resonance radiation then passes through a 

vapor cell which contains the vapor of the alkali metal species.  The vapor cell is placed 

in a weak magnetic field, H0, which is directed along the direction of the light path.  In a 

typical optical pumping experiment, the intensity of the D1 resonance radiation passing 

through the apparatus is also measured with a photo tube. 

 

 

 

 

 

 

 

 

 

Figure 6.2  Schematic of an optical pumping apparatus 

 

 The effect of the circularly polarized D1 radiation upon the atoms in the vapor cell 

can be summarized as follows.  The atoms will be excited to the 2P1/2  state with a 

selection rule of ∆ms=±1.  Furthermore, the selection rule will be either ∆ms=+1 or 

∆ms=-1 but not both.  Which one holds depend upon the direction of the magnetic field 

with respect to the direction of propagation of light and the direction of polarization.  We 

consider the case where the condition ∆ms=+1 is satisfied. 

 Inspection of Figure 6.1 reveals that there is only one possible excitation that can 

take place.  Excitation with ∆ms=+1 can occur only from energy level a to energy level d.  

The lifetimes of the 2P1/2  states of alkali metal atoms are typically of the order of 10-8 

seconds.  If we assume that no disorientation occurs in the excited state of the atom (i.e., 
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the state c is not populated) the atom will fluoresce from state d to states a and b with 

equal transition probability.  For an assembly of atoms the net effect in time will be a 

transfer of population from state a to state b.  This effect is called optical pumping. 

 We consider a single alkali metal atom.  The Hamiltonian of the system is 

separable into two parts Hs and Htr, corresponding to the atomic levels of the valence 

electron and the translational degrees of freedom, respectively. We consider that the 

nucleus and the electrons other than the valence electron are tightly bound together, and 

therefore are treated as a single structureless point mass.  We define the two subsystems 

As and Atr associated with each part of the Hamiltonian Hs and Htr, respectively. 

 Before the pumping radiation is turned on, the atom is in a stable equilibrium 

state, and the density operator ρs associated with the atomic levels of the valence electron 

corresponds to the canonical distribution which here is 

 

 ρs =
exp −

1
kT

Hs
 
 

 
 

Tr exp − 1
kT

Hs
 
 

 
 

 
 

 
 

 (6.1) 

 

We denote the energy eigenvalues corresponding the levels a,b,c,… by εa,εb,εc,…  

Accordingly, we denote the diagonal elements of ρs by pa,pb,pc,…, i.e., pa represents the 

probability of getting energy measurement result εa, when the system is in the state 

{ε,ρs⊗ρtr}. 

 In a typical optical pumping experiment, the temperature of the alkali metal vapor 

is kept between 30oC and 70oC and the strength of the magnetic field used is less than 

0.02G.  Thus difference between pa and pb is about 1 part in a million, and pc and the 

probabilities associated with higher energy levels are extremely small (<10-26).  

Therefore, we can effectively describe the subsystem As as a two-level system, i.e., we 

can use a two-dimensional Hilbert space Hs in representing As.  We call As, the spin 
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subsystem because it is characterized by the spin of the valence electron.  In this 

simplified representation, the density operator ρs (Equation (6.1)) of the spin subsystem 

before turning on the pumping light, in the energy representation is given by 

 

 ρs =
1

exp −βεa( )+ exp −βεb( )
exp −βεb( ) 0

0 exp −βεa( )
 

  
 

  
=

pb 0

0 pa

 
  

 
  
 (6.2) 

 

where β=1/kT, T is the temperature, and pa≈pb≈1/2.  Accordingly, the spin 

Hamiltonian Hs in the energy representation is given by 

 

 Hs =
εb 0

0 εa

 
  

 
  
. (6.3) 

 

where εa and εb are the energies of levels a and b, respectively. 

 The probability that an atom absorbs the pumping light is proportional to the 

lower diagonal element of ρs in energy representation, i.e., to pa in Equation (6.2).  In 

typical optical pumping experiments the intensity of the pumping light passing through 

the vapor cell (denoted by I1 in Figure 6.2) is monitored by means of a photo tube, which 

allows the observer to determine instantaneous values of pa and pb. 

 Before going into the discussion of the experiments, we would like to reiterate an 

important distinction between the non-statistical approach adopted in this dissertation and 

the statistical approach found in the literature.  We will emphasize this distinction before 

the pumping light is turned on.  In quantum thermodynamics each alkali metal atom is 

characterized by the same density operator, i.e. , 

 

 ρ 0( ) = ρtr ⊗ ρs =
exp −βHtr( )

Tr exp −βHtr( )( )⊗
exp −βHs( )

Tr exp −βHs( )( ). (6.4) 
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In statistical quantum mechanics on the other hand, a fraction pa of the atoms is in level a 

and a fraction pb in level b. 

 

6.1.2 Franzen Experiment 

 

 The experiment by Franzen [1959] is intended to evaluate the spin relaxation time 

constant of Rb vapor under different conditions.  By using the optical pumping technique, 

pb is increased to almost unity.  By means of a mechanical shutter, the pumping light is 

cut off.  It is then observed that pb starts decreasing and eventually reaches its equilibrium 

value of 1/2 (i.e., pa=pb).  The measurement of pa is performed by reopening the shutter 

and allowing the pumping light pass through the vapor cell.  The intensity of the light 

passing through the tube gives a direct measure of pa and, therefore, pb because pa+pb=1.  

The decay in pb is shown to be close to exponential.  The decay constants are evaluated 

under different experimental conditions. 

 In statistical quantum mechanics, no relaxation is predicted, because the von 

Neumann equation preserves the diagonal entries of the density operator in the energy 

representation.  In the literature, this difficulty is avoided by attributing the relaxation to 

collisions between Rb atoms, and between Rb atoms and the walls of the vapor cell.  To 

reduce the collision frequency of a single Rb atom with other Rb atoms and the walls, 

different buffer gases are employed, such as Ne, Ar, Kr, and Xe.  These gases, however, 

introduce collisions between their molecules and Rb atoms, collisions that contribute to 

the spin relaxation. 

 Franzen studied the effect of different buffer gases on spin relaxation.  However, 

his most important results are obtained in an evacuated cell in which case there was no 

buffer gas.  Without use of buffer gas, it is very difficult to achieve optical pumping 

because the interactions between the Rb atoms and the cell walls result in very short 

relaxation times.  Franzen, however, uses a special technique which avoids this difficulty.  
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He lines the vapor cell with a thin film of tetracontane (C40H82).  This coating material 

allows the experiment to be done in an evacuated cell, and achieves a relaxation time of 

the order of 80-90 ms.  The relaxation times reported for different Rb vapor pressures are 

shown in Figure 6.3. 

 The tetracontane lining performed well, and Franzen concluded that the only 

contribution to spin relaxation in an evacuated cell comes from the collisions between Rb 

atoms.  The number of collisions made by a single Rb per unit time, called the collision 

frequency, is proportional to the vapor pressure in the range of interest of the experiment.  

Therefore, if collisions between Rb atoms are the main contributors to the relaxation, the 

relaxation time should be inversely proportional with the Rb vapor pressure.  This 

description, however, is not in agreement with the experimental results shown in Figure 

6.3.  At relatively high vapor pressures, the relaxation time exhibits the behavior 

predicted by the collision description.  At vapor pressures below 2x10-6 mm Hg, 

however, the relaxation time constant is independent of the vapor pressure. 

 

Figure 6.3  Variation of relaxation time with rubidium vapor pressure 
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 The constant values of the relaxation times at low pressures are consistent with 

quantum thermodynamics and the Beretta equation.  The convergence of the relaxation 

time to a constant value as the vapor pressure decreases suggests an internal relaxation 

mechanism in the one atom system and this is inherent in the Beretta equation. 

 Because the heat capacity of the translational degrees of freedom (subsystem Atr) 

is much larger than that of the spin (subsystem As), we can effectively assume that Atr 

acts like a reservoir.  Before the pumping is turned on, the density operator of the one 

atom system is given by Equation (6.4), and accordingly the density operator of the spin 

subsystem by Equation (6.2).  As a result of optical pumping, the system reaches a steady 

state in which the density operator of the spin subsystem in the energy representation is 

given by 

 

 ρs 0( )=
1− δ 0

0 δ
 
  

 
  

 (6.5) 

 

where 0<δ<<1.  The term δ is not zero because the optical pumping process competes 

continuously with the radiative decay of excited levels.  The density operator of the 

translational subsystem is not affected by the optical pumping process, and remains in the 

form of a canonical distribution corresponding to cell temperature Ttr.  A time t=0, we 

turn off the pumping light.  Noting that the density operator given by Equation (6.5) can 

be conceived of as a canonical distribution with a negative spin temperature Ts, the time 

development of the density operator according to the Beretta equation is given by 

Equations (5.24) and (5.25) 

 

 ρ t( )= ρs t( )⊗ ρtr t( ) (6.6) 

 

 
d βs − βtr( )

dt
= −

1
τ

βs −β tr( ),   βi =
1

kTi
  i = s,tr  (6.7) 
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where ρs(t)and ρtr(t) are canonical distributions with time dependent temperatures Ts(t) 

and Ttr(t), respectively.  It can be easily shown that the inverse spin temperature decays 

exponentially and that the decay constant is the time constant τ given in the Beretta 

equation.  Therefore the Franzen experiment provides a preliminary estimate of 80-90 ms 

for the time constant τ. 

 As we have mentioned before, in both statistical quantum mechanics and quantum 

thermodynamics, if the density operator is given by the canonical distribution there is no 

motion in the ordinary space (expectation value of linear momentum is zero).  Therefore, 

the dependence of the time constant on the collision frequency calculated classically 

needs to be explained.  At relatively low vapor pressures, each Rb atom can be regarded 

as a system, and its internal relaxation can be studied independent of the other Rb atoms.  

At relatively high Rb vapor pressure (>2x10-6 mm Hg), each single atom cannot be 

considered as a system because of the inter-atomic interactions.  Here we need to use the 

many particle Hamiltonian operator to describe the behavior of the vapor.  With such an 

operator, it is difficult to obtain explicit numerical results for direct comparison with 

experiments. 

 

6.1.3 Kukolich Experiment 

 

 Another spin-relaxation experiment was performed by Kukolich [1967], and 

suggested by Prof. R. Weiss as a demonstration of the Schrödinger equation in a course 

on quantum mechanics given at MIT.  The experimental setup is quite similar to that of 

Franzen.  Optical pumping is used to achieve a nonequilibrium spin state of Rb atoms.  

The buffer gas is Ne.  As in the case of Franzen experiment pb is increased to almost 

unity.  Rather than cutting off the pumping light by means of a shutter and observing the 

relaxation of spin along the z direction, Kukolich quickly switched the magnetic field 
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from the z to the x direction.  The light transmitted through the rubidium vapor is used as 

a probe to measure the occupation values of levels A and B. 

 Because the Kukolich experiment is suggested to show the validity of the von 

Neumann or, equivalently, the Schrödinger equation, first we present the predictions of 

statistical quantum mechanics.  Initially the magnetic field is in the z direction, and the 

Hamiltonian operator in the energy representation is given by 

 

 Hz =
ε 0

0 −ε
 
  

 
  
 (6.8) 

 

After a long pumping period, the initial density operator of the spin subsystem in the Hz 

representation is given by Equation (6.5) 

 

 ρs 0( )=
1− δ 0

0 δ
 
  

 
  

 (6.9) 

 

where 0<δ<<1.  At t=0, we assume that the magnetic field is switched from the z to the x 

direction.  Thus the Hamiltonian Hs in the Hz representation is given by 

 

 Hs =
0 ε
ε 0
 
  

 
  

. (6.10) 

 

The solution of the von Neumann equation can be calculated, and is given in the Hz 

representation by 

 

 ρ t( )=
1 − δ( )cos2 ωt + δ sin2 ωt i 1 − 2δ( )cosωt  sin ωt

−i 1− 2δ( )cosωt  sinωt 1 − δ( )sin2 ωt + δcos2 ωt

 

  
 

  
, (6.11) 
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where   ω = ε / h .  Using well-known trigonometric relations, it is easy to verify that this 

solution is periodic of period π/ω.  Hence, according to statistical quantum mechanics, it 

is expected that the solution and hence the diagonal elements of ρ in the Hz representation 

oscillate in time with a frequency of ω/π. 

 The results of the experiment are shown in Figure 6.4.  The author concluded that 

the experiment validates the Schrödinger equation because of the observed oscillation in 

the intensity of the light passing through the vapor cell.  However, the Schrödinger 

equation implies no decay of oscillations whereas the experimental results do decay.  The 

author attributed this decay to the inhomogeneities in the magnetic field but did not 

provide any quantitative analysis. 

 

Figure 6.4  Experimental photo tube current as a function of time after the field 

is switched to the x direction 

 

 The decay in the intensity of the oscillation of the pumping light passing through 

the vapor cell is predicted, however, in quantum thermodynamics.  To show this point, 

we  express the density operator at time t=0 (Equation (6.9)) in the Hs representation, so 

that  

 ρs 0( )=
1 / 2 1 / 2 − δ

1 / 2 −δ 1 / 2
 
  

 
  
. (6.12) 

 

In the same representation, the Hamiltonian Hs is given by 
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 Hs =
ε 0

0 −ε
 
  

 
  
. (6.13) 

 

From Equations (6.12) and (6.13), we conclude that at t=0 <H>=0.  The Beretta equation 

takes the initial nonequilibrium state to the corresponding stable equilibrium state.  

Because the translational subsystem behaves like a reservoir, the temperature of the stable 

equilibrium state will be the initial temperature of the vapor cell (≈30oC).  At this 

temperature ε/kT≈0, and the density operator of the spin subsystem in the Hs 

representation is given by 

 

 ρs ∞( ) =
1 / 2 0

0 1 / 2
 
  

 
  

. (6.14) 

 

Therefore, at this state pa is 1/2, i.e., the amplitude of the oscillation of the intensity of the 

pumping light decays, which is in agreement with the result of the Kukolich experiment 

shown in Figure 6.4. 

 Even though no closed analytic expression is available for the solution of the 

Beretta equation to date, an approximate solution can be provided in the case of the 

Kukolich experiment.  First, we assume that the temperature of the vapor cell is very 

large which is equivalent to saying that ε/kT=0.  Then it is straightforward to show that 

the time evolution of the density operator is given by 

 

 

  

∂ρs

∂t
=

1
ih

Hs,ρs[ ]+
1
2τ

ρs,

Σs − Σs Hs − Hs

Hs ,Σs( ) Hs,Hs( )
Hs,Hs( )

 

 
 

 
 

 

 
 

 
 

+

 (6.15) 
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which is the Beretta equation for a two-level system.  Beretta [1985a] provided a solution 

to this equation, and showed that the amplitude of the oscillations r(t) of the diagonal 

elements of ρs in the Hz representation is given by 

 

 r t( ) = tanh
1
2

exp −t / τ( )Log
1 + r 0( )
1 − r 0( )
 
 
  

 
 

 

 
  

 
 . (6.16) 

 

The amplitude r(t) is also the amplitude of the oscillations in the intensity of the pumping 

light passing through the vapor cell.  Equation (6.16) predicts a non-exponential decay in 

these oscillations.  Because the reported experimental results do not include numerical 

data, we are unable to determine whether the decay phenomenon shown in Figure 6.4 is 

exponential or not.  Nevertheless, qualitatively the Beretta equation agrees with the 

results shown in Figure 6.4.  Therefore, we conclude that the Kukolich experiment 

provides an additional indication for the validity of the Beretta equation rather than the 

von Neumann equation.  It is noteworthy that, in general, because the spin subsystem is 

not independent of the translational subsystem, its time evolution is not described by the 

Beretta equation for a two-level system.  However, in the experiment we just decribed, 

the spin subsystem obeys the Beretta equation for a two-level system, because the 

temperature and the heat capacity of the translational subsystem are very large. 

 Kukolich attributed the decay in the diagonal elements of ρs in the Hz 

representation to the inhomogeneities in the magnetic field, but he did not give any 

quantitative results.  In the case of Franzen, however, the inhomogeneities in the 

magnetic field are not included in the discussion, and yet he was able to describe the 

relaxation consistently.  To resolve the question of whether the field inhomogeneities are 

responsible for the relaxation, studies with inhomogeneous magnetic fields can also be 

performed. 
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6.1.4 A Suggested Experiment 

 

 Combining the results of Kukolich and Franzen, we suggest the Franzen 

experiment be repeated with a slightly different setup.  The use of Ne buffer gas 

eliminates the use of the single atom approximation.  Therefore, we suggest that the 

experiment is performed in an evacuated cell lined with tetracontane as in the case of 

Franzen  The vapor pressure must be chosen lower than 2x10-6 mm Hg so that the 

contribution of interatomic interactions to the relaxation process becomes negligible, in 

other words the single atom model becomes more accurate.  Furthermore, there is a 

possibility of repeating the experiment with different initial conditions.  This would allow 

a better comparison of the predictions of the Beretta equation with the experimental 

results.  To achieve different initial conditions a shutter similar to that of Franzen can be 

employed.  We can turn off the pumping light at time t=0, and then switch the magnetic 

field from the z direction to the x direction at time t'>0.  Evaluating the spin-relaxation 

time using Franzen's method, it is possible to determine the density operator of the spin 

subsystem at the time t'. 

 Finally, instead of using a single pumping light in the z direction, three 

perpendicular pumping lights can be used simultaneously.  This information is equivalent 

to knowing the value of all three components of the spin angular momentum, which in 

turn uniquely determines the density operator of the spin subsystem.  Therefore, the 

evolution of the density operator (and not only the time evolution of the diagonal 

elements of it in the Hz representation) can be experimentally evaluated. 

 It is noteworthy that, even if the Beretta equation is not the correct equation of 

motion, the experiments just cited still show the validity of quantum thermodynamics.  

The reason is that, in general, quantum thermodynamics implies an internal relaxation of 

a single atom system, and therefore agrees qualitatively with the experiments.  On the 

other hand, statistical quantum mechanics does not imply such a relaxation if the equation 
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of motion is the von Neumann equation and, therefore, does not agree even qualitatively 

with the experiments.  In the literature, there are attempts in describing the relaxation 

phenomenon within the framework of statistical quantum mechanics by using the so-

called master equations.  However, as noted by Wolf [1979], the master equations are not 

derived from the von Neumann equation and their validity is postulated.  But this 

approach is inconsistent with the statistical aspect of the theory, for the unique 

generalization of the Schrödinger equation in the statistical theory results in the von 

Neumann equation and not in the master equations. 

  On the contrary, statistical quantum mechanics does not imply such a relaxation and, 

therefore, does not agree even qualitatively with the experiments. 

 As a final remark, we would like to emphasize that, following the current practice 

in the literature, we have treated the ground state of the Rb atom as having spin 1/2.  Due 

to its coupling to the nuclear spin, however, the spin of the ground state is 2.  Though the 

formulation needs to be modified, the modification would have no effect on the general 

aspects of the solution of the Beretta equation, because the spin relaxation is predicted 

independent of the value of spin.  Even though a closed form solution of the Beretta 

equation is not available for a spin 2 system, a numerical approximation to any desired 

degree of accuracy can always be obtained and compared to experimental results. 

 

6.2 Onsager Reciprocal Relations 

 

 Many phenomenological equations have been proposed in the literature.  They 

correlate with great success many practical phenomena.  Sometimes, they are referred to 

as phenomenological equations of irreversible thermodynamics.  The general form of 

these equations are [Beretta, 1987] 
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d
dt

X1

…
Xn

 

 

 
 

 

 

 
 

=
L11 … L1n

… … …
Ln1 … Lnn

 

 

 
 

 

 

 
 

f1

…
f n

 

 

 
 

 

 

 
 
 (6.17) 

 

where {Xi} is a set of n operators corresponding to observables associated with the 

system, 
d Xi

dt

 
 
 

 
 
 

 is the set of "dissipative fluxes" associated with these observables, and 

{fi} is the associated set of forces.  Each coefficient Lmn is called a "dissipative 

conductivity". 

 For a two-dimensional heat conduction in an anisotropic medium, Onsager [1931] 

postulated that the square matrix in Equation (6.17) satisfies the reciprocity relations 

 

 Lij = L ji    ∀i, j. (6.18) 

 

Later, Casimir [1945] showed that the reciprocity relations are valid for a large class of 

processes.  In this section, we show that the phenomenological equations of irreversible 

thermodynamics can be obtained from the Beretta equation.  In contrast, it is noteworthy 

that the phenomenological equations cannot be derived from the Schrödinger or the von 

Neumann equation, because each of the last two equations describes only reversible 

phenomena. 

 Beretta [1987] studied the relations between fluxes and forces in a general 

manner.   

His work is limited to systems associated with finite dimensional Hilbert spaces, 

however.  For a class of states, in this section we show that the proof of Beretta remains 

valid even for a system with an infinite dimensional Hilbert space, and that the forces can 

be expressed as a differences in the temperatures and in the chemical potentials of two 

subsystems. 
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 First, we present the result obtained by Beretta.  He considered a density operator 

given by 

 

 ρ =
B exp − f iXi

i
∑

 

 
  

 
 

Tr B exp − f iX i
i
∑

 

 
  

 
 

 

 
 

 

 
 

 (6.19) 

 

where B is a projection operator obtained from ρ by substituting each of the nonzero 

eigenvalues with unity, {fi} is a set of real scalars, and {Xi} is a set of linear operators 

corresponding to observables.  For such an operator, Beretta showed that his equation 

results in the Equation (6.17), and the Onsager reciprocal relations given by Equation 

(6.18). 

 In Beretta's proof, however, the cardinality of the set {Xi} is chosen large enough 

that any density operator can be expressed as in Equation (6.19).  If the dimensionality of 

the Hilbert space associated with the system is infinite, the set {Xi} should contain 

infinitely (countably) many operators, and Equation (6.17) involves an infinite by infinite 

matrix.  To avoid this difficulty Beretta restricted his result to a finite dimensional Hilbert 

space.  After all, the power of the phenomenological equations lies in their simplicity, and 

the dimension of the matrix given in Equation (6.17) is always finite. 

 For a certain class of states and a set {Xi} smaller than the one considered by 

Beretta, we obtain Beretta's result.  For the sake of simplicity, we consider a system A 

whose only generators of motion are the Hamiltonian operator H and the number operator 

N of the single constituent.  We assume that system A admits two subsystems A1 and A2 

associated with the Hamiltonian operators H1 and H2, and the number of constituents 

operators N1 and N2, respectively, i.e., H=H1+H2, and N=N1+N2.  Furthermore, at time 

t=0, the density operator satisfies the relation 
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 ρ 0( ) = ρ1 0( )⊗ ρ2 0( ) . (6.20) 

 

where the density operators of the two subsystems are given by the grand canonical 

distributions 

 

 ρi 0( ) =
exp −βiHi − νiN i( )

Tr exp −βiHi − νi Ni( )( )  βi =
1

kTi
,  νi = −

µ i

kTi
  i =1, 2 (6.21) 

 

where T1 and T2 are the temperatures, and µ1 and µ2 are the chemical potentials of 

subsystems A1 and A2, respectively.  We show in Appendix C that the density operator of 

the system satisfies the relation 

 

 ρ t( )= ρ1 t( )⊗ ρ2 t( )   ∀t ≥ 0  (6.22) 

 

where ρ1(t) and ρ2(t) are given by grand canonical distributions with time dependent 

temperatures and chemical potentials.  In other words, the density operator of system A is 

given by Equation (6.17) at any instant of time, and the set {Xi} contains only four 

operators H1, H2, N1, and N2 regardless of the dimensionality of the Hilbert space 

associated with system A.  Therefore, the result of Beretta applies directly, i.e., we obtain 

the set of equations 

 

 
d
dt

H1

H2

N1

N2

 

 

 
 
 

 

 

 
 
 

=

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

 

 

 
 
 

 

 

 
 
 

β1

β2

ν1

ν2

 

 

 
 
 

 

 

 
 
 

 (6.23) 

 

with Lij=Lji for all i and j.  This is not exactly the form of phenomenological equations 

found in the literature, however, where the forces are expressed as a difference in the 
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inverse temperature of the subsystems, i.e., β1-β2, or as a difference in the chemical 

potentials of the subsystems, i.e., ν1-ν2. 

 To obtain the required form, we note that 
d H

dt
=

d H1

dt
+

d H2

dt
= 0  and 

d N
dt

=
d N1

dt
+

d N2

dt
= 0 , for all states.  Therefore, in addition to satisfying the 

reciprocity relations, the matrix in Equation (6.23) has the following property: the sum of 

the first and second rows, and the sum of the third and fourth rows must vanish.  Using 

this information, it is straightforward to show that Equation (6.23) reduces to  

 

 
d
dt

H1

H2

N1

N2

 

 

 
 
 

 

 

 
 
 

=

L11 −L11 L13 −L13

−L11 L11 −L13 L13

L13 −L13 L33 −L33

−L13 L13 −L33 L33

 

 

 
 
 

 

 

 
 
 

β1

β2

ν1

ν2

 

 

 
 
 

 

 

 
 
 

. (6.24) 

 

This equation can be rewritten in a more convenient form given by 

 

 
d
dt

H1 − H2

N1 − N2

 

  
 

  
=

2L11 2L13

2L13 2L33

 
  

 
  

 
β1 −β2

ν1 − ν2

 
  

 
  
 (6.25) 

 

where 
d
dt

(<H1>-<H2>) is the energy flux between subsystems 1 and 2, 
d
dt

(<N1>-<N2>) 

is the constituent flux between subsystems 1 and 2, and the driving forces are expressed 

in terms of the differences in the temperatures and chemical potentials.  To the best of our 

knowledge, this derivation is done for the first time. 

 Even though our discussion is restricted to systems that admit only two 

subsystems, the generalization of the result obtained to more complicated systems is 

straightforward.  So, we have shown that, under suitable conditions, the Beretta equation 

reduces to the phenomenological equations of irreversible thermodynamics. 
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Chapter 7 
 

7. Two Open Problems 

 

 In this chapter, we present our reflections on two unresolved problems.   In 

Section 7.1, we address a problem related to the value of entropy assigned to stable 

equilibrium states with zero temperature.  In Section 7.2, we investigate an intriguing 

problem related to triple points of pure substances. 

 

7.1 The Value of Entropy at Zero Temperature 

 

 In this section, we investigate the lowest value of entropy attained by the stable 

equilibrium states of a system.  The concavity of the stable-equilibrium-states curve 

implies that this minimum is attained when the temperature is also a minimum.  In 

quantum thermodynamics, the lowest value of temperature attained is zero, therefore, the 

stable equilibrium state having zero temperature admits the smallest value of entropy 

among all the stable equilibrium states of the system. 

 First, we consider a petit system, i.e., a system that does not admit fractional 

expectation values of amounts of constituents.  The density operator corresponding to a 

stable equilibrium state of a petit system is given by the canonical distribution (Equation 

(4.8)) 

 

 ρβ =
exp −βH( )

Tr exp −βH( )( ) (7.1) 
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where β=1/kT, and T is the temperature.  The density operator ρβ shares a common 

eigenbasis with the Hamiltonian operator.  We denote the energy eigenvectors by {ψi} 

and the energy eigenvalues by {ei}, i.e., 

 

 Hψ i = ei ψ i . (7.2) 

 

For the sake of convenience, we order the energy eigenvalues : e1≤e2≤…≤ei≤…  We 

denote by {pi} the eigenvalues of the canonical distribution, i.e., 

 

 ρβψ i = piψ i . (7.3) 

 

The ratio of two eigenvalues of the canonical distribution satisfies the relation 

 

 
pi

p1
= exp −β ei − e1( )( ) (7.4) 

 

We consider positive temperatures only, and let temperature T converge to zero.  The 

inverse temperature β goes to infinity.  The ratio of the eigenvalues of the canonical 

distribution given by Equation (7.4) converges to zero if e1<ei, and to unity if e1=ei.  If 

the ground-energy state of the system is not degenerate, i.e., e1<e2, we conclude that p1 

converges to unity, and all other eigenvalues to zero.  In other words, the canonical 

distribution converges to the projection operator onto the one-dimensional space spanned 

by the vector ψ1.  The entropy associated with a projection operator is zero.  So we 

conclude that the entropy converges to zero as temperature goes to zero.  Therefore, for 

petit systems with a non-degenerate ground-energy state the lowest value of entropy 

attained by the stable equilibrium states is zero. 

 Next, we investigate the case of a petit system whose ground-energy state has a 

degeneracy n>1, i.e. , e1=…=en<en+1.  Using Equation (7.4), it is straightforward to show 
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that, in the limit T=0, p1=…=pn=1/n, and pn+1=…=0.  Therefore, the entropy associated 

with the canonical distribution converges to k Log(n).  In other words, the lowest value of 

entropy attained by the stable equilibrium states of the system is k Log(n). 

 To account for the existence of petit systems with degenerate ground energy 

states, the second part of the statement of the second law should be modified to read 

[Gyftopoulos and Beretta, 1991i]: Starting from any state of a system it is always possible 

to reach a stable equilibrium state or a ground-energy state with arbitrarily specified 

values of amounts of constituents and parameters by means of a reversible weight 

process. 

 The situation is more complicated, however, if we consider a system that admits 

fractional expectation values of amounts of constituents, i.e., a grand system.  For the 

sake of simplicity, we consider a grand system A with only one type of constituent.  To 

define the Hilbert space H associated with A, we consider petit systems Aj that share the 

same constituent, the same parameters, and the same values of parameters with system A 

but each system Aj has an integer value nj of the amount of the constituent.  We denote 

by Hj the Hilbert space associated with each system Aj.  The Hilbert space of system A is 

the direct sum of these Hilbert spaces, i.e., H=H1⊕H2⊕…⊕Hj⊕…  Similarly, the 

Hamiltonian operator H of system A, is the direct sum of the Hamiltonian operators Hj 

associated with systems Aj, i.e.., H=H1⊕H2⊕…⊕Hj⊕…  The number of constituent of 

operator N of system A can be expressed as N=n1I1⊕n2I2⊕…⊕njIj⊕… where Ij is the 

identity operator on Hj. 

 The density operator corresponding to a stable equilibrium state of a grand system 

is given by the grand canonical distribution, i.e. , 

 

 ρβ,ν =
exp −βH − νN( )

Tr exp −βH − νN( )( ) (7.5) 
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where β=1/kT and ν=-µ/kT.  It is convenient to use a double index to denote the 

eigenvalues of the grand canonical distribution so that 

 

 H jψ i
j = eijψ i

j    and    Hψ i
j = eijψ i

j  (7.6) 

 

 Nψ i
j = njψ i

j . (7.7) 

 

Without loss of generality, we can order the eigenvalues of the number of constituent 

operator N such that n1<n2<…  Similarly, the eigenvalues of the Hamiltonian operator 

are ordered such that e1j≤e2j≤… for each value of j.  For the sake of simplicity, we also 

assume that the ground energy state of each A is non-degenerate, i.e., e1j<e2j≤…  

Furthermore, the density operator shares a common set of eigenvectors with H and N, i.e.,  

 

 ρβ,νψ i
j = pijψ i

j  (7.8) 

 

where {pij} are the eigenvalues of the density operator. 

 Combining Equations (7.5) and (7.8), we find that the ratio of two eigenvalues of 

the density operator satisfies the relation 

 

 
pij

pkl
= exp −β eij − ekl( )− ν n j − nl( )( ). (7.9) 

 

Given the values of the amount of constituent <N> and temperature T, the grand 

canonical distribution is uniquely determined, i.e., there exists a unique value of ν such 

that the expectation value of N matches the given value.  We fix the value of <N> and let 

T goes to zero.  It follows from Equation (7.9) that 
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pij

p1j
= exp −β eij − e1j( )( )= 0   ∀i >1 (7.10) 

 

Therefore, as T goes to zero, the only nonzero eigenvalues of the density operator are in 

the set {p1j}.  If the given value of the amount of constituent <N> is not an integer, at 

least two of the eigenvalues of the density operator are nonzero, because we must have 

 
 N = Tr Nρβ,ν( )= nj

j
∑ p1j (7.11) 

 

and all nj's are integer.  Therefore, the value of entropy at zero temperature is nonzero, 

and is a function of <N>.  Even if <N> is an integer that corresponds to a number of 

constituent eigenvalue nj, it is not guaranteed that the entropy associated with the grand 

canonical distribution vanishes. 

 For grand systems, therefore, the lowest value of entropy attained by the stable 

equilibrium states is a function of the amount of constituent <N>, and in general is 

nonzero.  The first implication of this observation is that the modification of the second 

law introduced to capture petit systems with degenerate ground-energy states is essential 

to account for the existence of grand systems. 

 However, for an arbitrary value of <N>, the existence of ground-energy states 

other than the stable equilibrium state with zero temperature remains unresolved.  To 

show this point, we consider a state {ε,ρ1} of the system, such that the density operator is 

diagonal in energy representation and that the eigenvalues of the density operator are 

p1=1 and p2=…=0.  The expectation value of the number of constituent in this state is n1, 

and the value of entropy is zero.  According to the modified second law, starting from 

state {ε,ρ1} we should be able to reach either a stable equilibrium state or a ground-

energy state with an arbitrarily specified values of <N> and parameters by means of a 

reversible weight process.  Because in a reversible weight process the value of entropy 
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remains invariant, the entropy of the final state must be zero.  We know that for non-

integer values of <N>, there exists no stable equilibrium state with zero entropy, and 

therefore, the final state must be a ground-energy state.  The ground-energy state has zero 

entropy, hence is a mechanical state, and the wave function associated with it must be a 

linear superposition of at least two wave functions belonging to different Hilbert spaces 

Hj.  Such a state, however, has never been reported, suggesting that rules similar to 

superselection rules (see Jauch [1968]) should be established to restrict the superposition 

principle.  More specifically, it appears that the linear superposition of two wave 

functions belonging to two different Hilbert spaces Hj is not an acceptable wave function.  

We have not been able to resolve this difficulty, and further investigation is necessary. 

 In this discussion, we have assumed that the convergence of a density operator 

implies the convergence of the corresponding value of the entropy, i.e.,  

 

 if    ρ1 → ρ2     then    S ρ1( )→ S ρ2( ) (7.12) 

 

Even though this in not true in general, Wehrl [1978] showed that if the Hamiltonian 

operator of a system is such that exp(-βH)<∞ for all β>0, Equation (7.12) holds true.  In 

Section 4.4, we show that this condition is always satisfied in quantum thermodynamics, 

and therefore, we conclude that our assumption is valid. 

 We would like to remind that, this result is valid equally well in statistical 

quantum mechanics when the entropy of the system is represented by the von Neumann 

entropy. 

 

7.2 Triple Points 

 

 In Section 3.2, we have introduced the entropy versus energy graph of the states 

of a system.  In this graph the stable-equilibrium-states curve must be concave.  In 
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Section 4.1, the concavity of the stable-equilibrium-states curve is one of the conditions 

that must be satisfied by the expression for entropy in Section 4.1.  In Section B.3, we 

show that the von Neumann entropy not only satisfies this requirement, but the stable-

equilibrium-states curve it implies is strictly concave.  Therefore, there exists no interval 

of energy for which the slope of the curve remains constant.  However, the behavior of 

many systems appears to contradict this conclusion. 

 

Volume VVo

Liquid-vapor

Solid-vapor
Triple-point
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Figure 7.1  A typical energy versus volume diagram of a pure substance 

 

 Using the tabulated data for stable equilibrium states of a pure substance we can 

make a diagram of energy versus volume.  For <N>=1 g, a typical diagram is shown in 

Figure 7.1.  We choose the value of volume V0 shown on the diagram, and denote by E1 

and E2 the values of energies at which the vertical line passing through V0 intercepts the 

triple point triangle.  In the range of energy between E1 and E2, the substance passes 

through the triple point, i.e., all three phases (solid, liquid, vapor) co-exist in mutual 

stable equilibrium.  It is a well-known property of the triple points of pure substances that 
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the temperature and pressure are independent of the fraction of different phases.  

Therefore, the entropy versus energy graph of the system has a constant slope between E1 

and E2 which is in contradiction with the conclusion we have reached in Section B.3. 

 We would like to remind that this difficulty exists in statistical quantum 

mechanics as well, and that the same argument applies whenever three different phases 

(not necessarily solid-liquid-vapor) co-exist in mutual stable equilibrium.  So far, we 

have not been able to provide a satisfactory explanation.  The resolution of the difficulty 

requires a careful scrutiny of all the arguments related to triple points. 
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Chapter 8 
 

8. Summary and Recommendations 

 

 The three purposes of this dissertation are to determine the mathematical 

expression for entropy, to establish which of the proposed equations of motion are 

satisfactory for quantum thermodynamics, and to provide experimental evidence for the 

validity of this equation. 

 We begin our investigation by reviewing the relation between mechanics and 

thermodynamics.  We find that the only consistent relation is provided by a quantum 

theoretic (non-statistical) representation of thermodynamic concepts.  In this 

representation the key idea is the existence of quantum states that involve irreducible - 

homogeneous - density operators ρ which satisfy both ρ=ρ2 and ρ≠ρ2. 

 Next, we address the question of the mathematical expression for entropy.  To 

answer this question, we establish a set of necessary conditions that need to be satisfied 

by entropy, and we investigate whether each mathematical expression for entropy 

proposed in the literature satisfies all these conditions.  Among many of the proposed 

expressions, it turns out that only one - the von Neumann entropy - satisfies all the 

conditions. 

 Regarding the dynamical law, we specify a set of necessary conditions that need 

to be satisfied by this law, and investigate whether any of the equations of motion 

proposed in the literature are consistent with all these conditions.  We find that only one 

equation is acceptable, and that is the Beretta equation.  We determine, for the first time, 

a special class of solutions of the Beretta equation which can be used in describing many 

relaxation phenomena. 
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 The third issue is the quest for conclusive and definitive experiments with systems 

having few degrees of freedom.  To this end, we compare the results of two spin-

relaxation experiments with the predictions of the Beretta equation.  We show that these 

results are consistent with the Beretta equation.   

 Because the experiments in the literature were not intended to verify the validity 

of the Beretta equation, we should emphasize that the reported results are not sufficient to 

provide accurate quantitative comparisons.  Accordingly, we suggest a variation of these 

experiments which, we believe, can give quantitative verification of quantum 

thermodynamics.  The suggested experiment uses the same apparatus as the other two 

experiments. 

 In an effort to provide experimental validation of quantum thermodynamics, 

Beretta considered systems associated with finite-dimensional Hilbert spaces, and showed 

that his equation reduces to the phenomenological equations of irreversible 

thermodynamics.  In this dissertation, for the first time, we show that Beretta's result can 

be generalized to systems with infinite dimensional Hilbert spaces, and can be expressed 

in a convenient form where the forces are temperature and chemical potential gradients. 

 Finally, we discuss two unresolved problems.  The first problem relates to the 

value of entropy of stable equilibrium states with zero temperature.  For grand systems, 

we conclude that the problem requires more careful consideration.  The second problem 

relates to triple points of pure substances.  We show that the existence of triple points 

requires refinement of the concepts used in the description of these points. 

 For future work, we suggest a specific spin-relaxation experiment which can 

provide a definitive validation of quantum thermodynamics. 

 We also suggest an investigation of the existence of ground-energy states of a 

grand system other than the zero temperature stable equilibrium state.  Finally, the 

intriguing behavior of pure substances passing through triple-points, namely the 

invariance of the temperature over a range of values of energy requires further study. 
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Appendix A 

 

 This appendix is devoted to an investigation of the equations of motion proposed 

as an alternative to the Schrödinger equation.  In Section A.1, we show that modifications 

of the Schrödinger equation, that maintain the linearity in ψ, imply a unitary time 

evolution.  As a result, no increase in entropy can be achieved by using an equation of 

motion linear in ψ.  In Section A.2, we present some of the nonlinear Schrödinger 

equations found in the literature.  Difficulties encountered with these equations are 

explained.  Most importantly, it is shown that the modified von Neumann equation 

corresponding to a nonlinear Schrödinger equation is ambiguous, and therefore the time 

evolution of a statistical state {ε,ρ} is not uniquely determined by its initial value.  We 

conclude that modifications of the Schrödinger equation involving nonlinear terms are 

unacceptable because they result in a statistical quantum mechanical theory which is non-

deterministic. 

 

A.1 Equation of Motion Linear in ψψψψ    

 

 In the case of an isolated system, the set ε of instantaneous operators 

corresponding to independent observables remains invariant in time.  Hence the time 

evolution of a state {ε,ψ} is determined solely by that of ψ which in turn is governed by 

the equation of motion.  Furthermore, in a deterministic theory, the state at any later 

instant of time is determined uniquely by the state at an earlier time.  The simplest 

equation of motion possessing this feature has the following mathematical representation: 

 

 
∂ψ
∂t

= f ε, ψ( ), (A.1) 
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where f(ε,ψ) is a function of the state {ε,ψ}.  When the equation of motion is linear in ψ , 

Equation (A.1) becomes 

 

 
∂ψ
∂t

= Lψ , (A.2) 

 

where L is a linear operator on the Hilbert space H independent of ψ.  Because it is 

associated with probabilities, the state vector ψ must be normalized at all instants of time 

t: 

 

   < ψ, ψ >=1  ,∀t . (A.3) 

 

The time derivative of Equation (A.3) gives: 

 

 <
∂ψ
∂t

, ψ > + < ψ,
∂ψ
∂t

>= 0   (A.4a) 

 

or, plugging Equation (A.2) into Equation (A.4a) 

 

 Lψ, ψ + ψ,Lψ = 0 . (A.4b) 

 

If L* denotes the adjoint of the linear operator L, then the equation (A.4b) reduces to: 

 

 < ψ,L*ψ > + < ψ,Lψ >=< ψ, L + L*( )ψ >= 0. (A.5) 

 

The linear operator L+L* is Hermitian.  Equation (A.5) is valid for all ψ such that ||ψ||=1.  

To any element Φ of the Hilbert space H there corresponds a unique ψ (with unit norm) 

such that 
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   Φ = Φ  ψ . (A.6) 

 

By virtue of Equation (A.6), Equation (A.5) is valid for ∀ ψ  H, and since the linear 

operator L+L* is Hermitian, L+L* is the null operator [Conway, 1985]: 

 

 L + L* = 0 or  L = −L* . (A.7) 

 

An operator L that satisfies Equation (A.7) is, by definition, an anti-Hermitian operator.  

Therefore, 

 

 L = iM, (A.8) 

 

where M is Hermitian.  Hence, Equation (A.2) can be written as 

 

 
∂ψ
∂t

= iMψ , (A.9) 

 

or, alternatively, in the projection operator Pψ = |ψ><ψ| representation  

 

 
  

∂Pψ

∂t
= i M, Pψ[ ]. (A.10) 

 

 This general form of the equation is very similar to the Schrödinger equation.  

Therefore, there is not much room for improving the equation of motion if it is kept linear 

in ψ.  Using the Hermiticity of M, it is straightforward to show that the time evolution 

implied by Equation (A.8) is unitary, even when M is time-dependent [Messiah, 1961]. 
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 A linear equation of motion yields a unitary time evolution, so the von Neumann 

entropy (Equation (3.11)) of the system is conserved.  Furthermore, the conservation of 

energy in a closed system requires that the operators M and H commute, i.e., [H,M]=0.  

Indeed, 

 

 0 =
d
dt

< ψ,Hψ >=<
∂ψ
∂t

,Hψ > + < ψ,H
∂ψ
∂t

>  (A.11) 

 

Using Equation (A.9) and the Hermiticity of M, 

 

 0 = iMψ,Hψ + ψ, iHMψ = − i ψ,MHψ + i ψ,HMψ  (A.12) 

 

From Equations (A.12) and (A.6), it follows that: 

 

 < ψ,HMψ > − < ψ,MHψ >=< ψ, H,M[ ]ψ >= 0, ∀ψ ∈ H. (A.13) 

 

Since the Hilbert space H is complex, Equation (A.13) implies that [H,M]=0 [Conway, 

1985]. 

 

A.2 Nonlinear Schrödinger Equations 

 

 In an attempt to describe dissipative quantum evolution, several nonlinear 

Schrödinger equations are proposed in the literature.  Kostin [1972, 1975] suggested a 

modification to the Schrödinger involving a nonlinear logarithmic term 

 

 
  

∂ψ
∂t

=
1
ih

−
h2

2m
∆ + V

 
 
  

 
 ψ −

γ
2

Log
ψ
ψ* − Log

ψ
ψ*

 

 
  

 
 ψ , (A.14) 
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where γ is a positive constant, and < . > denotes the expectation value.  Schuch et al 

[1983, 1984a, b] proposed a similar equation 

 

 
  

∂ψ
∂t

=
1
ih

−
h2

2m
∆ +V

 
 
  

 
 ψ −

γ
2

Log ψ( )− Log ψ( )( )ψ . (A.15) 

 

Gisin [1983a, b, 1986] studied the equation 

 

 
  

∂ψ
∂t

=
1
ih

Hψ − γ A − A( )ψ , (A.16) 

 

where H is the Hamiltonian, and A is a Hermitian operator on H, including A=H. 

 A nonlinear Schrödinger equation with a "friction potential" involving expectation 

values of momentum and position has been proposed by Albrecht [1975], and Hasse 

[1975].  It is given by the relation 

 

 
  

∂ψ
∂t

=
1
ih

H + γW ψ( )( )ψ , (A.17) 

 

where   W ψ( )= x − x( ) cp + 1− c( ) p( )− ich / 2 , and the constants γ and c are positive.  

For a damped harmonic oscillator, solutions of Equation (A.17) have been studied by 

Lange [1985]. 

 All these nonlinear Schrödinger equations (Equations (A.14)-(A.17)) conserve the 

normalization of ψ.  However, the value of energy is not conserved in all states.  

Therefore, these equations cannot satisfactorily describe dissipation in a closed system 

where the value of energy remains fixed while the value of entropy increases in time.  

Furthermore, Equations (A.14) and (A.15) are exclusively expressed in the position 

representation.  Unless they can be generalized to a representation-free form, their 

validity would be limited to systems with a notion of position.  As such, they cannot be 



 

109 

applied to spin systems.  Similarly, the validity of Equation (A.17) is restricted because it 

contains the position operator. 

 The major difficulty encountered with a nonlinear Schrödinger equation is the 

non-uniqueness of the corresponding von Neumann equation.  In order to to prove this 

assertion, we present first a peculiarity of statistical quantum mechanics regarding the 

decomposition of a statistical state into pure states.  As first noted by Schrödinger [1936], 

this decomposition is non-unique unless the statistical state operator ρ is a projection .  

This is in strong contrast with the classical case where the decomposition is always 

unique. 

 Consider the statistical state {ε,ρ}, where ρ in a given representation is 

 

 
  
ρ =

1/ 4 0

0 3 / 4
 
  

 
  
. (A.18) 

 

This operator is not a projection.  Hence it can be decomposed into projections in 

infinitely many different ways [Park, 1988].  For example, using the four pure states, 

either in vectorial representation {ε,ψ1} to {ε,ψ4}, where 

 

 
  
ψ1 =

1

0
 
  
 
  
,  ψ2 =

0

1
 
  
 
  
,  ψ3 =

2 / 2

2 / 2

 

  
 

  
,  ψ 4 =

−1/ 10

3 / 10

 

  
 

  
,  (A.19) 

 

or, equivalently, in the operator representation {ε,P1} to {ε,P4}, where 

 

 
  
P1 =

1

0
 
  
 
  

 1 0[ ]=
1 0

0 0
 
  

 
  
,  P2 =

0

1
 
  
 
  

 0 1[ ]=
0 0

0 1
 
  

 
  
, 

 

 
  
P 3 =

2 / 2

2 / 2

 

  
 

  
 2 / 2 2 / 2[ ]= 1/ 2 1/ 2

1/ 2 1/ 2
 
  

 
  
, 
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P 4 =

−1/ 10

3 / 10

 

  
 

  
 −1 / 10 3 / 10[ ]=

1 / 10 −3/ 10

−3 / 10 9 / 10
 
  

 
  

, (A.20) 

 

we can write ρ in the forms: 

 

 ρ =
1
4

P1 +
3
4

P 2 , (A.21a) 

 

 ρ =
3
8

P3 +
5
8

P4 . (A.21b) 

 

 The two forms yield different time evolutions of the statistical operator ρ given by 

Equation (A.18).  To prove this point, we investigate Equation (A.16) with A=H only, 

even though the proof applies equally well to any other nonlinear Schrödinger equation.  

First, we define the system and evaluate the time evolution of a pure state of the system 

according to Equation (A.16). 

 We consider a two-level system with the Hamiltonian operator (matrix) in the 

energy representation  

 

 H =
−ε 0

0 ε
 
  

 
  

, (A.21) 

 

where ε>0.  For A=H, Equation (A.16) implies that 

 

 
∂ψ1

∂t
=

∂ψ2

∂t
=

0

0
 
  
 
  

 and  
∂P1

∂t
=

∂P2

∂t
=

0 0

0 0
 
  

 
  
, (A.22) 

 

i.e., that {ε,ψ1} and {ε,ψ2} are stationary states.  Actually, they are the only stationary 

states, because Equation (A.16) implies 
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d H

dt
= −2γ H2 − H 2( )= −2γ ∆H( )2 , (A.23) 

 

(∆H)2 is always non-negative and equals to zero only if ψ is an energy eigenvector.  For 

initial conditions ψ other than ψ2, Equation (A.23) shows that the solution of Equation 

(A.16) tends always to ψ1 and that Equation (A.16) does not preserve energy. 

 Next, we evaluate the time evolution of this system initially known to be 

described by the statistical state {ε,ρ} given by Equation (A.18) in energy representation.  

If the statistical state is conceived of as the mixture of pure states {ε,ψ1} and {ε,ψ2} 

given by Equation (A.21a), using Equation (A.22), we conclude that it does not change 

with time.  However, if it is conceived of as the mixture of pure states {ε,ψ3} and {ε,ψ4} 

given by Equation (A.21b), it eventually converges to {ε,P1} because both pure states 

converge to {ε,ψ1}. 

 Because the time evolution of the statistical state operator depends on its 

decomposition into projections, there cannot exist a unique equation of motion in 

statistical quantum mechanics similar to the von Neumann equation (Equation 2.10).  

Therefore, we conclude that the quantum dissipative dynamics cannot be satisfactorily 

described by a nonlinear Schrödinger equation.  We would like to emphasize that, the 

same difficulty does not arise in the case of the Schrödinger equation, where the linearity 

of the equation guarantees that the time evolution of the statistical state operator is 

independent of its decomposition into projections. 
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Appendix B 
 

 In this appendix, we investigate the properties of several expressions for entropy 

presented in Section 4.1.  We begin by showing the deficiencies of the Hartley entropy IH 

and the infinite norm entropy I∞ given by Equations (4.2) and (4.5) respectively.  Next, 

we show that the von Neumann entropy (Equation (4.1)) satisfies Conditions 6 and 7, and 

the Rényi entropy (Equation (4.4)) Conditions 5, 6 and 7 specified in Section 4.2. 

 

B.1 Deficiency of the Hartley Entropy 

 

 To show the deficiency of the Hartley entropy (Equation (4.2)) 

 

 IH = k  Log N ρ( )( ) (B.1) 

 

where N(ρ) is the the number of positive eigenvalues of ρ, we consider a two-level 

system, i.e., dim (H)=2.  Mechanical states {ε,ρ} (i.e., where ρ is a projection) have 

IH(ρ)=k Log(1)=0.  All the other states have IH(ρ)=k Log(2).  Without loss of generality, 

we can assume 

 

 H =
−ε 0

0 ε
 
  

 
  

 (B.2) 

 

where ε>0.  Given the value of energy <H>=0, let us find the stable equilibrium state.  

This state must have the maximum value of entropy among the states which have energy 

0 (as explained in Section 3.1.2).  However, for δ a complex number such that |δ|<1/2, all 

the states {ε,ρδ} with ρδ in the energy representation given by the matrix 
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 ρδ =
1 / 2 δ*

δ 1 / 2

 

  
 

  
 (B.3) 

 

have energy 0 and entropy k Log(2).  It follows that for the given value of energy, many 

states share the largest value of entropy, i.e., the Hartley entropy violates Condition 5 

specified in Section 4.1. 

 

B.2 Deficiency of the Infinite Norm Entropy 

 

 To show the deficiency of the infinite norm entropy, we consider the two-level 

system described in Section B.1.  If the infinite norm entropy (Equation 4.5) 

 

 I∞ = −k  Log ρ ∞  (B.4) 

 

where ∞
ρ =pmax is the largest eigenvalue of ρ, is the expression for entropy, we will 

show that the curve of the stable equilibrium states on the entropy versus energy graph is 

neither smooth nor concave.  To this end, we carry out the maximization problem first.  

In the 2-level system under consideration, ||ρ||∞ = p1, where p1 is the largest eigenvalue 

of the density operator ρ, hence in order to determine the stable equilibrium states we 

need to maximize p1 for a given value of energy. 

 Claim: The density operators corresponding to stable equilibrium states are 

diagonal in energy representation. 

 Proof: Any density operator ρ in energy representation is of the form 

 

 ρ =
x δ*

δ 1 − x

 

  
 

  
, (B.5) 
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where 0≤x≤1 and δ is a complex number such that δ ≤ x − x2( ).  Eigenvalues p1 and 

p2 of the density operator ρ, satisfy 

 

 p1 + p2 = 1 and  p1.p2 = Det ρ( )= ρ = x − x2 − δ 2
, (B.6) 

 

hence they are the solutions of the quadratic equation 

 

 p2 + p − ρ = 0. (B.7) 

 

We need to maximize the largest eigenvalue p1 of ρ, for a given value of energy <H>.  

However, <H> uniquely determines x, because 

 

 H = Tr Hρ( ) = Tr
−ε 0

0 ε
 
  

 
  

x δ*

δ 1 − x

 

  
 

  
 

 
 

 

 
 = ε 1− 2x( ). (B.8) 

 

Therefore, we have to evaluate the value of δ which yields the largest p1, subject to the 

condition that the value of energy is <H>.  From Equation (B.7) we find that 

 

 p1 =
1
2

 1 + 1 − 4ρ( ). (B.9) 

 

Hence p1 is maximum if |ρ|=x-x2-|δ|2 is minimum, i.e., if |δ|=0. 

 Because the density operator corresponding to a stable equilibrium state is 

diagonal in the energy representation, we conclude that 

 

 p1 =
x         if  x ≥1 / 2

1− x   if  x <1 / 2.
 
 
 

 (B.10) 
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From Equation (B.8) we find that x =
1
2

1 −
H
ε

 
 

 
 , and 

 

 p1 =

1
2

1− H
ε

 
 

 
 

  if  H ≤ 0

1
2

1 +
H
ε

 
 

 
   if  H > 0.

 

 
 

 
 

 (B.11) 

 

Because I∞=-k Log(p1), we can now make a graph of the stable equilibrium states curve 

on the entropy-energy plane (Figure B.1) which is neither smooth nor concave.  

Therefore, we conclude that I∞ violates Condition 6 specified in Section 4.1. 
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Figure B.1  Energy versus infinite norm entropy graph 

 

B.3 The von Neumann Entropy 

 

 In this section we show that the von Neumann entropy (Equation 4.1)  
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 Iv = −k  Tr ρ  Log ρ( )( ) (B.12) 

 

satisfies Conditions 6 and 7 specified in Section 4.2.  It is shown by Katz [1967] that the 

von Neumann entropy admits a unique maximum for a given value of energy, and given 

values of the amounts of constituents and parameters.  Katz also shows that the density 

operator ρβ corresponding to a stable equilibrium state is diagonal in the energy 

representation, and that for a petit system, it has the form given by Equation (4.8) 

 

 ρβ =
exp −βH( )

Tr exp −βH( )( ),    β =
1

kT
 (B.13) 

 

where T is the temperature at that state, and H is the Hamiltonian operator.  Because of its 

simplicity, we consider a petit system.  However, the proofs that follow are valid for any 

system. 

 To show that the stable-equilibrium-states implied by the von Neumann entropy is 

concave, i.e., that Iv satisfies Condition 6, first we need to introduce a more appropriate 

notation.  We denote by {ε,ρ1} and {ε,ρ2} the stable equilibrium states having energies 

<H>1 and <H>2, respectively, and by Iv(ρ) the entropy of state {ε,ρ}.  Given a value of 

energy <H> between <H>1 and <H>2, there exists a unique number λ>0, such that 

<H>=λ<H>1+(1-λ)<H>2.  If {ε,ρλ} denotes the stable equilibrium state of energy <H>, 

the concavity of the curve of stable equilibrium states on the entropy versus energy plane 

is equivalent to 

 

 Iv ρλ( )≥ λIv ρ1( )+ 1 − λ( )Iv ρ2( ),  ∀  0 < λ <1. (B.14) 

 

We define the operator ρλ3=λρ1+(1-λ)ρ2 which is easily checked to be a density 

operator.  From the linearity of the Hamiltonian operator, the energy of the system in 
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state {ε,ρλ3} is <H>=λ<H>1+(1-λ)<H>2.  Furthermore, ρλ3 is diagonal in energy 

representation, because both ρ1 and ρ2 are diagonal in this representation.  If {p1i} and 

{p2i} denote the eigenvalues of ρ1 and ρ2, respectively, then the eigenvalues {p3i} of ρλ3 

satisfy 

 

 p3i = λp1i + 1− λ( )p2i ,  ∀i . (B.15) 

 

If f(x)=-k xLog(x), with the convention that f(0)=0, it is easy to show that f(x) is concave 

in the region 0 ≤ x ≤1, and that 

 
 Iv ρ( ) = f pi( )

i
∑ , (B.16) 

 

where {pi} are the eigenvalues of ρ.  Using the concavity of f(x), and Equations (B.15) 

and (B.16), we find that 

 

 Iv ρλ3( )> λIv ρ1( )+ 1− λ( )Iv ρ2( ). (B.17) 

 

Because both ρλ3 and ρλ correspond to the same value of energy <H>, by definition 

 

 Iv ρλ( )≥ Iv ρλ3( ), (B.18) 

 

where the equality holds hold only if ρλ=ρλ3.  Combining relations (B.17) and (B.18), we 

show that Equation (B.14) is indeed satisfied.  Therefore the stable-equilibrium-states 

curve implied by the von Neumann entropy is concave, i.e., Iv conforms to Condition 6 

specified in Section 4.1. 

 Regarding Condition 7, we prove it for petit systems, even though the proof 

applies to any system.  If HA and HB denote the Hamiltonian operators of two 
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independent petit systems A and B, respectively, the Hamiltonian of the composite 

system is HAB=HA⊗IB+IA⊗HB, where IA and IB are the identity operators on HA and 

HB, respectively.  Thus, any stable equilibrium state of the composite system is of the 

form {εA∪εB,ρAB}, where 

 

 ρAB =
exp −βHAB( )

Tr exp −βHAB( )( ) . (B.19) 

 

It is easy to verify that ρAB=ρA⊗ρB, where {ε,ρA} and {ε,ρA} are the stable equilibrium 

states of A and B, respectively, each corresponding to the same value of β=1/kT.  The 

temperature equality of A and B implies that the composite system is in a stable 

equilibrium state.  We conclude that the von Neumann entropy satisfies Condition 7 

specified in Section 4.1. 

 

B.4 Deficiency of the Rényi Entropies 

 

 In this section we provide the proofs that the Rényi entropy of order α (Equation 

(4.4))  

 

 Iα =
k

1 − α
Log Tr ρα( )( ) (B.20) 

 

where α>0, α≠1, satisfies Conditions 5 and 6 specified in Section 4.1 but fails to comply 

with Condition 7.  First, we determine the stable equilibrium states implied by Iα.  This is 

done by maximizing the value of entropy Iα, for a given value of energy, and the given 

values of amounts of the constituents and parameters.  To simplify the notation, we solve 

the problem only for a petit system.  The generalization to any system is straightforward. 
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 Given the amounts of constituents and the parameters, the Hamiltonian H is 

uniquely determined.  Given a value of energy <H>, we search for the state {ε,ργ} which 

maximizes Iα.  Because the logarithm is a monotonic function of the argument, this is 

equivalent to maximizing Tr(ρα).  Here, we use the ideas of Katz [1967] who solves the 

same problem for the von Neumann entropy. 

 Because this is a constrained maximization problem, the method of Lagrange 

multipliers is appropriate.  We begin by fixing the value of α.  There are two constraints 

imposed on ρ: Tr(ρ)=1 and Tr(Hρ)=<H>.  Hence, we define the new function to be 

maximized as I(ρ)=Tr(ρα)-αλ-αγ<H>, where λ and γ are the Lagrange multipliers.  We 

have two degrees of freedom: changing the eigenvalues and the orientation of the 

eigenvectors of the density operator ρ.  The latter change results in ργ being diagonal in 

the energy representation. 

 Proof: The orientation of the eigenvectors of ρ can be changed without altering its 

eigenvalues by means of a unitary transformation.  Such a transformation can be written 

in the form 

 

 dρ = i[W,ρ]dω , (B.21) 

 

where W is a Hermitian operator, ω a parameter, and dρ the change in ρ due to a small 

change dω in the parameter.  Hence, the change in I(ρ) due to a small change in ω, is 

given by the relation 

 

 dI = Tr ρ + dρ( )α( )− αγTr H ρ + dρ( )( )− Tr ρα( )+ αγTr Hρ( ) (B.22) 

 

Because in a unitary transformation the eigenvalues remain invariant, Equation (B.22) 

reduces to 
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 dI = −αγTr Hdρ( ). (B.23) 

 

Substituting Equation (B.21) into Equation (B.23), we get 

 

 dI = iαγTr H ρ, W[ ]( )dω . (B.24) 

 

The function I(ρ) is maximized when ρ is a stationary point, i.e., for every Hermitian 

operator W, 
dI
dω

= 0 .  Choosing W=iαγ[H,ρ] and using well-known properties of the 

trace operation, we transform Equation (B.24) into the relation 

 

 
dI
dω

= αγ( )2
Tr H,ρ[ ]2( )= 0 . (B.25) 

 

Because [H,ρ]2 is a non-negative definite Hermitian operator, its trace vanishes if and 

only if [H,ρ]=0.  Therefore, I(ρ) is maximized when ρ commutes with H. 

 Next, we maximize the value of I(ρ) by changing the eigenvalues of ρ.  If {pi} 

denote the eigenvalues of ρ, and {εi} the eigenvalues of H, we find that 

 
 I ρ( ) = pi

α

i
∑ − αλ pi

i
∑ − αγ εipi

i
∑ . (B.26) 

 

because ργ must be diagonal in the energy representation.  This expression is maximized 

when ρ is a stationary point, i.e., 
∂I
∂pi

= 0 .  Hence, we get 

 

 0 = αpi
α−1( ) − αλ − αγεi ⇒ pi = λ + γεi( )1/ α −1( )

 (B.27) 

 

or, alternatively Equation (4.9) 
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 ργ = λ + γH( )1/ α −1( )
. (B.28) 

 

This result shows that, for given values of energy, amounts of constituents, and 

parameters, one and only state has the largest value of the Rényi entropy.  In other words, 

the Rényi entropy satisfies Condition 5.  Furthermore, with a little algebra, we can show 

that 

 

 γ =
1 − α
αkT

 exp
1 − α( )

k
S

 
 

 
 , (B.29) 

 

where T is the temperature, and S=Iα(ργ), i.e., the entropy of the stable equilibrium state 

{ε,ργ}. 

 Next, we show that the Rényi entropy satisfies Condition 6 for values of 0<α<1, 

i.e., that the stable-equilibrium-state curve it implies is concave.  Again we consider the 

stable equilibrium states {ε,ρ1} and {ε,ρ2} of a petit system, having the values of energy 

<H>1 and <H>2 respectively.  The proof is similar to that for the von Neumann entropy 

given in Section (B.3), and therefore we use the same notation.  Given a value <H> 

between <H>1 and <H>2, there exists a unique 0<λ<1 such that 

<H>=λ<H>1+(1−λ)<H>2.  Hence, what we need to show is a variation of Equation 

(B.14) 

 

 Iα ρλ( )≥ λIα ρ1( )+ 1 − λ( )Iα ρ2( ),  ∀  0 < λ <1. (B.30) 

 

Because both ρ1 and ρ2 are diagonal in the H representation, so is ρλ3=λρ1+(1-λ)ρ2.  The 

eigenvalues {pi3} of ρλ3 satisfy Equation (B.15).  If g(x)=xα, then 

 

 J ρ( ) = exp
1− α

k
Iα ρ( ) 

 
 
 = g pi( )

i
∑ . (B.31) 
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In the interval 0 ≤ x ≤1 and for 0<α<1, g(x) is concave.  Using Equation (B.15), we get 

 
 ( ) ( ) ( )iii pgpgpg 213 )1( λλ −+>

. (B.32) 

 

Combining Equations (B.31) and (B.32), we obtain 

 

 J ρλ3( )> λJ ρ1( )+ 1− λ( )J ρ2( ). (B.33) 

 

The inverse of the relation given in Equation (B.31) is 

 

 Iα ρ( ) =
k

1− α
Log J ρ( )( ). (B.34) 

 

Because the logarithm is a monotonic function, Equations (B.33) and (B.34) imply 

 

 Iα ρλ3( )>
k

1 − α
Log λJ ρ1( )+ 1− λ( )J ρ2( )( ). (B.35) 

 

Finally, we use the concavity of the logarithm to get 

 

 Iα ρλ3( )> λIα ρ1( )+ 1− λ( )Iα ρ2( ). (B.36) 

 

Because both ρλ and ρλ3 correspond to same energy value <H>, by definition 

 

 Iα ρλ( )≥ Iα ρλ3( ), (B.37) 
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where the equality holds only if ρλ=ρλ3.  Equations (B.36) and (B.37) together show that 

Equation (B.30) is satisfied.  Accordingly, the stable-equilibrium-state curve implied by 

the Rényi entropy, for 0<α<1, is concave, i.e., the Iα complies with condition 6. 

 Next, we prove that the Rényi entropy does not satisfy Condition 7, i.e., if the 

expression for entropy is Iα, the stable equilibrium state of a composite of two 

independent systems A and B is not a mutual stable equilibrium state of subsystems A 

and B.  To this end, we consider the composite system A+B of two independent petit 

systems A and B.  The Hilbert space of the composite system is HA⊗HB and its 

Hamiltonian HAB=HA⊗IB+IA⊗HB, where IA and IB are the identity operators on HA and 

HB, respectively.  By virtue of Equation (B.28), any equilibrium state of the composite is 

of the form {εA∪εB,ργAB}, where 

 

 ργAB = λ + γHAB( )1/ α −1( )
. (B.38) 

 

The operator ργAB does not represent a state for which A and B are in mutual stable 

equilibrium.  Indeed, if {εA,ργA} and {εB,ργB} denote the stable equilibrium states of A 

and B, respectively, where 

 

 ργA = λA + γ AHA( )1/ α −1( )
,  and  ργB = λ B + γ BHB( )1/ α−1( )

, (B.39) 

 

in general there exists no set of values {λA,γA,λB,γB,} such that ργAB=ργA⊗ργB. 

 Proof: If {εi} and {ej} denote the eigenvalues of HA and HB, respectively, the 

eigenvalues of HAB are {εi+ej}.  Similarly, if{pi} and {qj} denote the eigenvalues of ργA 

and ργB, respectively, the eigenvalues of ργA⊗ργB are {piqj}.  Using a double index, we 

denote the eigenvalues of ργAB by {rij}. 

 We prove the claim by contradiction.  To every value of γ, there corresponds a 

unique stable equilibrium state of the composite system (note that, we are not free to 
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choose λ arbitrarily, because of the normalization requirement of a density operator).  

Similarly, the stable equilibrium states of A and B depend solely on γA and γB 

respectively.  If ργAB=ργA⊗ργB, then 

 

 λ + γ εi + ej( )( )1/ α −1( )
= r ij = piqj = λA + γA εi( ) λ B + γ Be j( )[ ]1/ α −1( )

, (B.40) 

 

for all values of i and j.  Because dim(H)≥2 in any system, there are at least four different 

combinations of i and j.  However, there are only two independent variables, γA and γB.  

Hence, in general Equation (B.40) cannot be satisfied and we conclude that Rényi 

entropy violates Condition 7 specified in Section 4.1. 
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Appendix C 
 

 In this appendix, we investigate three different equations of motion proposed in 

the literature.  The deficiencies of the Park-Simmons equations in quantum 

thermodynamics are shown for the first time.  The deficiency of the Lindblad equation is 

proven based on an argument first given by Beretta.  Finally, we show for the first time 

that the solution of the Beretta equation with arbitrary initial states exists and is unique 

for any system, and give the general rule of how the Beretta equation of a composite 

system is determined, when the time evolution of the independent subsystems obey their 

respective Beretta equation. 

 

C.1 The Lindblad Equation 

 

 Here, we present a version of the Lindblad equation for a two-level system.  

Contrary to the general case, this equation conserves the value of energy, hence satisfies 

Condition 3 established in Section 5.1.  We also show that this equation complies with 

the condition of the nondecrease of entropy (Condition 4).  The Hamiltonian operator H 

(Equation (B.1)) and the density operator ρ (Equation (B.3)) of the two-level system are: 

 

 H =
−ε 0

0 ε
 
  

 
  

 (C.1) 

 

 ρ =
x δ*

δ 1 − x

 

  
 

  
 (C.2) 

 

where ε>0, 0≤x≤1, and δ is a complex number such that |δ|≤(x-x2).  We consider the 

Lindblad equation (Equation (5.4)) for n=1, and V specified by 
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 V1 = V =
−λ 0

0 λ
 
  

 
  
 (C.3) 

 

in the energy representation, where λ>0.  Clearly, [H,V]=0, V=V*, and V*V=λ2I, where I 

is the identity.  Hence, (5.4) reduces to 

 

 
  

∂ρ
∂t

=
1
ih

[H,ρ] + VρV − λ2ρ . (C.4) 

 

Using the cyclic permutability of the trace operation, and Equation (C.3), we can verify 

that Tr(HVρV)=Tr(VHVρ)=Tr(VVHρ)=λ2Tr(IHρ)=λ2<H>.  Hence 

 

 
d H

dt
= Tr H

∂ρ
∂t

 
 

 
 = Tr HVρV( )− λ2 H = 0  (C.5) 

 

which shows that the equation (C.4) is energy conserving.  Furthermore, with a little 

algebra Equation (C.4) can be written in the form of 

 

 
  

d
dt

x δ*

δ 1− x

 

  
 

  
=

2ε
ih

0 −δ*

δ 0

 

  
 

  
− 2λ2 0 δ*

δ 0

 

  
 

  
 (C.6) 

 

which can be easily solved for x and δ as a function of time.  If at t=0, the density 

operator is given Equation (C.2), the solution in energy representation at any later instant 

of time t is 

 

 ρ t( )=
x γ* t( )

γ t( ) 1 − x

 

  
 

  
 (C.7) 
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where 
  
γ t( ) = exp −2λ2 +

2ε
ih

 
 

 
 t

 
 

 
 δ .  Once this solution is determined, it is also easy to 

verify that the entropy is a monotone non-decreasing function of time, hence Equation 

(C.4) satisfies Condition 4.  It is also clear that the solution ρ(t) of Equation (C.4) 

eventually becomes diagonal in energy representation.  In a two-level system, every 

density operator diagonal in the energy representation corresponds to a stable equilibrium 

state, hence Equation (C.4) takes every state to the stable equilibrium state having the 

same energy, i.e., describes an evolution towards the equilibrium. 

 As mentioned in Section 5.3, the general Lindblad equation does not satisfy 

Conditions 5, 6 and 9 established in Section 5.1.  To show that, we denote by {pi} and 

{ψi} the instantaneous eigenvalues and eigenvectors of ρ, respectively, and the element 

in the ith row and jth column of Vn in ρ representation by V n
ij  , i.e., 

 

 V n
ij = ψ i V n ψ j . (C.8) 

 

Next we determine the time evolution of the eigenvalues {pi} of the density operator ρ.  It 

is straightforward to verify that 

 

 
dpi

dt
= ψ i

∂ρ
∂t

ψ i = pj Vn
ij 2 

 
 
 

j
∑ − pi Vn

ki 2 
 

 
 

k
∑

 

 
 

 

 
 

n
∑ . (C.9) 

 

If initially pi=0, then Equation (C.9) reduces to 

 

 
dpi

dt
= pj Vn

ij 2 
 

 
 

j
∑
 

 
 

 

 
 

n
∑ ≥ 0  (C.10) 

 

which shows that the Lindblad equation preserves the non-negative definiteness of the 

density operator only in the forward direction in time.  We claim that there exists density 
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operators for which the inequality is strict, i.e., 
dpi

dt
> 0 and pi=0.  Indeed, for a given set 

of eigenvectors {ψi}, if p1 = 1, pk = 0,  and  
dpk

dt
= 0  ∀k ≠ 1, from Equation (C.10) we 

get 

 

 Vn
k1 2

n
∑ = 0   ∀k ≠ 1. (C.11) 

 

Moreover, repeating the same argument for p2 =1,  pk = 0, and  
dpk

dt
= 0  ∀k ≠ 2 , for 

p3=1,... we conclude that  

 

 Vn
ij = 0  ∀i ≠ j. (C.12) 

 

Equations (C.11) and (C.12) implies that Equation (C.9) reduces to 

 

 
dpi

dt
= pi V n

ii 2
− pi Vn

ii 2 
 

 
 

n
∑ = 0 . (C.13) 

 

However, this would imply that the time evolution is unitary, because the eigenvalues 

{pi} of the density operator are time independent.  In other words, the Lindblad equation 

reduces to the von Neumann equation.  

 Therefore, without loss of generality we can assume that there exists a projection 

operator, such that p1=1 and 
dp2

dt
> 0.  However, if this were the case, as pointed out by 

Beretta [1982], the rate of entropy generation becomes infinite, i.e., 

 

 
d S
dt

= −k
dpi

dti
∑ Log pi( )= +∞ , because 

dp2

dt
Log p2( )= −∞ . (C.14) 
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Because the von Neumann equation preserves the entropy, Equation (C.14) clearly 

indicates that for pure states, the Lindblad equation does not reduce, even as an 

approximation, to the von Neumann equation.  Moreover, the existence of mechanical 

states which are extremely dissipative and unstable is also in contradiction with our 

experimental observations.  Hence, the Lindblad equation violates Conditions 6 and 9. 

 Furthermore, the existence of a density operator with eigenvalue p2=0 and 
dp2

dt
> 0 is in contradiction with the determinism principle, because the state of the 

system in the past cannot be established from the Lindblad equation as the non-negative 

definiteness of the density operator is not preserved in the negative direction in time.  

Therefore, we conclude that the Lindblad equation violates Condition 5 in addition to 

Conditions 6 and 9, and is not acceptable. 

 

C.2 The Park-Simmons Equation 

 

 Here we present the proof that the Park-Simmons equation (Equation (5.8)) 

violates Conditions 5, 6 and 9 specified in Section 5.1.  The arguments are identical to the 

case of the Lindblad equation.  We show the existence of mechanical states in which the 

rate of entropy generation is infinite.  However, no such state has been reported so far, 

and clearly existence of such states would destroy the validity of the well-established 

theory of mechanics.  Furthermore, we show that non-negative definiteness of the density 

operator is not preserved in the negative direction in time which is in contradiction with 

the determinism principle. 

 Again, we start by describing the time evolution of the eigenvalues {pi} of the 

density operator.  It is straightforward to show that Equation (5.8) yields 

 

 
dpi

dt
= ψ i

∂ρ
∂t

ψ i =
1
λ

ψ i ˆ ρ ρ( )ψ i − pi( )=
1
λ

ˆ ρ ii − pi( ). (C.15) 
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Because the density operator ˆ ρ ρ( ) corresponds to a stable equilibrium state, is given by 

the canonical distribution.  We consider a state ρ having a value of energy larger than the 

ground state energy of the system.  Then the operator ˆ ρ ρ( ) is positive definite.  

Therefore, if pi=0, using Equation (C.15) we get 

 

 
dpi

dt
=

1
λ

ˆ ρ ii > 0 . (C.16) 

 

But, this is exactly the same problem we had with the Lindblad equation, i.e., there exist 

mechanical states having an infinite rate of entropy generation 

 

 
d S
dt

= −k
dpi

dt
Log pi( )

i
∑ = +∞  (C.17) 

 

and the non-negativity of the density operator is preserved only in the positive direction 

in time.  Therefore, we conclude that like the Lindblad equation, the Park-Simmons 

equation violates Conditions 5, 6, and 9 stated in Section 5.1, and is not acceptable. 

 

C.3 The Beretta Equation 

 

 In this section, we provide the proof that the Beretta equation satisfies Conditions 

7 and 8 established in Section 5.1.  We also repeat the proofs that it also satisfies 

Conditions 1 to 6, originally given by Beretta [1984, 1985].  To simplify the notation, we 

consider a system in which the only generator of motion is the Hamiltonian, i.e., n=1 and 

the dissipative term in the Beretta equation is given by Equation (5.12b).  The 

generalization of the results that follow is straightforward.  We repeat the Beretta 

equation for a system for which the Hamiltonian is the only generator of motion: 
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∂ρ
∂t

=
1
ih

H,ρ[ ]+
1
2τ

ρ, D ρ( ){ }+  (C.18) 

 

 D ρ( ) =

Σ − Σ H − H

H, Σ( ) H,H( )
H,H( ) . (C.19) 

 

 We begin by verifying that the Beretta equation satisfies Conditions 1 to 4.  It is 

trivial to verify Condition 1.  The trace of ρ is conserved because 

 

 Tr
∂ρ
∂t

 
 

 
 =

1
τ

Tr ρD ρ( )( )=
1
τ

Σ − Σ H − H

H,Σ( ) H,H( )
H,H( ) =

1
τ

0 0

H,Σ( ) H,H( )
H,H( ) = 0 . (C.20) 

 

The value of the energy is conserved because 

 

 Tr H
∂ρ
∂t

 
 

 
 = Tr HρD ρ( )( )=

1
τ

H,Σ( ) H,H( )
H,Σ( ) H,H( )

H,H( ) = 0 (C.21) 

 

i. e., the two rows of the determinant are identical.  The value of entropy does not 

decrease in time because 

 

 
d S

dt
= k

d Σ
dt

=
1
τ

Σ ,Σ( ) Σ, H( )
H, Σ( ) H,H( )

H,H( ) ≥ 0 (C.22) 

 

i. e., the Gram determinant in the numerator is nonnegative and, for any operator A, 

(A,A)≥0 due to the properties of semi-inner products [Conway, 1985]. 
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 First, we show that the beretta equation satisfies Condition 8, and then Condition 

5.  Beretta [1985a] showed that the solution of his equation exists and is unique for a two-

level system.  Here we present a general proof, which is not restricted by the dim(H). 

 The evolution of each eigenvalue pi of the density operator obeys: 

 

 
dpi

dt
= ψ i

∂ρ
∂t

ψ i =
1
2τ

ψ i ρ,D ρ( ){ }+ ψ i =
pi

τ
ψ i D ρ( )ψ i  (C.23) 

 

or, equivalently 

 

 τ
dpi

dt
= −piLog pi( )+ pi

H,Σ( )
H,H( ) H − Hii( )− Σ

 
 
  

 
 = −pi Log pi( )+ Cpi  (C.24) 

 

where Hii=<|ψiH|ψi>.  Because of the nonlinearity of Equation (C.24), the existence and 

the uniqueness of the solution must be proven.  The first observation is that the 

logarithmic nonlinearity is harmless.  For pi(0)>0, piLog(pi) is an analytic expression in a 

small neighborhood of pi(0), where pi(0) denotes the value of pi at time t=0.  Hence the 

existence and uniqueness of the solution is guaranteed for t>0 [Bender and Orszag, 1978].  

For pi(0)=0, the logarithmic term causes no bifurcation, because it satisfies an Osgood 

condition [Ince, 1956].  This is also noted by Beretta [1984].  To show this point we 

rewrite the equation (C.24) in the form 

 

 τ
dp
dt

= −pLog p( )+ Cp (C.25) 

 

where we omit the index to simplify notation.  If C were a constant, then dividing the 

equation by p, we would obtain a linear equation in u=Log(p) given by 

 

 τ
du
dt

= −u + C  (C.26) 
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which can be readily solved.  The solution reads 

 

 u t( ) = Cτ exp −t / τ( )−1( )+ u 0( )exp − t / τ( )  (C.27) 

 

or, equivalently, 

 

 p t( ) = p 0( )exp exp −t / τ( )( )exp Cτ exp − t / τ( )−1( )[ ] (C.28) 

 

This result shows that if p(0)=0, then p(t)=0 for all t>0.  Because, this solution coincides 

with the trivial solution, the equation admits a unique solution for all values of p(0)≥0 

despite the logarithmic singularity.  This example simply illustrates the behavior of the 

Beretta equation.  Equation (C.24) is not identical to Equation (C.25) however, because C 

is not a constant.  Nevertheless, the existence and uniqueness of the solution is guaranteed 

if we can show that C is bounded, which is equivalent to saying that the second term on 

the right hand side of Equation (C.24) satisfies a Lipschitz condition [Bender and Orszag, 

1978].  This is indeed the case. 

 Proof:  Equation (C.21) shows that value of energy is conserved, hence <H> in 

Equation (C.24) is constant and finite throughout the time evolution.  By virtue of the 

second law, for a given value of energy, amounts of constituents and parameters, there 

exists a state which has a largest value of entropy Smax.  Infact, Smax is finite if <H> is 

finite (concavity of the stable equilibrium states curve on the S versus E plane, Fig. 3.1).  

Because, <S>=k<Σ>, Σmax=Smax/k and is finite.  Therefore, <Σ> is also bounded.  The 

troublesome term is  

 

 
Σ, H( )
H,H( ) . (C.29) 
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Using Cauchy-Schwarz inequality [Conway, 1985], we get 

 

 
Σ, H( )
H,H( ) ≤

H,H( ) Σ,Σ( )
H,H( ) =

Σ, Σ( )
H, H( ) . (C.30) 

 

However, (Σ,Σ)=<Σ2>-<Σ>2 is also bounded for given values of energy, amounts of 

constituents and parameters.  The proof is similar to the proof that <S> is bounded (we 

solved the maximization problem of entropy, given the constraints Tr(ρ)=1 and 

Tr(Hρ)=fixed, in Appendix B).  It is straightforward to show that <Σ2>=Tr(ρ(Logρ)2) is 

maximized when ρ is diagonal in the energy representation.  Again, using Lagrange 

multipliers, we maximize the function Tr(ρ(Logρ)2)-λTr(Hρ)-(µ-1)Tr(ρ), and get 

 

 Log pi( )( )2
+ 2Log pi( )= λε i + µ −1( ) (C.31) 

 

where {εi} are the energy eigenvalues.  If we solve Equation (C.31) for {pi}, we get 

 

 pi =
1
e

exp − λε i + µ( )=
exp − 1 + νεi( )

exp − 1 + νε j( )
j
∑

 (C.32) 

 

or, equivalently, 

 

 ρν =
exp − I + νH( )

Tr exp − I + νH( )( ). (C.33) 

 

where ν=λ/µ, H and I are the Hamiltonian and identity operators, respectively.  This 

result can be summarized as follows: the way the canonical distribution ρβ maximizes 

<S>, ρν maximizes <Σ2>.  Because both <Σ2> and <Σ> are bounded, (Σ,Σ) is also 



 

135 

bounded.  Although, there are a few mathematical technicalities that we justify later, this 

result shows that the term C in Equation (C.24) is bounded.  

 Because C is bounded, and the logarithmic term satisfies an Osgood condition, as 

we mentioned the solution of Equation (C.24) is unique for p(0)=0.  For p(0)>0, the right 

hand side of Equation (C.24) satisfies a Lipschitz condition hence its solution exists and 

is unique.  This proves that the Beretta equation admits a unique solution for every initial 

density operator, i.e., the Beretta equation satisfies Condition 8. 

 Among the technicalities we need to pay attention to in the proof, is that <Σ2> 

admits a maximum only if Tr exp − I + νH( )( )< ∞ .  This condition imposes a restriction 

on the Hamiltonian, similar to that established in Section 4.4.  However, again for a 

system with finite volume, the WKB approximation guarantees that this condition is 

satisfied by the Hamiltonian.  Another technicality is that we have to make sure that 

(H,H) does not vanish, otherwise the term in Equation (C.30) and hence C becomes 

unbounded.  Note that (H,H)=(∆H)2=<H2>-<H>2.  It is easy to show that, (H,H) has a 

minimum when <H> does not correspond to an energy eigenvalue.  Therefore, the only 

troublesome initial conditions can occur when <H> corresponds to an energy eigenvalue.  

For simplicity we assume that all the energy eigenvalues are non-degenerate, and show 

that (H,H) does not vanish.  Assume that <H> corresponds to an energy eigenvalue εi, 

then (H,H) admits a minimum under the constraints <S>=fixed and Tr(ρ)=1.  The 

problem is solved, again by using the method of Lagrange multipliers, and is found that 

(H,H) is minimum when the density operator has the form 

 

 ρδ =
exp −δ H − H( )2( )

Tr exp −δ H − H( )2( )( ) (C.34) 

 

where δ>0.  If initially the entropy <S>=0, then the system is initially in the energy 

eigenstate corresponding to eigenvalue εi=<H>.  But then, (H,H)=0 initially, in which 
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case it is postulated that the equation of motion reduces to the von Neumann equation and 

the solution is unique (actually, this is an equilibrium state [Beretta, 1984]).  However, if 

initially <S> is positive, we need to do some work to show that (H,H) does not come 

close to 0 throughout the time evolution.  We project all the states with energy <H> onto 

the <S> versus (H,H) plane, which yields a graph (Figure C.1) identical to Figure 3.1.  

The state which has the minimum (H,H) for a given value of <S> correspond to a ρδ 

given by Equation (C.34).  The curve representing such states is concave, and the proof of 

that fact is similar to the proof that the stable equilibrium states curve is concave on the S 

versus E plane (Section B.3).  The key point is the concavity of the function xLog(x), in 

the interval 0≤x≤1.  We denote by (H,H)min the smallest possible value of (H,H) that 

any state (with energy <H> and entropy <S>0) can have, where <S>0 is the initial value 

of entropy.  By virtue of Equation (C.22), the value of entropy at any later instant of time 

t is larger than <S>0.  But, from Figure C.1, we immediately conclude that (H,H) at any 

later instant of time will be larger than (H,H)min which in turn is a non-zero number.  

Therefore, we have cleared the technicalities involved in the proof of the existence and 

uniqueness of the solutions of the Beretta equation. 

( H, H )

E
nt

ro
py

 S

all states

<S>o

(H,H)min

<H>=εi fixed

{ε, ρδ}

The energy
eigenstate {ε, Pψi}

corresponding to εi

 

Figure C.1  Entropy versus (H,H) graph for a fixed value of <H>=εi 
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It is also easy to show that the Beretta equation preserves the non-negative definiteness of 

the density operator, i.e., that it satisfies Condition 5.  Because, in the unique solution of 

the Beretta equation, an eigenvalue which is initially zero always remains zero, no 

eigenvalue can cross the zero value and the non-negative definiteness of ρ is established. 

 Next, we show that the Beretta equation satisfies Condition 7.  For simplicity, we 

choose two independent petit systems A and B, for which the only generators of motion 

are HA and HB, respectively.  We solve the equation of motion for ρA(t) for the initial 

condition ρA(0).  Similarly, we solve for ρB(t) for the initial condition ρB(0).  The 

equation of motion for either system can be written as 

 

 

  

∂ρα
∂t

=
1
ih

Hα ,ρα[ ]+
1
2τ

ρα,

Σα − Σα Hα − Hα

Σα ,Hα( ) Hα ,Hα( )
Hα ,Hα( )

 

 
 

 
 

 

 
 

 
 

+

 (C.35) 

 

where α=A, B.  Because, the two systems are independent the state at any instant of time 

t is ρAB(t)=ρA(t)⊗ρB(t).  Taking the time derivative of this expression we get 

 

 
∂ρAB

∂t
=

∂ρA

∂t
⊗ ρB t( ) +ρA t( )⊗

∂ρB

∂t
. (C.36) 

 

Using the relations H AB = HA ⊗ IB + IA ⊗ H B, ΣAB = ΣA ⊗ IB + IA ⊗ ΣB, 

HAB = HA + HB , ΣAB = ΣA + ΣB , GA ⊗ IB,IA ⊗ JB( )= 0  for any operator 

GA and JB, and the well-known relations of determinants, we can show that the time 

evolution of the composite system obeys the Beretta equation 

 

 
  

∂ρAB

∂t
=

1
ih

HAB,ρAB[ ]+
1
2τ

ρAB,D ρAB( ){ }+
 (C.37) 
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where 

 

 D ρAB( ) =

ΣAB − ΣAB
˜ H A − ˜ H A

˜ H B − ˜ H B
˜ H A ,ΣAB( ) ˜ H A, ˜ H A( ) ˜ H A , ˜ H B( )
˜ H B, ΣAB( ) ˜ H B, ˜ H A( ) ˜ H B, ˜ H B( )

˜ H A, ˜ H A( ) ˜ H A , ˜ H B( )
˜ H B, ˜ H A( ) ˜ H B, ˜ H B( )

 (C.38) 

 

where ˜ H A = HA ⊗ IB  and   ˜ H B = IA ⊗ HB .  This result can be generalized to any system 

with arbitrary number of generators of motion.  Furthermore, this is a beautiful example 

of a petit system A+B whose generator of motion is not the Hamiltonian HAB alone.  At 

first look, it seems that the Hamiltonian HAB is not among the generators of motion, 

though this is not the case.  By adding the second column of the determinant in the 

numerator to the third column, and by adding the first column of the determinant in the 

denominator to the second column, we see that the generators of motion can be expressed 

as {HA,HAB}.  As we mentioned earlier, the linear independence of the generators of 

motion here plays the key role.  Similarly, we can consider the generators of motion of 

the composite system as being either {HAB,HB} or {HA,HB}. 

 This result can be generalized to systems with more than one generator of motion.  

If we denote by {GA,n} and {GB,m} the generators of motion of two independent systems 

A and B, respectively, it is straightforward to show that the generators of motion of the 

composite system A+B can be expressed as ˜ G A,n{ }∪ ˜ G B,m{ }{ }, where 

˜ G A,n = GA,n ⊗ IB  and ˜ G B,m = IA ⊗ GB,m .  Accordingly, we conclude that the Beretta 

equation satisfies Condition 7. 

 Finally, we provide the proofs of Equations (5.24), (5.25) and (6.22).  We 

consider a system A that admits two subsystems A1 and A2.  The only generator of 

motion of system A is the Hamiltonian operator H, and therefore the Beretta equation is 
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given by Equations (C.18) and (C.19).  We assume that the density operator of the system 

at time t=0 is given by 

 

 ρ 0( ) = ρ1 0( )⊗ ρ2 0( )  (C.39) 

 

where the density operators of the two subsystems are given by the canonical 

distributions 

 

 ρi 0( ) =
exp −βiHi( )

Tr exp −βiHi( )( )  βi =
1

kTi
  i =1,2  (C.40) 

 

and T1 and T2 are the temperatures of subsystems A1 and A2, respectively.  We denote 

the eigenvectors of H1 and H2, by {ψi} and {φj}, respectively, i.e., 

 

 H1ψ i = eiψ i   and    H2φ j = ε jφ j . (C.41) 

 

Accordingly, the eigenvectors of the Hamiltonian operator are {ψi φj}, i.e., 

 

 H ψ i ⊗ φj( )= ei + εj( )ψ i ⊗ φ j( ). (C.42) 

 

At time t=0, the density operator of the system is given by the canonical distribution, 

hence we have the relations 

 

 ρ1 0( )ψ i = pi 0( )ψ i   ,    ρ2 0( )φj = q j 0( )φ j . (C.43) 

 

 ρ 0( ) ψ i ⊗ φ j( )= pi 0( )qj 0( ) ψ i ⊗ φ j( )= pij 0( ) ψ i ⊗ φj( ) (C.44) 
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Because the density operator at time t=0 is diagonal in the energy representation, it 

follows from Equation (C.19) that D(ρ) is diagonal in the energy representation, and from 

Equation (C.18) that 
∂ρ
∂t

 is diagonal in the energy representation.  Therefore, we 

conclude that at any instant of time t, the density operator of the system remains diagonal 

in the energy representation.  This is equivalent to saying that the eigenvectors of the 

density operator are {ψi⊗φj} at any instant of time t, and the density operator satisfies the 

eigenvalue problem given by 

 

 ρ t( ) ψ i ⊗ φ j( )= pij t( ) ψ i ⊗ φ j( ). (C.45) 

 

It remains to show that the eigenvalues of the density operator evolve such that  

 

 ρ t( )= ρ1 t( )⊗ ρ2 t( ) (C.46) 

 

 where  ρi t( )=
exp −βiHi( )

Tr exp −βiHi( )( )  βi =
1

kTi
  i =1,2  (C.47) 

 

with time dependent temperatures T1 and T2 of subsystems A1 and A2, respectively.  It is 

straightforward to verify that each of the eigenvalues {pij} of the density operator 

satisfies the relation 

 

 
dpij

dt
= ψ i ⊗ φ j( ) ∂ρ

∂t
ψ i ⊗ φ j( ) . (C.48) 

 

Using the Beretta equation Equations (C.18) in Equation (C.48), we obtain the relation 

 

 τ
dpij

dt
= −pijLog pij( )− Σ pij −

H, Σ( )
H,H( ) ei + ε j( )pij +

H,Σ( )
H,H( ) H pij  (C.49) 
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for all pair of indices {i,j}. 

 If the solution is indeed of the form given by Equations (C.46) and (C.47), at any 

instant of time t, the eigenvalues {pij} of the density operator must satisfy the relations 

given by 

 

 Log
pij

pkl

 
 
  

 
 = −β1 t( ) ei − ek( )− β2 t( ) ε j − εl( ) (C.50) 

 

for all pairs of indices {i,j} and {k,l}.  If the existence of β1(t) and β2(t) such that 

Equations (C.50) are simultaneously satisfied for all pairs of indices {i,j} and {k,l} at all 

instants of time can be established, then the uniqueness of the solution of the Beretta 

equation guarantees that the density operator is given by Equations (C.46) and (C.47).  

Because these relations are satisfied at t=0, all we need to show is that the derivative of 

each relation with respect to time is satisfied.  Taking the time derivative of Equation 

(C.50), we find 

 

 
d
dt

Log
pij

pkl

 
 
  

 
 = −

dβ1

dt
ei − ek( )−

dβ2

dt
εj − εl( ). (C.51) 

 

for all pairs of indices {i,j} and {k,l}.  The logarithmic derivative on the left hand side of 

each of Equations (C.51) can be evaluated directly from Equations (C.49), and is equal to 

 

 
d
dt

Log
pij

pkl

 
 
  

 
 =

1
τ

β1 −
H,Σ( )
H,H( )

 
 
  

 
 ei − ek( ) +

1
τ

β1 −
H,Σ( )
H, H( )

 
 
  

 
 ε j − εl( ). (C.52) 

 

Comparison of Equations (C.52) and (C.51) reveals that, there exist β1(t) and β2(t) 

satisfying the relations  
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dβ1

dt
= −

1
τ

β1 −
H,Σ( )
H,H( )

 
 
  

 
 

dβ2

dt
= − 1

τ
β2 − H, Σ( )

H,H( )
 
 
  

 
 

 

 
 

 
 

 (C.53) 

 

such that Equations (C.51) can indeed be simultaneously satisfied for all pairs of indices 

{i,j} and {k,l}.  Hence the relations given by Equations (C.51) are simultaneously 

satisfied for all pairs of indices {i,j} and {k,l} at all instants of time.  Accordingly, we 

conclude that the solution of the Beretta equation has the form given by Equations (C.46) 

and (C.47).  Furthermore, it follows directly from Equation (C.53) that we have 

 

 
d
dt

β1 − β2( )= −
1
τ

β1 −β2( ). (C.54) 

 

which is Equation (5.25) given in Chapter 5. 

 The proof of the validity of Equation (6.22) is a straightforward generalization of 

the proof we have just presented.  It is essential to recognize that the number of 

constituent operator N commutes with the Hamiltonian operator H.  Therefore, Equations 

(C.50) and (C.52) are modified such that they not only contain energy eigenvalues {eij} 

but also the number of constituent eigenvalues {nij}. 

 

C.4 About the Zero Eigenvalues of ρρρρ 

 

 At the end of Chapter 4, we claim that any equation of motion which does not 

preserve the zero eigenvalues of ρ, violates at least one of Conditions 5, 6, 8, or 9 stated 

in Section 5.1.  Indeed, from the assumed form of the equation of motion of quantum 

thermodynamics (Equation (5.1)), it is clear that the change in an eigenvalue pi of ρ can 

be expressed as  
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dpi

dt
= f(p1, .. .,pi, .. .) . (C.55) 

 

Consider that initially, pi=0 for i≥2, and f(p1,…,0,…)>0, which is exactly the same 

situation encountered with either the Lindblad equation or the Park-Simmons equation.  

Then, the rate of entropy generation in a pure state would be infinite (Equation (C.14)).  

If this is the case, however, the equation of motion does not reduce to the von Neumann 

equation, even as an approximation, i.e., violates Condition 6.  Furthermore, the existence 

of pure state which are extremely dissipative and unstable is also contradictory to our 

experimental observations.  Accordingly, the equation of motion violates Condition 9.  

Moreover, the eigenvalue pi of the density operator becomes negative for negative values 

of time.  Therefore, the non-negative definiteness of the density operator is not preserved 

in the negative direction in time, and the equation of motion does not comply with the 

determinism principle (Condition 5). 

 On the other hand, if initially pi=0 for i≥2, and f(p1,…,0,…)=0, then a solution 

of Equation (C.55) is pi(t)=0 for t≥0, in which case the zero eigenvalue is preserved.  

Yet, due to nonlinearity of the function f(p1,…,pi,…) we can have another solution 

pi(t)≠0 for t>0.  But then, the equation of motion does not admit a unique solution, i.e., 

violates Condition 8. 
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