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A Direct  Method for a Class of Optimal  Control 
Problems 

Abstract-A direct  method is developed for the solution of a  class 
of minimum energy control problems. The method is applicable to 
linear  and nonlinear,  stationary and time-varying systems described 
by input-output functional relations. It is based on the expansion of 
the  kernels of the system and of the input, the control, in terms of a 
set of functions that  are characteristic of the kernels. The optimality 
is measured by the integral of a positive d e h i t e  quadratic form of 
the input  over the control time interval. The characteristic expan- 
sions reduce  the optimal control problem to  that of solving a k i t e  set 
of algebraic equations. 
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I .  INTRODUCTION 
PTIXIAL  CONTROL  problems  have  been  stud- 
ied by  considering  the  system  dynamics as de- 
scribed by a set of differential equations.[llr[el 

Alan). physical  systems,  however,  are  often  identified 
by  means of input-output measurements.[31-[51 These 
measurements  result,  in  general,  in  input-output  func- 
tional  relations. It  appears,  therefore,  that  the  study of 
optimal  control  methods  for  systems  representable b37 
input-output  functional  relations  has  merit. 

The  purpose  of  this  paper is to present a direct. 
method for solving  a  class  of  minimum  energy  control 
problems. The  method is applicable  to  linear  and  non- 
linear,  stationary  and  time-varying  systems  represent- 
able  by  input-output  functional  relations. I t  is  based 
on the expansion of the  kernels of the  system  and of the 
input  or  control  variables  in  terms of a set of functions 
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that  are  characteristic of the kernels. Thus  the  optimal 
control  problem  is  reduced to   tha t  of solving a finite set 
of simultaneous  algebraic  equations. 

The  paper  is organized as  follows. In  Section 11, 
the class of systems  and  the  type of optimal  control 
problems  under  consideration  are  presented.  In  Section 
111, the  concept of the  characteristic  set of given  func- 
tions  is defined and  an expansion  technique  in  terms of 
the  characteristic  set  is  outlined.  In  Section  IV,  the 
expansion  technique  is  applied  to  an  optimal  control 
problem of a linear  system.  Simple  illustrative  examples 
are discussed. In  Section V ,  the  same  technique  is  ap- 
plied to  a nonlinear  optimal  control  problem  and  an 
illustrative  example  is  also  included. 

11. THE PROBLEM 
The  class of systems  considered  in  this  paper  is  the 

class of realizable  multi-input-multi-output  continuous 
nonlinear  systems,  which  are  representable  by  input- 
output  functional  relations of the form 

(1) .c,(U; 71, * . . , ~ i ) d ~ l ,  . . . , d7i 

where  the  output y(t) and  the  input u(t) are q and Y 

vectors,  respectively,  the q vector hi j ( t ;  71, . . , TJ is 
the  ith-order  kernel of the  nonlinear  system,  the  scalar 
C j ( u ;  71, * . . , 7i) is the   j th  possible product of i com- 
ponents of the  input  vector u(t) ,  each of the  components 
in the  product  having 71, 72, . . . , ~i as  its  argument, 
respectively. The  integer1 (i) is  the finite  number of 
functionals  that  characterize  the  system,  and  the  integer 
( j )  is the  number of all  possible combinations of Y items 
per i, i.e., 

(i + Y - l)! 
i ! ( r  - l)!  ( 9  = 

The  relation  given  by (1) is called a Volterra  series  and 
has been  studied  extensively  by  various  authors  in  con- 
nection  with  the  representation  and  analysis of non- 
linear  sy~tems.[61-[~~1  In  general,  the  representation 
given by (1) with  finite (i) is only  an  approximation  to 
the  real  system.  The  actual  value of (i) required  for  a 
close approximation  depends  upon  the  nature of non- 
linearity  in  the  system;  and  this  fact  constitutes a 
definite  practical  limitation of such  a  series  representa- 
tion  in treating  any  violent  nonlinearity. 

Let R, be  the  Euclidean q space,  and  let L2,p be the 
space of r-vector  valued  functions,  each  component of a 
member  vector  being  square  integrable on the  interval 
[ to,  TI.  Let  an r X r  matrix Q(t )  be defined  for t E  [to, T ]  

denoted by placing parentheses around  the running index. Similarly, 
Throughout  this paper, the number of terms of a summation is 

if the upper limit of a summation  depends on several indexes, it is 
denoted by placing parentheses around  the running index followed 
by all the  other indexes. These  conventions are not used when the 
upper limit is explicitly defined. 

such  that  it  is  symmetric  and  positive  definite  for  each 
t ,  and  that  qkEL2,r,  fork = 1, 2,  - , r ,  where q k  is the 
kth  column of Q(t). Let  the  transpose of a  vector  or a 
matrix  be  denoted  by a prime. 

The  type of optimal  control  problem  investigated  in 
this  paper  is:  given  a  nonlinear  system  described  by (1) 
and  an  arbitrary  initial  output y(to) =yoER,, find the 
input u(t), to<t<T and  uELz,,,   such  that 1) the  ter- 
minal output y ( T )  =yTERq, and 2) the  cost  functional 
given by 

J = s,; u’(t)Q(t)u(l) dt (3) 

is  minimized.2 The  terminal  time T is  assumed fixed. 
The  terminal  output yT may be fixed or  given  in  terms 
of T. 

Throughout  the  paper,  it is  assumed that  the q vector, 
hi,(t; 71, . . . , T ~ ) ,  belongs to  L2,n in  each of the  argu- 
ments 71, 7 2 ,  . . - and ~ i ,  for  each  value of tE  [ t o ,  TI ,  
and for  all i and j .  

111. CHARACTERISTIC SET OF GIVEN 
FUNCTIONS-DEFIKITIONS 

Let L2 denote  the  Hilbert  space of square  integrable 
functions  on [ t o ,  TI.  Suppose  that a  finite set of func- 
tions, { Fi(t)I FiEL2; i =  1, 2 ,  . . , e } ,  is given. If 
there  is  a  finite  set of linearly  independent  functions 
{ f m ( t )  IfmEL2; m = 1,2, . - . , s )  such  that  each  member 
of the  set { Fi(t) ] is  expressible as a finite  linear  com- 
bination of the  functions of this  set, i.e., 

(m) i 

Fi( t )  = amy&) i = 1, 2, * * , p (4) 
m=l  

then  the finite set { fm( t )  } is  called a characteristic  set 
of the  set of functions { Fi(t)  ) .  
Assertion 1 

Given  an  arbitrary  finite  set of functions { Ff( t )  I Fi 
EL2; i= 1, 2, - - - , $1, there  exists at  least one  char- 
acteristic  set. 

The  proof is  immediately seen by  letting 

{ fm( t>f  = { G i ( t ) f  (3) 

where { Gi(t)  1 is  the  set consisting of all linearly  inde- 
pendent  elements of { Fi(t)  } .  

Suppose  that { f m ( t )  } is a characteristic  set of a  given 
set of functions { ~ ~ ( t )  I F ~ E L ~ ;  i = I ,  2, , p } .  Let 
the  set of orthonormal  functions  constructed  from 
{ f m ( t ) }  be denoted  by { & ( t ) } .  I t  is kri0n7n[~~]  that  the 
set { &(t)  } can  always be extended  to a complete  ortho- 
normal set in L2. Let  such a complete  orthonormal  set be 
denoted  by { ~ & ( t )  1 .  Then  an  arbitrary  function in L2, 

24( t ) ,  can  be  uniquely  expressed  by 

also be interpreted as representing the  state vector in the usual sense. 
Note  that  the vector “output” y(t) ,  as used in this  paper, can 



242 IEEE  TRANSACTIONS ON AUTOMATIC  CONTROL,  JUNE 1968 

0) 

a(t> = bn#n(t)- (6) 
n=l 

The  concepts defined  previously  provide a useful  tool 
for  the  solution of the problem  posed in Section 11. The 
details  for  linear  systems  are  given  in  Section IV and 
for  nonlinear  systems in Section V. Linear  systems  are 
included both because they  provide an algebraically 
simple vehicle to  illustrate  the  method  developed  in  this 
paper  and  because  some of the  results  are useful for  the 
analysis of the  nonlinear  example  presented in Section V. 

I t  will be  assumed  throughout,  without loss of gen- 
erality,  that  the  elements of the  complete  set {+m(t) ] 
are  arranged  in  such a way  that  the first s elements coin- 
cide  with  the  elements of the  set {Bm( t )  ] in the  same 
order,  where s is the  number of elements in { &(t) 1. 

IV. LINEAR SYSTEMS 
A general  linear  system is described by  the first two 

terms in the  right-hand  side of (1). Thus  one  has for the 
system  (the  linearity is between u and y - ho) 

y(t)  = ho(t) + J ' H ( t ; ~ ) u ( r )  d r  (7) 

where H(t ;  7) is the q x r  matrix  function whose (kj)th 
entry is hjk(t; 7). The initial and  terminal  conditions  are 

10 

Y ( h )  = Yo = h o ( t o )  E R, (8) 

and 

Y(T) = YT = ho(T)  + J T H ( T ;  T ) U ( T )  dT E R, (9) 
t 0  

respectively. Let ZT =~+-ho(T). 
In what follows, the  matrix Q(t )  in (3) will be taken 

to  be I ,  the  identity  matrix. This does not  constitute 
any loss of generality.  For a positive  definite  symmetric 
matrix Q(t ) ,  there  exists a nonsingular  matrix P(t)1151 
such  that 

Q(t)  = P' ( f )P( t ) .  (10) 

Thus if 

v(t) = P ( t ) u ( t )  (1 1) 

and 

K(t; T) = H(t;  T ) P ' ( T )  (12) 

then  the  linear  system  given  by 

~ ( t )  - h o ( t )  = H(t; T ) U ( T )  d r  5,: (13) 

and  the  cost  functional  given bs; (3) may  be  transformed 
to,  respectively, 

and 

J = Jt:v'(t)v(t) dt. (15) 

The  optimal  input for the  transformed  problem v*(t) 
is found  by  the  characteristic  expansion  method  to  be 
developed  later  and  the  actual  optimal  input u*(t) 
is uniquely  determined  by 

u*(t) = P ' ( t ) V * ( t ) .  (16) 

The  optimal  control problem (P) may  then  be  stated 
as: given an  element Z T E R ~  and a  bounded  linear 
operator T from L z , ~  into R, defined by 

T u  = JtTH(T; t)u(t) dt ('17) 

find an  element U E L Z , ~  that  minimizes 

subject  to 

TU = Z T .  (19) 

The solution of this problem  can be obtained  using 
the  notion of the  characteristic  set  introduced in Sec- 
tion 111. 

Consider the  set of functions  consisting of all the 
entries  in  the j t h  coIumn of H ( T ;  t ) .  By  assumption, 
each  element of this  set is in Lz. From  Assertion 1, there 
exists  a  characteristic  set.  Let  the  complete  orthonormal 
set in L2 constructed  from  the  characteristic  set be  de- 
noted  by { + j m ( t )  ]. Repeating  for e a c h j , j =  l ,  2 ,  . . . , r ,  
the  sets { + ~ ~ ~ ( t ) } ,  f c h m ( t )  1, - . and ( ~ # + ~ ( t ) )  are ob- 
tained. 

Lemma 1 
Given (17) and (19), there exist  orthonormal  sets of 

functions {+jm(t) ], j = 1, 2, - . , r ,  each  complete  in 
L2; a set of integers (ml), ( m 2 ) ,  . . . and (mr) ; and 
c o n s t a n t s A j m k < ~ , f o r k = 1 , 2 ,  * * , q , j = 1 , 2 ,  . , r ,  
and m = 1 ,   2 ,  - - , (m j ) ;  such that,  for k = l ,  2, . . * , q, 

j=1 m-1 J t o  

Proof:  The existence of the  complete sets [+jrn(t) 1 
Nom, the  kth  component of (19) is, in the ex- 

has  already been shown. 

panded  form, 

zTk = g I o T h , * ( T ;  t)uj(t) dt. (21) 

But  from  the definition of the  characteristic  set,  there 
is a  finite  integer (mkj) such  that 



where the  constants Aimk are  uniquely  determined.  Thus 
using (22)  in (21), 

r (mkj) 

~ 1 . k  = Aim’ $jm(t)ztj(t) dl .  
j = 1  m=l s,: (23) 

Equation (23), with  the  definitions 

(mj> = max [(mnkj)] (24) 
It  

and 

A j , k  = 0,  for w z  > (mkj) (25) 

completes  the proof. 

and define  a qXn matrix A by 
Define the  matrices Aj=  [Ajmk],  for j =  1, 2,  . . - , r ,  

where 

Since { 4jm(t) 1 is  complete in L2, an  arbitrary  element 
ujEL2 can  be  uniquely expressed by 

-1 

Repeating,  forj= 1 ,  2, . - , I ,  for an  arbitrary  element 
u EL2,r1 

r w  3?) 

L m=l 

m= 1 

i.e., a U E L ~ , ~  uniquely  defines a set of constants Bjm, 
and hence an n vector, 
b’= [Bu,  BIZ, . . . 9 B l ( m l )  . * . Brl,Br2, . . . B r ( m r ) ] *  (30) 

Conversely, an n vector b and  constants Bj,,  for 

that  
j = 1 ,  2, * * - , r ,  and m = (mj)+l, (nzj) +2, . . . , such 

i=l j = 1  m=(mj )+ l  

uniquely define an element in G,r. 
Using  (30), i t  is seen that  (20) is  reduced to 

ZT = Ab.  (3 1) 
Any  element in L2,r that  satisfies (31) is a feasible  input. 
Concerning  the  existence of a feasible input,  the follow- 
ing  lemma holds. 

Lenznza 2 
Given the problem (P), there  exists a feasible input 

in Lzmr if rank A =q.  
Proof: Let  rank A = q ,  and  let A be  a  nonsingular 

p X q  submatrix of A.  Without loss of generality, A may 

be  assumed  to  contain  the  first q columns of A.  There 
exists a q vector i =A-~z, .  A u E L ~ , , .  can be found  such 
that  bi=bi, for i = l ,  2,  - - ,  q ;  bi=Bj,=O, for q + l  

feasible input, which proves  the  lemma. 

J=ll U I I L ~ , ~  may  be  written as 

- < i l n , j =  1 , 2 ,  . , I, and m> (mj). Such u is clearly a 

From (29) and (30), i t  is seen that  the  cost  functional 

T w 

J = b’b f Bjm2. (3 2) 
j = 1  m = ( m j ) + l  

The following theorems  contain  the  solution of the 
problem. 

Theorem 1 
Given the problem (P), if rank A = q ,  then  there  exists 

Proof: Define a set’lX - in R, by 
an  optimal  input u * E L ~ , ~ ,  and i t  is  unique. 

x = (b l  2, = A b ] .  (33) 

Since rank A =p, X is nonempty  from  Lemma 2. The 
mapping A is clearly  continuous,  and  the  set  consisting 
only of a fixed element ZT in R ,  is closed. Therefore,  the 
inverse  image X C R n  is also closed.[141 Obviously, X is 
also  convex. But a closed convex set in  a  Hilbert  space 
contains a unique  element of minimum  Let 
b * E X  be  that  element.  The  element U * E L Z , ~  defined 
by b* and Bj,=O, for j = 1 ,  2 ,  . . . , r a n d  nz=(mj)+l, 

mum  norm in L2,r. Q.E.D. 

Theorem 2 

(mj)+2, . . , is  obviously the  unique  element of mini- 

Given the problem (P), let A be  a q X q  nonsingular 
submatrix of A containing  the  first q columns of A .  Let 
ZT =A&+&. Then  the  optimal  input is given by . .  

c - D(D‘D + I)-lD’c 
b* =[ 

(DID + I)-’D’c 1 (34) 

Bj,* = 0 ,  f o r j  = 1, 2, * , r ,  

nz = (mj) + 1, (mj) + 2, . * 

where c = A-lzT, D = A-la. 
Proof: Equation (32)  becomes, in terms of d and 6, 

J = b’b + b ‘ b  + Bjm2. 
i m  

Clearly, for minimum J ,  all B j ,  = O .  Let f = &’&+ 6‘6. 
Since b = c - D L ,  

j = c’c - 2c’Db + b‘(D’D + I ) b .  (35) 

The  matrix (D’D+I) is  symmetric  and  positive  definite, 
and 3 is strictly  convex  and  continuously  differentiable 
in 6. Thus  setting  the  derivative  to  be  stationary, 6* 
=(D‘D+I)-lD’c. From b = c - D 6 ,   b * = c - D 6 * .  

Q.E.D 

The  procedure developed  previously is defined as  the 
characteristic  expansion  method. I t  exploits the  observa- 
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tion  that,  by a careful  choice of bases, an infinite  dimen- 
sional  problem  can  be  reduced to  a  finite  dimensional 
problem. In  particular,  the  characteristic  expansion 
method is not  to  be confused  with  the  Ritz  method in the 
calculus of variations.  Unlike  the  Ritz  method, at no 
point  is  the  construction of a  minimizing  sequence neces- 
sary  or  attempted;  the  reduction  to a finite  dimension is 
a natural  and rigorous  consequence of the choice of bases 
and is in no sense an  approximation. 

Example 1 
This  example  is chosen  from communication  theory 

and  pertains  to  the design of a matched  filter. The de- 
scription of the problem  is  given in Holtzman.[161 A 
typical  analytical  statement of the problem  is to  find h(.t) 
such  that 

where 

(3  9) 

(40) 

and a and N are real  constants. 
Equations (36) through (38) are similar to (9) and ( 3 ) .  

Therefore, h(t)  can  be  found  by  means of the  charac- 
teristic  expansion  method.  Kote  that  the basis elements 
of sl(t) and  s2(t)  are  the  Haar 

a$) = l / d T ,  B e @ )  = l/\/T, t E [o, T/2]  

H&) = - l /dT, t E (7-12, TI ,  . . a .  

In  terms of these  functions 

S l ( T  - I )  = dT B1(T - t )  = VT Bl(t) (41) 

and 
w 

h( t )  = BmHm(t). (43) 
7n== 1 

Substitution of (41) through (43) in (36) through (38) 
yields 

B1* = l / d T ,  Bz* = (1 - 2a) /dT (44) 

iz*(t) = [ ~ , ( t )  + (I - 2Cr)~~(t)] /dT.  (45) 

The  result given  by (45) is  identical,  as i t  should  be  to 
that derived  by  other 

V. NOXLINEAR SYSTEMS 
The  purpose of this section  is to  extend  the  charac- 

teristic  expansion  method to  nonlinear  systems. 
The  kth  component of the  output  vector of a non- 

linear  system  described  by (1) is given by  the  relation 

.Cj(u; T I ,  . * , 7;) dr1 . dTi. 

To solve the  optimal  control  problem  stated  in  Section 
11, i t  is  assumed that  the kerneIs are  degenerate, i.e., 

where the index w represents  indexes k, i, j ,  d ,  and s, 
and  the index p denotes  the  component of the input 
vector  on which g w P ( T ;  T J  operates.  The indexes K ,  i, 
and j run from 1 to q, from 1 to  (i), and from 1 to ( j ) ,  
respectively. 

For a given p ,  the  set of functions g , p ( T ;  t ) ,  for  all w ,  
is finite.  Hence  from  Assertion 1, a characteristic  set 
exists. Let  the  completed  orthonormal  set  constructed 
from the  characteristic  set be { + , p ( d )  1 .  Then  it follows 
from  Section I11 that  

( m w s )  

.for @ = 1, 2 ,  - , r.  Then (46) becomes 

for k = 1, 2, - - , p. Similarly, ( 3 )  becomes,  where 
again, Q =I, 

J = (BmP)2. 
p=l rn=l 

Thus  the  optimal  control problem  under  consideration 
is reduced to  the solution  of a nonlinear  set of algebraic 
equations (jO), subject  to  the minimization of J .  From 
this  point,  the  solution  proceeds  as in the  case of linear 
systems.  Note,  however, that  the  questions of existence 
and uniqueness of the  solutions  have  not  been  resolved 
for arbitrary  nonlinear  systems. 

Admittedly,  the  solution of the  system of (50), for an 
arbitrary  nonlinear  system,  is  very  involved.  For  many 
practical  systems,  however, in which the dimensions  of 
the  input  and  the  output,  and  the  number of terms in 
the  input-output  functional  relation  are  small,  solutions 
can  be  found  without  much difficulty. For  clarity,  the 
following simple  example  is  included to  illustrate  the 
essentials of the  characteristic  expansion  method  for 
nonlinear  systems. 
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Example 2 
Consider the  nonlinear  system  described  by  the  rela- 

tions 

Y I ( ~ )  = [ i ( t  - ‘>U(‘) 
- 

Let i t  be desired to  find the  input  that  brings  the  output 
t o  (1, - 1) a t  t = 1 and  that  minimizes the  cost given by 
the relation 

Note  that  the  correct choice of the basis  gives &(t)  = 1, 
&(t) = 43-243 ,  * . Thus (52) is reduced to  

-1 = - 2B1+ B I Z  (54b) 

which have  the  solutions 

B 1 ~ 1 ,  B2=-15(1+4/3/4)1’2. 

The  minimization of J results in B, = 0 for nz >2 and 
the choice of the  plus sign in Bz. Thus  the  optimal in- 
put  is 

~ * ( t )  = 1 - 43 [1 - (1 + &7-4)1/2] 

+ 4~ 11 - (1 + 4m)q t. (55) 

V I .  CONCLUSIONS 
A direct  method is presented  for  the  solution of a class 

of optimal  control  problems of systems  described  by 
input-output  functional  relations.  The  method is based 
on the  observation  that,  by a  careful  choice of bases in 
the  space of inputs,  an infinite  dimensional  problem  can 
be  transformed  into a finite  dimensional  problem. I t  is 
shown that  the  method is applicable  to  linear  and non- 
linear,  and  stationary  and  time-varying  systems,  pro- 
vided  that  the kernels of the  system  degenerate. 

The  method  presented  can  be  directly  extended  to 
study  similar  problems  in  distributed-parameter sys- 
tems,  such  as  might  arise  from a Green’s  function solu- 
tion of a partial  differential  equation. 

ACKNOWLEDGMEXT 
The  authors  thank  the reviewers  for  several useful 

comments. 

REFEKENCES 

E. F. Mishchenko, The  Natlxwzatical  Theory of Optimul Processes. 
P I  L. S. Pontryagin V. G. Boltyanskii, R. V. Gamkrelidze, and 

New York: Interscience, 1962. 

the Theory and Its Afiplicatiotzs. New York:  McGraw-Hill, 1966. 
121 M .  Athans  and P. L. Falb, Optimal  Control, An  Introduction to 

Mass., Quart. Progr. Rept. 60, January 15,  1961. 
131 M. Schetzen, M.I.T. Research Lab. of Electronics,  Cambridge, 

and control  systems,” pt. 1, Info-i.tndion and  Conlrol, vol. 5, pp. 108- 
[(I J. Katzenelson and L. A. Gould, “The design of nonlinear filters 

143,  1962; pt. 2, &$., vol. 7, pp. 117-145, 1964. 
[5I R. Hooper, Test signals for a class of nonlinear systems,” 

Sc.D. dissertation, Dept. of Nuclear Engineering, Massachusetts 
Institute of Technology, Cambridge, Mass., 1966. 

Differential  Equations. New York:  Dover, 1959. 
[GI V.  Volterra, Theory of Functionals  and of IntegTal and Integro- 

bridge, Mass.:  Massachusetts Institute of Technology Press, 1958. 
[’I N. Wiener, Nonlinear Problem in Random  Theory. Cam- 

Lab. of Electronics, Cambridge,  Mass., Tech. Rept. 309, May 15, 
[SI A. G. Bose, ”A theory of nonlinear systems,”  M.I.T. Research 

1956. 
191 31.  B. Brilliant, “Theory of the analysis of nonlinear systems,” 

345, March 3, 1958. 
M.I.T. Research Lab. of Electronics, Cambridge, Mass., Tech.  Rept. 

P O I  D. A. George, “Continuous nonlinear systems,” M.I.T. 

July 24, 1959. 
Research Lab. of Electronics, Cambridge, Mass., Tech. Rept. 355, 

114 G. Zames, “Nonlinear  operators  for  system  analysis,” M.I.T. 
Research Lab. of Electronics, Cambridge, Mass., Tech. Rept. 370, 
August 25,  1960. 

P I  J. F. Barrett,  “The use of functionals in the analysis of non- 
linear uhvsical svstems.” RIinistrv of Su~ulv.  Great Britain. Statisti- 
cal Adksbry  Unit Rept., January 1957.’ A - ‘  

nonlinear systems,” Proc.  Internat’l Fed. Autotnetic Control  Cong. 
[la] R. H. Flake,  “Volterra series representation of time  varying 

(Basle, Switzerland, 1963). 
1l41 A. N. Kolmogorov and S. V. Fomin, Elements of Functional 

Analysis, vols. 1 and 2. Rochester, N. Y.: Graylock, 1957. 
R. Bellman, Introduction  to  .Matrix  Algebra. New York: 

McGraw-Hill, 1960. 
1161 J. $1. Holtzman, “Signal-noise ratio maximization using the 

Pontryagin maximum principle,” Bell Sys. Tech. J., vol. 45, no. 3, pp. 
473489 ,  1966. 

Math. Ann., vol. 69, pp. 331-371, 1910. 
I17I A. Haar, “Zur  Theorie der orthogonales Funktionsysteme,” 

Sang H. Kyong (S’64-M’66) was  born  in 
Seoul, Korea, on July 24, 1937. He  at- 
tended Seoul University, Seoul, and he 
received the B.S. degree from the Univer- 
sity of Rhode  Island,  Kingston, and  the 
Ph.D. degree from the Massachusetts 
Institute of Technology, Cambridge, in 
1961 and 1965, respectively. 

From 1965 to 1966, he worked as a 
Reactor Physicist at the Argonne Xa- 
tional Lab., Argonne, 111. In 1966 he 
joined Bell Telephone Laboratories, Inc., 
lh ippany,  N. J., and is currently associ- 

ated with the Guidance and Control  Systems Group. 
Dr. Kyong is a member of the Society for Industrial  and Applied 

Mathematics, the American h-uclear Society, Sigma Xi, Tau  Beta Pi, 
and  Phi  Kappa Phi. 

Elias P. Gyftopoulos was born in Athens, 
Greece, on July 4, 1927. He received the 
Diploma in mechanical and electrical 
engineering from the Technical Univer- 
sity of Athens, and  the Sc.D. degree in 
electrical engineering from the PvIassachu- 
setts  Institute of Technology, Cam- 
bridge, in 1953 and 1958, respectively. 

Since 1953, he  has been with the Mas- 
sachusetts Institute of Technology, 
where he  is presently Professor of Nuclear 
Engineering. His areas of interest are 
nuclear reactor dynamics, plasma phys- 

ics, and surface physics. 
Dr. Gyftopulos is a fellow of the American Academy of Arts and 

Sciences, a fellow of the -4merican Nuclear Society, and a member of 
the Board of Directors of the American Nuclear Society. 


