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A space-dependent reactor Kkinetics approximation, called the Natural Mode
Approximation (NMA), has been applied to the calculation and interpretation of
reactor dynamic experiments. The NMA is based on a modal expansion technique
where the space- and time-dependent reactor variables are approximated by a
series of products of time-dependent coefficients and space-dependent expansion
modes. The modes are the eigenvectors of a linear operator derived from the
complete set of equations describing the reactor system at an initial reference
condition. A pair of computer codes, MUDMO-II and SYNSIG, are used to syn-
thesize approximate modes in two-dimensional systems without feedback.

An oscillation test is proposed which may be used to verify key parameters of
the NMA., The experimental technique is described and applied to both numerical
and actual measurements. In addition, it is shown how a natural mode expansion
may be used to interpret standard dynamic experiments when the observations are
functions of space and time.

The results of calculations of kinetic problems are compared with those of
independent calculations which are considered to be exact. Good agreement is
established. It is shown that the flux tilting following a localized perturbation is
a sensitive function of the relative magnitudes of the measurable parameters of
the NMA. The novel idea of ‘‘correction modes’’ is introduced which increases
the accuracy of a low-order NMA without appreciable increase in computation

time,

I. INTRODUCTION

The purpose of this paper is to indicate how the
Natural Mode Approximation (NMA) may be used
in thermal reactors that experience non-negligible
flux shape changes: 1) to interpret oscillation
tests; and 2) to calculate a number of practical
transients.

Different approximations for dynamic space-
dependent reactor problems are reviewed by
Kaplan et al.,* which also includes a very long list
of publications. For a given accuracy, we feel

*Present address: Nuclear Power Field Office, US
Army Engineer Reactor Group, Ft. Belvoir, Virginia.

'S, KAPLAN, A. F. HENRY, S. G. MARGOLIS, and
J. J. TAYLOR, ‘‘Space-Time Reactor Dynamics,’’ Proc.
Intern. Conf. Peaceful Uses At. Enevgy, P/271, Vol. 4,
41 (1964).

that an approximation is ¢‘‘best’” when: 1) it
involves experimentally verifiable parameters;
2) it is suitable for a broad class of problems; and
3) it requires a reasonable computational effort.
For the problems of interest to this paper, we
show that the NMA has the above features.

The NMA is well known from the work of
several others.?™* It is derived from an expansion
of the neutron densities and other dependent

2R. COHEN, ‘“‘Some Topics in Reactor Kinetics,?”’
Proc. Intern. Conf. Peaceful Uses At. Enevgy, P/629,
Vol. 11, 302 (1958).

33, KAPLAN, ‘“The Property of Finality and the
Analysis of Problems in Reactor Space-Time Kinetics
by Various Modal Expansions,” Nucl. Sci. Eng., 9, 357
(1961).

%A, F. HENRY, ““The Application of Inhour Modes to
the Description of Nonseparable Reactor Transients,’’
Nucl. Sci. Eng., 20, 338 (1964).
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variables in a finite series of products of unknown
time~dependent coefficients, and known space-
dependent expansion vectors. The expansion vec-
tors are the eigenvectors of a linear operator
formed from the complete set of equations de-
scribing the reactor system at an initial, refer-
ence condition, The eigenvectors are called the
natural modes of the reference system. The
associated eigenvalues, which appear prominently
in the equations describing the unknown time-
dependent coefficients, are called the parameters
of the NMA.

The contributions of this paper are the pro-
posal and development of the following ideas:
1) key parameters (particular natural mode eigen-
values) of the NMA may be verified experimentally
by means of small signal oscillation tests; 2) the
verifiable parameters are sensitive indicators of
the flux tilting which follows a localized perturba-
tion; 3) natural modes can be used to interpret
meaningfully the readings of a number of neutron
detectors when each reading depends upon the
position of the detector; and 4) the NMA can be
used to calculate efficiently a number of important
reactor transients. In addition, it is shown that
two-dimensional natural modes may be constructed
by means of a ‘‘synthesis’’ technique.®

The paper is organized as follows: First,
the formalism of the NMA is reviewed briefly.
Second, the NMA is used to interpret oscillation
tests. Some important parameters of the NMA
are experimentally verified. Measurements of
subcriticality and stability are interpreted mean-
ingfully in the presence of spatial effects. Third,
a correlation is given which relates the measur-
able parameters to flux tilting. Fourth, the NMA
is applied to the calculation of fast transients with
and without feedback. Finally, preliminary results
of calculations of two-dimensional natural modes
are presented.

II. REVIEW OF THE FORMALISM
OF THE NMA

For simplicity, the review of the formalism of
the NMA is presented for a reactor without feed-
back. For more complete discussions, see Refs.
3,6, 7, and 8.
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. In the framework of the G-group diffusion -
theory approximation, the space- and time-depen-
dent behavior of a reactor, with I groups of
delayed-neutron precursors and without feedback,
is described by the matrix relation

CLACAL

= [H(x,0)] ¥(x,b) + S(x,8) (1)

where
Vv(x,t) = col [N,C],

N =col [NP(x,8), N®(x,8),..., N(x,1)] ,
and
Cc =col[cP(x,8),c®(x,8),...,CD (x,8)] .

The g’th neutron-group density is denoted by
N@®(x,t), and the i’th precursor density is denoted
by C (x,t). The K x K matrix operator [ H(x,t)]
consists of all the production and destruction
operators, and K = G + I. The column vector
S(x,t) contains all external sources.

One method of finding an approximate solution
of Eq. (1) is to proceed as follows: Consider a
steady-state reference condition for which Eq. (1)
becomes

[Ho(2)]Wolx) + Solx) =0 . (2)

Define the eigenvectors y,,,(x) of the eigenvalue
problem

[ Ho(x)] ¥,1(%) = wpp Wi %) (3)

as the natural modes of Eq. (2). Expand the
solution vector ¥(x,f) into a finite series of the
form

Ve = 2 5 40,00 (4)

Substitute this series into Eq. (1), multiply both
sides of the equation by M K solutions of the
adjoint relation

(] ¥k (%) = w,; ¥hi(x) (5)

and integrate® each result over all x. The result
of this procedure is a set of M-K, coupled,
ordinary differential equations which may be
written as

%:diag[w]A+[P]A+S , (6)

2The Dirac bracket notation < A,B> is used to
denote integration of the scalar product of the row
vector AT, and the column vector B over the volume of
the reactor. The notation (< AB > is used to denote
integration of the product of two scalars A and B over
the volume of the reactor.
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where
A =col [An(8), Awlt), .. ., Aux(D)] ,
S =col [Su(2), Sialt), . .., Sux()] ,
Smil#) = <PEu(x), S(x,>/<P*, (x), Y (x)>

and diag [w] is an M- K X M- K diagonal matrix
with elements w,,. The perturbation matrix [P]
has elements

_ <Phix), [Hx,t)- Ho%)] Y mi(%)>
o <Yk (x), ¥ ,;(x)> ’
where

p=(n-1K+j forn =1,2,... ,Mandj =1,2,...,K

p

and
y=(m-1)K+kfor m=1,2,...,M andk=1,2,... K.

In the derivation of Eq. (6) it has been assumed
that

SYRi(x), Uil )> = 0 fOr wmp # wnj
<Yrdx), x>+ 0,

and that ¥,,,(x) and ¥} (x) satisfy the same homo-
geneous boundary conditions as ¥o(x) and ¥¥§x),
respectively.

The result of the above procedure is a set of
equations [Eq. (6)] which is referred to as the
Mth order NMA. These equations are solved for
the expansion coefficients Ane(¢). The A,i¢)s are
then used in Eq. (4) to construct an approximate
solution. In essence, a problem [Eq. (1)] with
K -dependent and four independent variables is
reduced to another with M. K dependent and one
independent variables. The motivation is that the
latter problem may be easier to solve numerically.

There exist computer codes for the calculation
of natural modes of one-dimensional reactor
systems both with™® and without®'°~*? xenon feed-
back. The problem of calculation of natural modes
of two-dimensional systems is discussed in Sec.
IV of this paper.

To facilitate the developments which follow, it

R. L. EWEN, “Calculation of Complex Natural
Modes for Spatial Xenon Oscillations and Comparison
with a Simple Approximation,’”’ Trvans. Am. Nucl. Soc.,
5, 179 (1962).

1R, L. EWEN, “MULE - A FORTRAN Program for
the Calculation of Three Types of Overtone Modes,”’
WAPD-TM-369, Westinghouse Electric Corp. (1963).

c, A. PRESKITT and E, A, NEPHEW, ‘““Transients
Induced by Pulsed Neutron Sources in Multiregion Re-
actors,”” ORNL-TM-993, Oak Ridge National Laboratory
(1965).

127, GOZANI, “The Concept of Reactivity and its
Application to Kinetic Measurements,’”’ Nukleonik, 5,
55 (1963).
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is desirable to summarize the properties of the
one-dimensional solutions of Eq. (3), and, thus,
introduce a terminology which may be used to
discuss the natural modes. It is well known'r*'?
that, for a reactor with G neutron and I precursor
groups, the natural modes come in clusters of
K(=G+I). The K modes of a cluster have com-
ponents of similar, but not necessarily identical,
shape, In general, the modes become more
oscillatory in space as the cluster index m in-
creases. For this reason, the modes of the m’th
cluster are referred to as the modes of the m’th
spatial harmonic. Figure 1 represents a typical
eigenvalue spectrum of the first five spatial
harmonics of a nonuniform, one-dimensional,
thermal-reactor model with two neutron (G =2)
and one precursor (I = 1) groups. The following
features of this figure are generally true, The[
algebraically largest eigenvalues associated with
the m’th spatial harmonic are of the order of the
precursor decay constants. They are called the
delayed-neutron eigenvalues and the correspond-
ing modes are called the delayed-neutron modes.
The remaining G eigenvalues associated with the
m’th spatial harmonic have larger magnitudes.
They are called the prompt-neutron eigenvalues
and the corresponding modes are called the
prompt-neutron modes. As the index m increases,
the delayed-neutron eigenvalues approach the
values® -2, £=1,2, ..., I, while the prompt-
neutron eigenvalues approach -co,

Of the G prompt-neutron eigenvalues of the
m’th spatial harmonic, there is one of algebrai-
cally largest magnitude. This eigenvalue may be
associated with a relaxation time of the asymptotic
energy distribution of neutrons in the #’th har-
monic. It is called the prompt thermal-neutron
eigenvalue of the m’th spatial harmonic and it is
denoted by the subscript 2 = p. Each w,y is a
sensitive function of the thermal-neutron group
constants and the geometrical arrangement of the
core materials. It is shown subsequently that for
small values of m, the wmp’s may be: 1) measured
by means of a nonhazardous oscillation test; and
2) used to indicate the susceptibility of a reactor
to flux tilting.

The other (G - 1) prompt-neutron eigenvalues
associated with the m’th spatial harmonic are
called prompt epithermal-neutron eigenvalues.
They effectively represent the decay constants of
energy transients in the multigroup approximation.
They are of no particular interest to this paper.

bFor a reactor model with J feedback variables it is
possible to distinguish 7 delayed-neutron eigenvalues
plus J feedback eigenvalues for each m. The behavior
of the eigenvalues as a function of m in this case is
beyond the scope of this paper.
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Fig. 1. Eigenvalue spectrum of a nonuniform, slab reactor in which two neutron and one precursor groups

are considered.

III. APPLICATIONS

I11.1.

Measurement of the Prompt Thermal-Neutron
Eigenvalues wpp.

Interpretation of Oscillation Tesls

Let a reactor, operating initially at steady
state, be perturbed by a small, localized, thermal-
neutron absorber which oscillates sinusoidally at
a frequency w. After some time, during which the
transients die out, the neutron density also oscil-
lates sinusoidally at the same frequency as, but
different amplitude and phase than, the absorber.
The oscillating portion of the reading of a ther-
mal-neutron detector, placed at location x;, is of
the form Re[7;(jw) exp(jw#)]. If this behavior is
assumed to be describable by M spatial harmonics
of the NMA, then it is readily shown (See Appendix
A) that

M K
) = Z_) Z_) % A Gw) ('
dt = <oy (X) N7 (>, (8)
and
A,,,k(jw) = Cpilfw - wee)™t (9)
where ¢\ (%) is the response function of the #th

thermal-neutron detector, N,2 (x) is the thermal-
neutron component of the k’th natural mode of the
m’th spatial harmonic, v, is the thermal-neutron

speed, and ¢, is a constant whose value depends
on the size and the location of the oscillator.
Equation (7) can be rewritten in the form

N .
riljw) = 5 dyy Anfi) + exijw) + eiiw) ,  (10)
=
where
& o
enijw) = %) dmp Amp(Gw) (11)
m=N+1
and
e;(jw) = 2 E duy A, Gw) . (12)
/e!:p

In the form of Eq. (10), 7;(jw) may be interpreted
as consisting of three parts:

1) The contributions from the prompt thermal-
neutron modes with the N algebraically largest
eigenvalues, w,,, m = 1,2, ..., N.

2) The contribution ey;(jw) from the remaining
M-N, non-negligible prompt thermal-neutron
modes. If the detector is small so that

o (x) = o/ 8(x - %) (13)

then en;(jw) is an oscillatory function of the de-
tector location x;, and has at least N zero cross-
ings.

3) The contribution €;(jw) from all the delayed
and all the prompt epithermal-neutron modes.
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For oscillation frequencies that are larger and
smaller than the magnitude of the delayed and
prompt epithermal-neutron eigenvalues, respec-
tively, this contribution is negligible in thermal
reactors.

In general, for the frequency range specified
above, if N small detectors are placed at the
locations at which the sum ey{(jw) + e; (jw) is very
small, the oscillatory readings of these detectors
are given to a good approximation by the relations

N

ri(jw) =~ E dﬁ;})Amp(]w) for i = 1, 2, ..., N .

m=1

(14)

These relations can also be written in matrix
form as

r=~[v]a’, (15)

where 7= col[n(jw),..., r\jw)l, A" = collA1,(jw),

- ANp(j(.U)], and [v] is an N X N matrix with
elements win = dyy. If Nyj for m=1,2,...,N,and
g; for i=1,2,...,N are known, Eq. (15) can be
solved for A’ in the range of oscillation frequency
under consideration, Thus, the prompt thermal-
neutron eigenvalues w,, for m=1,2,...,N, may
be estimated from the break frequencies of the
Anfjw)’s [see Eq. (9)].

The maximum number of wwp’s, which can be
verified experimentally in this fashion, is limited
by the maximum frequency wmax Of the oscillator.
The reasons are that wap approaches -« as m
increases, and that the verification of a particular
wmp Presumes that it is within the range of oscil-
lation frequency of the absorber. Consequently, if

lep|< Q)max< |w1)+1,,, ' y (16)

then any number N of detectors smaller than or
equal to D can be used to derive good estimates of
an equal number of the algebraically largest,
prompt thermal-neutron eigenvalues.

The best locations for N detectors [i.e., those
at which the sum ey;(jw) + e;(jw) equals zero for
i=1,2,...,N] cannot be specified exactly in a
complex reactor core. There are, however, ap-
proximate techniques which can be used to derive
reasonable results., For example, as a first
guess, the N detectors may be located at the zeros
of the lowest order, non-negligible spatial har-
monic in ey;(jw). Specifically, if it is found that

CN+l’p¢ O )

then a first estimate of Nwpy,’s may be obtained
by locating N detectors at x;’s for which

NG, (&) =0 (17)

These first estimates are often quite good but can
be further improved. Results from many ex-
amples, which could be analyzed both exactly and
by means of the NMA, indicate that the estimates
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improve if the detectors are displaced a small
distance away from the zeros of Ny}, ,(x) in the
direction towards the oscillator.© On the basis of
this experience, the following rule of thumb has
been found to be helpful: To verify the wu,’s
associated with N prompt thermal-neutron modes,
displace N detectors a small distance away from
N zeros of the lowest order, non-negligible mode
in en; (jw) in the direction towards the oscillator.
These locations are satisfactory when the phase
of the inferred A, (jw) approaches -90° for fre-
quencies w >>lwi |.

Results

The procedure outlined above has been applied
both to ‘‘numerical experiments’’ and to actual
measurements.

For one of the numerical oscillation tests, a
uniform slab reactor of extrapolated width a =
200 cm is considered. A plane thermal-neutron
absorber is oscillated at position x¢ = a/4 over the
frequency range of 10 to 1000 rad/sec. Table I
shows the nuclear constants of this reactor along
with the calculated, prompt thermal-neutron eigen-
values of the first four spatial harmonies. It
follows that only three (N = 3) of these eigenvalues
can be verified experimentally with the available
frequency range of the oscillator.

For this simple example, the natural modes
are sinusoidal functions of position. In addition,
the space- and frequency-dependent neutron den-
sity may be evaluated froma closed form solution;

TABLE I

Nuclear Constants and Eigenvalues for the Numerical
Oscillation Test

Nuclear Constants

z, =0.03776 cm™*
a1 = 0.0 cm™!
vZ/=0.0cm™

width = 200 ¢m
Zaz = 0.02775 cm”™
v, = 0,0282 cm™

1

D2 = 0.804 cm D, =1.313 cm
vz = 2,48 X 10° cm/sec vy = 4.06 X 10° cm/sec
B =0,0074 A =0,0138 sec
Inferred Eigenvalues, sec™
Spatial Detectors at
Harmonic Actual Zeros of Fifth | Detectors Displaced
Index, m | Eigenvalue, sec”* Harmonic Towards Oscillator
1 -49.1 -48.9 -49.2
2 -355 -348 -358
3 -850 -788 -860
4 -1514. -- --

¢The zero crossings of en;(jw) + e;(jw) are displaced
a small distance from those of N‘,S'i’l‘, (x) in the direction
toward the oscillator. Small distance here means a
distance smaller than that between the oscillator and the
zero of N}‘Vz+’1,p (x) closest to the oscillator.
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hence, we may calculate exactly the response of a
detector at any location. Figure 2 indicates the
calculated responses 7;(jw) of detectors located at
x = 2a/5, % = 3a/5, and x5 = 4a/5. The locations
of these detectors correspond to the zeros of the
fifth spatial harmonic which is the lowest order,
non-zero harmonic in es;(jw). The constant cyp is
zero because of the location of the oscillator,

If the readings shown in Fig. 2 are analyzed
according to Eq. (15), the three coefficients A,jw)
depicted in Fig. 3 are inferred. Fitting these
Apn(jw)’s, by relations of the form given by Eq.
(9), results in three wmp’s which are listed in
Table I. Note that good results are obtained for
the first two eigenvalues. It is seen from Fig. 3,
however, that the phase of A,,(jw) at high fre-
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Fig. 2. Magnitude and phase of the oscillating

portion of the reading of 7’th detector in a numerical
oscillation test. Magnitude is normalized with respect
to the steady-state reading of the detector.
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Fig. 3. Comparison of exact behavior of expansion

coefficients with that inferred from the results shown in
Fig. 2, Detectors are located at zeros of the lowest
order, non-negligible mode, not included in the NMA,

quencies is below its proper asymptotic value of
-90°, To alleviate this error, the rule of thumb is
used and all detectors are moved towards the
oscillator by a distance of 10 cm. Repetition of
the preceding analysis shows that the asymptotic
phase of the new Alp(jw) is indeed closer to -90°
and that the inferred eigenvalues are as shown in
the last column of Table I. These estimates of the
wmp’s are in excellent agreement with the known
theoretical values.

Foulke’s thesis® contains additional results on
numerical oscillation tests performed with both
uniform and nonuniform reactors.

Experimental data from oscillation tests per-
formed on the NORA reactor'® are shown in Fig. 4.
If the readings of detectors B, D, and E are

1Bp T, HANSSON and L. R. FOULKE, ‘‘Investigations
in Spatial Reactor Kinetics,’”’ KR-43, NORA 3, Inst, of
Atomenergi, Kjeller, Norway (1963). See also: Nucl.
Sci. Eng., 17, 528 (1963).
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delayed-neutron precursor contributions, that is,
14

A (jw) = A1p(jw) + kZ)l A (jw) (18)

This is done here because the first prompt

thermal-neutron eigenvalue is of the same order

of magnitude as the delayed-neutron eigenvalues.

Superimposed on Figs. 5 and 6 are the theoretical

results for A,(jw), Asp(jw), and Asp(jw). The

natural modes used in this analysis are calculated

by means of the computer code MUDMO-II,6 which
was written for the purposes of this work.

The NORA experiments were not designed to
measure the w,,’s of higher spatial harmonics.
For this reason, the maximum frequency of oscil-
lation is not high enough to allow estimation of the
wmp’s. Nevertheless, it is seen from Figs. 5 and 6
that the inferred behavior of the expansion coeffi-
cients is reasonable. It should be noted that use
of other expansion modes, such as Bessel func-
tions for example, would require a much larger
number of terms for the representation of the
same experimental data on the NORA reactor,

Interpretation of Measurements for
Subcriticality and Stability.

When spatial dynamic effects are important,
the interpretation of some standard kinetic ex-
periments may be ambiguous and the results may
be grossly in error if only a single neutron
detector is used. The error may be reduced
through use of more than one detector and through
analysis of the detector readings by means of a
natural mode expansion.

Subcriticality

A measure of subcriticality of the fundamental
spatial harmonic is given by wi, which is often
inferred from an oscillation test. To see the
errors which may arise in such a test, consider
the following numerical experiment. A uniform
slab reactor of extrapolated width a = 240 cm is
made subcritical by a uniform adjustment of the
thermal-absorption cross section. The nuclear
constants of this reactor are given in Table II.

Figure T shows the computed responses 7;(jw)
of three plane, thermal-neutron detectors located
at x, = a/4, x2= a/2, and x; = 3a/4, induced by a
plane, oscillating, thermal-neutron absorber at
%0= a/6. These v,(jw)’s are found from a closed-
form solution of the space- and frequency-depen-
dent neutron density. Included in the figure are
also the eigenvalues w;, derived either from the
quasi-break frequency of each 7;(jw) individually,
or from the break frequency of the

Aip(Gw) [= e1pljw - wlp)-l]

[+

Magnitude of r; (jw)/ R}
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TABLE II

Information Concerning the 240-cm Slab Reactor
Considered in the Subcriticality and Stability Examples

Nuclear Constants

width = 240 ¢m T, =0.0164444 cm™!
Tuzo = 0.2661376 cm ™! Sar0 = 0.033515 cm™!
v/ = 0.497857 cm™ vZ; = 0.0194962 cm™
D2 = 0.409718 cm Dy =1.69531 cm
vy = 2.2 x 10° cm/sec v, = 4.06 x 10° cm/sec
B = 0.0064 X =0.08 sec

For Subcriticality Example: T, = 0,2678515 cm™

For Stability Example:

y22 No® (x) = 2.55 X 10'° (cm® sec °C)™*

y1 0 No®@ (%) =5.25x% 10° (ecm® sec°C)™

g =9.42x 107" cm® - °C/fission, 7, = 0.244 sec,
72 = 0,73 sec, 73 = 0.21 sec.

O.1 T=FRF R ==L T TTITT T 1 1713
C T~ Injw)1/RS 7
= \\ —
T ~
- ~N —

Detector
0.0l |
r 2
L 3
= All
| Actual Value
. o
L Actual fundamental mode coef | r3(jw)l/R3
—-— Fundamental mode coef inferred
from all detectors
AR | L 1 1Ll i L 1§t
100 1000
Oscillation frequency ,w , rad/sec
Fig. 7. Comparison of actual magnitude of funda-

mental mode coefficient with that indicated either by
individual detector readings or that inferred from all
detector readings. Oscillation test on a subcritical
reactor.

which results from the analysis of all the 7;(jw)’s
simultaneously according to Eq. (15). These re-
sults indicate the error that may be introduced
by spatial effects in subcriticality measurements
and the reduction of the error through the use of a
natural mode expansion. The natural modes in
this simple example are sinusoids.

Stability

Small amplitude oscillation tests are often per-
formed on reactors to estimate the power range
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for which the reactor is asymptotically stable.'*
Attention must be paid to spatial effects to avoid
erroneous interpretations of the results. To illus-
trate this point, consider the reactor model of the
preceding example and assume that feedback is
introduced via the group absorption cross sec-
tions. Specifically,

UlzaLN(“(x:t) = UlzaloN(“(x:t) + '}’11’1Nc§“(x)91(x:t),

(19)

02202 NP (x,8) = 032220 NP (x0,8) + v20uNE (x)02(x,8),
(20)

where

0:(x,0) = T (x,8) - T (x) for i=1,2 .

The two incremental temperatures satisfy the

relations

a—ela(—tx’—t) = gu 2 N0 + gu,3 NP (x,t)

- T—ll[el(x,t) - 62(x,0)] (21)
and
20:000) - L () - pa,t)] - L galnot)
ot T2 T3

The values of the feedback parameters are listed
in Table II.

Figure 8 shows the computed responses #;(jw)
of three plane, thermal-neutron detectors located
at x, = a/4, x; = a/2, and x3 = 3a/4, induced by a
plane, oscillating, thermal-neutron absorber at
x0=a/6. These 7i(jw)’s are found from a closed-
form solution of the space- and frequency-depen-
dent neutron density. Note in the figure that each
result depends upon the location of the detector.

The useful quantity for asymptotic stability
analysis is the frequency-dependent coefficient
of the fundamental spatial harmonic. This coef-
ficient can be inferred from the measured 7;(jw)’s
by means of an analysis in terms of a natural
mode expansion and it is shown in Fig, 8. Note the
substantial phase difference between the phase of
each of the 7;(jw)’s and that of the coefficient of
the fundamental mode. The natural modes used in
the analysis of this simple example are sinusoids.

IIL. 2. Correlation Between Flux Tilting and
Prompt Thermal-Neutvon Eigenvalues

The susceptibility of a thermal reactor to flux
tilting is a function of the prompt thermal-neutron
eigenvalues. To see this clearly, consider the

¥E. P. GYFTOPOULOS, ‘‘Theoretical and Experi-
mental Criteria for Nonlinear Reactor Stability,’’ Nucl.
Sci. Eng., 26, 26 (1966).
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= - ! I | I | 3
5 O » / ! vt h
g ! /3 x=04 a/4 a/2 3a/4 a
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Fig. 8. Magnitude and phase of fundamental mode

coefficient inferred from three detector readings., Os-
cillation test on a reactor at power.

following example reactors whose properties are
described in Table III. Reactor I is typical of a
small, uniform, light-water-moderated assembly.
Reactor II is typical of a large, uniform, light-
water-moderated assembly. Reactor md is simi-
lar to Reactor II except for ‘‘decoupling’® which is
introduced through the addition and removal of
absorbing material in the central and from the
outer regions, respectively.

Figure 9 shows the eigenvalue spectra of these
three reactors. Note that although the prompt
thermal-neutron eigenvalue w;,of the first spatial
harmonic (8/A of point kinetics) is essentially the

dReactor III is virtually identical to the 240-cm
slab reactor described in Refs. 15 and 16.

15E, P. GYFTOPOULOS, ‘“Point Reactor Kinetics and
Stability Criteria,” Proc. Intevn. Conf. Peaceful Uses

_At. Enevgy, P/270, Vol. 4, 3 (1964).

165, B. YASINSKY and A. F. HENRY, ‘‘Some Nu-
merical Experiments Concerning Space-Time Reactor
Kinetics Behavior,”’ Nucl. Sci. Eng., 22, 171 (1965).
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TABLE III
Nuclear Constants of Rea{ctors I, II, and III
Reactor III
Parameter Reactor I Reactor II Region 1 Region 2 Region 3
width, cm 60. 240, 60. 120. 60.
a1, €™t 0.033706 0.033515 0.0322365 0.0340843 0.0322026
Paz, cm™H 0.266184 0.2661376 0.2658284 0.2662750 0.2658203
v, cm™! 0.0213143 0.0194962 0.0194962
vZyz, cm™! 0.544286 0.497857 0.497857
Z,, cm” 0.0164444 0.0164444 0.0164444
Dy, cm 1.69531 1.69531 1.69531
D;, cm 0.409718 0.409718 0.409718
v1, cm/sec 4,06 x 10° 4,06 x 10° 4,06 x 10°
vz, cm/sec 2.2 x 10° 2.2 x 10° 2.2 x10°
B . 0.0064 0.0064 0.0064
A, sec” 0.08 0.08 0.08
Im (w,k)
I T .lIze(wlk)
7//1m (w2k)
1 T 4 Relway) |4
" // Im( )
[/ miwzy
I ¥ $ Re(wsy)
Ao r Lot | A
| " Reactor Symbol  wy, /wp, l”
I I a 0.0286 Ui 2
I I o 0.268 Il m
/ Im(wgg)
I o x 0.490 I
/ | 35 g Relwagy)
A ® I ] | 1 1 < Q—CD( —16
ll Envelope of : ”
I —-— Delayed-neutron eigenvalues I
| —— Prompt thermal-neutron “
| eigenvalues , wmp “
| — — Prompt epithermal-neutron " Im (w5k)
| eigenvalues “
1 | ) L oot Re(wg, ) _| o5
-108 -10° -104 -10°3 -102 -\ v

Eigenvalue, wp,, , 5€C”

Fig. 9. Eigenvalue spectra of Reactors I, II, and III.

same for all three reactors, the wnp’s for m > 1
are considerably different. In particular, note that
the ratio wiy/wzp is largest for Reactor III and
smallest for Reactor 1.

Many calculations of transients following step
perturbations applied to each of Reactors I, II, and
I were performed by means of the NMA. The
perturbation in each calculation is a step removal
of thermal-neutron absorber from the same frac-
tional, localized, reactor region.

A tilt parameter € is defined by the relation
€ = (wlp/wzp)(PP) 5 (23)
where (PP) is the perturbation parameter given
by the relation

1 NF®(x) 0,65 40(x) N (x)>

wip KNFD(x) N (x) + NED(x) Nf,z’(x)>(24)

and 0Z,.(x) is the step change in the thermal-

b
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neutron cross section. The neutron group den-
sities N$(x) and N§*’ (x), and the adjoint densities
NF®)(x) and N¥®(x) are the unperturbed distri-
butions. The perturbation parameter equals the
reactivity (in dollar units) that would be calculated
for a fundamental-mode, space-independent Kki-
netics approximation.
A tilt index 7(¢) is defined by the relation
K
27 Agk(2)
() =k

35A1k<t)

(25)

with the conditions that the thermal-neutron com-
ponents of ¥, (x) and ¥.x(x) are normalized so
that

N{f(a/2) = N{#(a/4) = 1.0 for k=1,2,. .. K .
(26)

The asymptotic tilt index 7, equals 7(w), and it is
a measure of the amplitude of the second spatial
harmonic over that of the first (fundamental)
spatial harmonic when the asymptotic flux shape
corresponding to the step perturbation is achieved.

The results of the step transients mentioned
above are shown in Fig. 10. They are given in

terms of the asymptotic tilt index 7, vs the tilt

parameter €. The perturbations are introduced
over the region 0 < x <a/4, and five modes (M =5)
are retained in the NMA, It is seen from this
figure that the susceptibility of these example
reactors to flux tilting, as measured by the index
T4, correlates rather well with e. It follows,
therefore, that, for localized perturbations which

T 1TTTh T T T Trrrm I T 1T TTTTIA
10 x Reactor [ .
r o Reactor II n
" 4 Reactor I a
o L -
(W
o L -
[N B -
©
<
- Iy
< 0.l - // =
2k s« X :
bt L X All calculations based on ]
e the NMA with M=5
> = X .
b4 | All perturbations in
- region 0 <x £ a/4
X
0.0l P11l 1t 1 b1itil [ T
0.0l 0.l 1.0
Tilt parameter, € = (PP)wlp/wZp
Fig. 10. Correlation between asymptotic tilt index

and tilt parameter.
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would be equivalent from the point of view of per-
turbation theory, the larger the ratio wi,/wz,, the
larger the flux tilting,

II1. 3. Calculation of Step Transients With and
Without Feedback

The first series of calculations is for the pur-
pose of illustrating how the number of modes,
required for an accurate representation of tran-
sients in reactors without feedback, depends on:
1) the magnitude of the perturbation parameter
(PP); and 2) the degree of localization of the step
change in the absorption cross section. Two per-
turbations are considered for Reactor II. Pertur-
bation I is applied in the region 0 < ¥ < a/4, and it
is representative of changes with a low degree of
localization. Perturbation II is applied in the
region a/8 < x < a/4, and it is representative of
changes with a high degree of localization. The
‘‘exact’” solution in each case is determined
numerically by means of the computer code
MUDMO-IL*

Figure 11 illustrates the error in the calcu-
lated, reciprocal asymptotic period as a function
of the number M of spatial harmonics retained in
the NMA when Perturbation I is analyzed. The
magnitude of the perturbation is changed so that
(PP) varies from 0.25 to 1.00, Figure lla shows
the error vs M when epithermal modes are ne-
glected. Figure 1lb shows the error vs M when
epithermal modes are included. It is seen from
these figures that the reciprocal asymptotic
period is estimated to within ten percent in all
cases when five spatial harmonics are retained.
The inclusion of epithermal modes decreases the
error by about two percent. Finally, note that the
convergence to the exact period is best for the
smallest perturbation (PP) = 0.25, and worst for
the intermediate perturbation (PP) = 0.50. From
many results of this type we conclude that the
NMA is particularly suitable either for slow tran-
sients with periods of the order of seconds or for
fast transients with periods of the order of milli-
seconds or less.

Figure 12 is similar to Fig. 11 except that here
Perturbation II is analyzed. Epithermal modes
are included and the magnitude of the perturbation
corresponds to (PP) = 0.75. It is seen from
Fig. 12 that at least eight spatial harmonics must
be retained to estimate the reciprocal asymptotic
period to within ten percent of its exact value.

From the results of Figs. 11 and 12 we conclude
that for an accurate representation of a step
transient initiated by a perturbation of width Ax,
at least M +1 harmonics must be retained in the
NMA, where M is the spatial harmonic whose
wavelength is less than 2Ax.

The second series of calculations illustrates
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Fig. 11. Percent error in the estimated asymptotic
period as a function of the order of the NMA. Data
correspond to Perturbation I applied to Reactor II.

the application of the NMA to the analysis of a
power excursion in a reactor model with an in-
herent shutdown mechanism.

A three-region slab reactor, 60-cm thick,
is considered. The nuclear data are given in
Table IV, The power excursion is initiated by a
step increase of the fission cross section in
Region 1, 0 < x < 15 ¢m, Shutdown is introduced
by the change of the thermal absorption cross
section of each region in proportion to the energy
released in the same region. Specifically,

2 = 28 4 9, ELL) for i=1,2,3 ,
v [ ax [lat' NP, ),

region ¢

(27)

1l

Et) (28)

and vy, is the feedback coefficient of the i’th region.
The dynamic equations that describe this reac-
tor model are given by the matrix relation

100

80

60

40

20

0% error line

.Percent error in reciprocal period

N SR TSR NN R SN R S R S
o 2 4 6 8 10 12

M, number of spatial harmonics retained

Fig. 12, Percent error in the estimated asymptotic
period as a function of the order of the NMA. Data
correspond to Perturbation II applied to Reactor II.

aylx,t)

SEr7amk [HoW(x,8) + [ RlYlx,8) + F (29)
where
8 3 N
vla—xDla-oz1 (l—B)vzuZ)/Z A
(74l = n v, LD, 2 - a 0
147 2 ox 2 % 2
BuwZy, BUvZ sy -A_‘

ar = v, [Eal + 2 - (I'B)VE/I] s Gz = Uz[za:z] ’

(1—,8)1)11/62/1 (1-8)1}21/62/2 0
0 0 of ,
Bv, by BUw 62/2 0

(]

il

/1
Y(x,t) = col [N (x,t) , N®(x,8), C(x,8)] ,

3
f = col [0, -, 20 8 EL)N® (x, 1), 0:' ,
=1

(30)

and A; = 1 for x in Region i, and A; = 0 otherwise.

An approximate solution of Eq. (29) is found by

expanding ¥(x,t) in terms of the eigenvectors of
the operator [ Ho, that is,

M 3
Yix,t) = gkz_)lAmk (DY (x) (31)

where
[HO]ka = wmkd/ mk o

The substitute, adjoint weight, and integrate pro-
cedure outlined in Sec. II leads to a set of 3 M
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TABLE IV

Nuclear Constants of the Reactor System
Considered in the Power Excursion Calculation

Parameter Region 1 Region 2 Region 3
width, cm 0to 15 cm [15to 45 cm|{45 to 60 cm
D,, cm 1.69531
D, cm 0.409718
2, em™! 0.016444
T, cm™ 0.0322302 | 0.0340950 | 0.0322302
Taz, €M 0.265827 0.266278 | 0.265827
vEn. em™t (¢t <0) [0.0213296 | 0.0213296 | 0.0213296
vEn, em™' (L2 0) [0.025733 0.0213296 | 0.0213296
vE;2, em™ (£ <0) [0.544678 0.544678 | 0.544678
v, em™ (¢ > 0) [0.65712 0.544678 | 0.544678

2 6.515x 107°} 2.7x 107 | 5.4 x 107°

nonlinear, ordinary differential equations which
may be solved numerically for the coefficients
A,i(t). By considering the solution in different
time ranges, the system of 3M equations can be
effectively reduced to three separate problems,
each involving only M equations. This reduction
is possible because of the fact that the eigenvalues
wmt fall into three distinct clusters of different
magnitudes,

Results obtained for M =3 and M = 4 are shown
in Fig. 13. Superimposed on the same figure are
“exact’’!” results derived by means of a direct
numerical solution of Eq. (29). It is seen from
this figure that the NMA solution for M =4 is in
good agreement with the ‘‘exact’’ results. The
calculational advantages of the NMA are that:
1) less computer time is required if many prob-
lems are to be solved for the same reactor; and
2) it may be more readily extendable to multi-
dimensional systems.

The accuracy of the NMA results for power ex-
cursions can be improved without appreciable
computational effort through use of ¢‘‘correction
modes.”” Correction modes are approximations to
spatial harmonics beyond the M’th and are intro-
duced in an algebraic manner, i.e., in a manner
that does not introduce additional differential
equations. To clarify this idea, consider the ex-
pansion of the solution vector of Eq. (29) to be of
the form

M 3
E Z)Amk t)ll/mk(x) +
m=1 k=1
Q 3
m=M+1 k=1
"M, RADD, ‘“WIGLE-40, A Two-Group, Time-De-

pendent Diffusion Theory Program for the IBM 7040
Computer,’’ IDO-17125, USAEC, Idaho (1965).
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Fig. 13. Volume integral of thermal-neutron density
vs time, for a power excursion calculation.

This form involves 3(Q - M) more coefficients than
Eq. (31). If the additional 3(Q - M) coefficients
were to be computed in the usual manner of the
NMA there would be no savings in computational
effort. The following simplifications, however,
seem to be reasonable for certain problems:
1) spatial harmonics beyond the M’th do not make
appreciable nonlinear contributions because their
amplitude is small; and 2) the prompt jump ap-
proximation dA,,(¢)/dt = 0 can be made for the
prompt thermal-neutron modes when lwm[, | for
m > M 1is large compared with the inverse, initial
asymptotic period. These simplifications are
extremely attractive if the natural modes are easy
to find for spatial harmonics beyond the A ’th.

For the reactor model described by the prop-
erties tabulated in Table IV it is noted that, as m
increases, the spatial shapes of the natural modes
approach those of an equivalent uniform reactor
(i.e., sinusoids). In addition, it is noted that the
spectra of the prompt thermal-neutron eigen-
values, for the nonuniform reactor and its uniform
version, become quite similar as m increases,
Hence, the correction modes for this example may
be taken as the natural modes of the equivalent
uniform reactor. Results obtained using correc-
tion modes for M =3 and M =4 are shown in Fig,
13. In each case, @ = 8. Note that the results for
both M = 3 and M = 4 agree very well with the
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‘““‘exact’”’ results. A summary of results using
different degrees of approximation is given in
Table V.

Finally, it should be noted that the computer
time used by Wigle" with six groups of delayed
neutrons for the calculation from 0 to 18 msec
was 4.8 min, The NMA results for M =4 with four
correction modes required 4.2 min for a calcula-
tion from 0 to 15 msec. Of this time, 2 min were
consumed for the calculation of the natural modes,
0.5 min for the calculation of the necessary inte-
grals appearing in the NMA, and 1.7 min for the
integration of the resultant ordinary differential
equations., Subsequent calculations on the same
reactor would require only the time necessary for
the integration of the differential equations.

TABLE V

Comparison of Calculations of the Asymptotic Period
and the Power Using Different Approximations

Initial Power at
Asymptotic Period t = 10 msec
Calculation T, msec (Arbitrary Units)
WIGLE" 0.504 3.71
Natural Mode
Approximation:
Without Correction
Modes
M=3 0.532 1.70
Without Correction
Modes
M=4 0.509 3.15
With Correction
Modes
M=3 0.505 3.55
With Correction
Modes
M=4 0.505 3.55

IV. CALCULATION OF TWO-DIMENSIONAL
MODES

The purpose of this section is to present pre-
liminary results of calculations of higher order,
two-dimensional natural modes by means of a
‘‘synthesis’’® technique used in conjunction with a
““Stabilized March Technique’’*®, The synthesis
technique consists effectively of reducing an x-
and z-dependent problem to a z-dependent prob-
lem by expanding each x- and z-dependent mode
in a series of products of unknown z-dependent
coefficients, and known x-dependent trial func-
tions. For example, expand the g’th component of

8 R, EDWARDS and K. F. HANSEN, ‘‘The Sta-
bilized March Technique Applied to the Diffusion Equa-
tion,’’ Nucl. Sci. Eng., 25, 58 (1966).
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the prompt thermal-neutron mode of the (m ,%)th
spatial harmonic (#’th harmonic in the x-direc-
tion and #’th harmonic in the z-direction) as

N(g)

mn, p

I
(%,2) = 20 Xpp ©1 (%) Zup (&1 (2) .
i=1

(33)
The substitute, adjoint weight, and integrate pro-
cedure then leads to a set of differential equations
which may be solved for Z,,'¢/’(z) by a numerical
method such as the Stabilized March Technique, A
pair of computer codes, SYNSIG and MUDMO-II,
developed for the construction of modes in this
manner, is described by Foulke.®
‘The preceding technique is used to find natural
modes of the two-dimensional reactor example
shown in Fig, 14, The nuclear data for this
example are given in Table VI, Figures 15 and 16

240
Region 3
180
£ Region 2
© 120
»
60
Region 1
ol
L | | | |
0] 60 120 180 240
z,cm

Fig., 14. Reactor geometry for two-dimensional
mode calculations.

TABLE VI

Nuclear Parameters of a Two-Dimensional Reactor
Parameter Region 1 Region 2 Region 3
Za1, cm™t 0.0322365 0.0340843 0.0322026
T4z, cm™! 0.265828 0.266275 0.265820
VI, em 0.0194903
v, cm™ 0.497707
z,, cm™! 0.0164444
D, cm 1.69531
Dz, cm 0.409718
v1, cm/sec 4,06 X 10°
vz, cm/sec 2.2 x10°

B 0.0064
A, sec™! 0.08
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Fig. 15. Synthesized thermal-neutron component of

the two-dimensional natural mode ¥, » (x,2).

show the thermal-neutron components of the
eigenvectors ¥, (x,2) and ¥a,, (X,2), respec-
tively. The spectrum of the prompt thermal-
neutron eigenvalues w,, , is given in Table VII.
Since there are no exact calculations of two-
dimensional modes, the success of the procedure
outlined above may be judged by considering how
well the orthogonality relations
<1P;,,_p (x,z), lll/rs,p (X,Z) > = Omr Ous (34)
are satisfied. Table VIII presents the results of
testing the orthogonality relations for the example
under consideration. Note that in some cases the

TABLE VII

Spectrum of the Prompt Thermal-Neutron Eigenvalues
of the Natural Modes of a Two-Dimensional Reactor

x index, m
2 index, n 1 2 3 4
1 -416.6 -1036.3 -2829.3 -5681.0
2 -1049.1 -1869.8 | (-3634.)° -6129.8
3 -2592.4 -3603.3 -5391,2 -7804.3
4 -5656.2 -5829.2 -7834.8 | -10126.

®Coincided with extraneous eigenvalue, could not calculate
eigenvector. Changed weighting vector from adjoint eigen-
vector to unit vector to break multiplicity; eigenvalue was
then -3670.
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Fig. 16. Synthesized thermal-neutron component of
the two-dimensional natural mode ¥,, p (%2).

modes are not orthogonal. This means that the
trial functions used to construct either the mode
or its adjoint are not suitable. More experience
with the behavior of two-dimensional modes will
overcome this difficulty.

TABLE VIII

Results of a Check on the Orthogonality of a Number of the
Synthesized Natural Modes of a Two-Dimensional Reactor
Normalized Value of < ¥%, (x,2), ¥ns,p (x,2) >

n,s
m,r 1,1 1,2 1,3 1,4 2,1 2,2 23 24
1,1 1.0 + + + + + o+ +
1,2 + 1.0 + + + + + 0,083
1,3 + + 1.0 + 0.011 4 4 +
1,4 + + + 1.0 + + o+ o+
2,1 + + 0.217 + 1.0 + o+ +
2,2 + + + -0.034 4+ 1.0 + +
2,3 [-0.031 + + + + + 1.0 +
2,4 + -0.096 + + + + + 1.0

+ Denotes that the magnitude is less than 0.01.
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Another difficulty involved with the construc-
tion of two-dimensional natural modes is that the
synthesis technique introduces extraneous eigen-
values, The synthesis technique transforms a
two-dimensional problem with K -dependent vari-
ables into an approximate, one-dimensional prob-
lem with J.K-dependent variables, where J is the
number of trial functions used in Eq. (33).
Therefore, the approximate, one-dimensional
problem has J- K eigenvalues associated with the
(m,n)’th spatial harmonic, (J - 1)K of which are
extraneous. This difficulty can be overcome. For
example, MUDMO-II can be used to scan the
entire range of eigenvalue magnitudes so as to
locate the eigenvalues roughly. After a few of the
modes are determined, a pattern of relative
behavior is recognized which allows the actual and
extraneous eigenvalues to be separated. Difficul-
ties caused by extraneous eigenvalues can be quite
serious if an actual and an extraneous eigenvalue
are so close in magnitude that they appear as a
multiple eigenvalue. MUDMO-II cannot calculate
the eigenvectors for multiple eigenvalues. This
situation occurred in the attempt to synthesize
Vaz,p (x,2) for the reactor shown in Fig. 14. The
multiplicity was broken, however, by a change in
the weighting function X3/ (x).

V. CONCLUSIONS

The NMA has been shown to be suitable for a
broad class of kinetic problems and to involve
experimentally verifiable parameters. An experi-
mental procedure is outlined for the verification
of the parameters by means of small signal
oscillation tests. It is shown that the relative
magnitudes of the verifiable parameters are
sensitive functions of the geometrical arrange-
ment of the reactor and are sensitive indicators of
the susceptibility of the neutron density to undergo
shape changes following a localized perturbation.
The same experimental procedure is also used to
interpret subcriticality and stability measure-
ments when the experimental observations are
functions of position and time.

A series of calculations of transients in one-
dimensional reactor models without feedback in-
dicates that the number of spatial harmonics
required for accurate representation of a trans-
ient is a function of the magnitude of the pertur-
bation, and the degree of localization of the
perturbation,

A power excursion in a reactor model with
feedback is calculated with a low-order NMA. The
results compare well with those of independent
calculations which are considered to be exact.
The introduction of correction modes gives an
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increase in accuracy of a low-order NMA without
a corresponding increase in computational effort.
One of the major difficulties associated with
the NMA, namely, the calculation of multidimen-
sional natural modes, is attacked by means of a
synthesis technique. The preliminary results
indicate that such calculations are feasible,

APPENDIX A

Consider a reactor at very low power described
by the equation
[Hol s (x) + Solx) =0 (A.1)
The vector Yo (x) is a K-vector containing the
K -dependent variables of the system as com-
ponents; [Hg| is a K X K matrix operator governing
the relationships between variables; and So(x) is a
vector containing external sources. Let the re-
actor be excited by a localized, thermal-neutron
absorber which oscillates sinusoidally with fre-
quency w. The kinetic behavior of the perturbed
system is described by the equation

[Ho(x)] (1) + [R]¥ (x,1) exp(juwl)
dY(x,t)

+SO(x): of

(A.2)
where it is to be understood that only the real
parts of complex numbers will be considered. The
perturbation matrix operator [%] contains only one
element which gives the magnitude and location of
the oscillating thermal-neutron absorber.

After the perturbation is introduced, the mean
value Yo(x) of Y(x,t) will be different from Y¥4(x)
of Eq. (A.1). In addition, the operator [ Ho| will be
slightly different from [Hé] of Eq. (A.1). One
reason for the differences is that the introduction
of the perturbation mechanism must be accom-
panied by a small change in reactor properties to
keep the reactor critical. Another reason' for the
differences is that the product of [2] exp(jw¢) and
[W(x,8 - Yolx)] causes the power level to increase.
This increase, which must be balanced by a change
in [Hé], is neglected. It is assumed that the
variation of ¥(x,¢) from its mean value Yo(x), is
so small that [%] ¢¥(x,t) may be replaced by
[#] Yolx). Now, if it is assumed that the solution
vector may be expanded in a finite series of the
natural modes of [Ho] as

V(x,2) = Yolx)

M K
+ 20 20 A explfwt) ¢,u(%x)

m=1 k=1

19A, A. WASSERMAN, ‘‘Contributions to Two Prob-
lems in Space-Independent Nuclear Reactor Dynamics,”’
IDO-16755, USAEC, Idaho (1962).
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then the usual substitute, adjoint weight, and
integrate procedure yields the following expres-
sion for the expansion coefficients:

Amk(jw) = cme(Jw - wmk)_l for
nf:l,Z,...,M, and
R=1,2,... K,

if it is assumed that
[HolWol(x) + Solx) =0 .

The constant ¢, is given by the relation

<Y (%), [h]Wo(x) >
<1P",‘,,k (x), ‘pmk (x) >

The reading R;(¢) of the i’th thermal-neutron
detéctor is composed of an oscillating portion
v;(jw) exp(jwt), superimposed upon a time-
averaged detector reading RY. The oscillating
portion is given by

r; (Jw) exp(jwt) =

M K
< 00,2(%) 22 20 Au(w) exp(jwl) Nyi® (x) >

m=1 k=1
K

= 2 4

=1 k=1

d”’k(” Amk(jw) 9Xp(jw1') s

2

diy = <vy02(x) N%, (%) >

The function o,?(x) is the response function of the
#’th thermal-neutron detector. It depends upon the
size and location of the detector.





