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A space-dependent reactor kinetics approximation, called the Natural Mode 
Approximation (NMA), has been applied to the calculation and interpretation of 
reactor dynamic experiments. The NMA is based on a modal expansion technique 
where the space- and time-dependent reactor variables are approximated by a 
series of products of time-dependent coefficients and space-dependent expansion 
modes. The modes are the eigenvectors of a linear operator derived from the 
complete set of equations describing the reactor system at an initial reference 
condition. A pair of computer codes, MUDMO-II and SYNSIG, are used to syn-
thesize approximate modes in two-dimensional systems without feedback. 

An oscillation test is proposed which may be used to verify key parameters of 
the NMA. The experimental technique is described and applied to both numerical 
and actual measurements. In addition, it is shown how a natural mode expansion 
may be used to interpret standard dynamic experiments when the observations are 
functions of space and time. 

The results of calculations of kinetic problems are compared with those of 
independent calculations which are considered to be exact. Good agreement is 
established. It is shown that the flux tilting following a localized perturbation is 
a sensitive function of the relative magnitudes of the measurable parameters of 
the NMA. The novel idea of "correction modes'' is introduced which increases 
the accuracy of a low-order NMA without appreciable increase in computation 
time. 

I. INTRODUCTION 

The purpose of this paper is to indicate how the 
Natural Mode Approximation (NMA) may be used 
in thermal reactors that experience non-negligible 
flux shape changes: 1) to interpret oscillation 
tests; and 2) to calculate a number of practical 
transients. 

Different approximations for dynamic space-
dependent reactor problems are reviewed by 
Kaplan et al.,1 which also includes a very long list 
of publications. For a given accuracy, we feel 
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Army Engineer Reactor Group, Ft. Belvoir, Virginia. 

XS. KAPLAN, A. F. HENRY, S. G. MARGOLIS, and 
J. J. TAYLOR, "Space-Time Reactor Dynamics," Proc. 
Intern. Conf. Peaceful Uses At. Energy, P/271, Vol. 4, 
41 (1964). 

that an approximation is "best " when: 1) it 
involves experimentally verifiable parameters; 
2) it is suitable for a broad class of problems; and 
3) it requires a reasonable computational effort. 
For the problems of interest to this paper, we 
show that the NMA has the above features. 

The NMA is well known from the work of 
several others.2"4 It is derived from an expansion 
of the neutron densities and other dependent 

2R. COHEN, "Some Topics in Reactor Kinetics," 
Proc. Intern. Conf. Peaceful Uses At. Energy, P/629, 
Vol. 11, 302 (1958). 

3S. KAPLAN, "The Property of Finality and the 
Analysis of Problems in Reactor Space-Time Kinetics 
by Various Modal Expansions," Nucl. Sci. Eng., 9, 357 
(1961). 

4A. F. HENRY, "The Application of Inhour Modes to 
the Description of Nonseparable Reactor Transients," 
Nucl. Sci. Eng., 20, 338 (1964). 
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variables in a finite series of products of unknown 
time-dependent coefficients, and known space-
dependent expansion vectors. The expansion vec-
tors are the eigenvectors of a linear operator 
formed from the complete set of equations de-
scribing the reactor system at an initial, refer-
ence condition. The eigenvectors are called the 
natural modes of the reference system. The 
associated eigenvalues, which appear prominently 
in the equations describing the unknown time-
dependent coefficients, are called the parameters 
of the NMA. 

The contributions of this paper are the pro-
posal and development of the following ideas: 
1) key parameters (particular natural mode eigen-
values) of the NMA may be verified experimentally 
by means of small signal oscillation tests; 2) the 
verifiable parameters are sensitive indicators of 
the flux tilting which follows a localized perturba-
tion; 3) natural modes can be used to interpret 
meaningfully the readings of a number of neutron 
detectors when each reading depends upon the 
position of the detector; and 4) the NMA can be 
used to calculate efficiently a number of important 
reactor transients. In addition, it is shown that 
two-dimensional natural modes may be constructed 
by means of a "synthesis" technique.5 

The paper is organized as follows: First, 
the formalism of the NMA is reviewed briefly. 
Second, the NMA is used to interpret oscillation 
tests. Some important parameters of the NMA 
are experimentally verified. Measurements of 
subcriticality and stability are interpreted mean-
ingfully in the presence of spatial effects. Third, 
a correlation is given which relates the measur-
able parameters to flux tilting. Fourth, the NMA 
is applied to the calculation of fast transients with 
and without feedback. Finally, preliminary results 
of calculations of two-dimensional natural modes 
are presented. 

II. REVIEW OF THE FORMALISM 
OF THE NMA 

For simplicity, the review of the formalism of 
the NMA is presented for a reactor without feed-
back. For more complete discussions, see Refs. 
3, 6, 7, and 8. 

5S. KAPLAN, "Some New Methods of Flux Syn-
thesis," Nucl. Sci. Eng., 9, 22 (1962). 

6L. R. FOULKE, "A Modal Expansion Technique for 
Space-Time Reactor Kinetics," PhD Thesis, Massa-
chusetts Institute of Technology, Dept. of Nuclear En-
gineering, Cambridge, Massachusetts (August 1966). 

7D. WIBERG, "Optimal Feedback Control of Spatial 
Xenon Oscillations in a Nuclear Reactor," PhD Thesis, 
California Institute of Technology, Pasadena, California 
(1964). 

8S. KAPLAN and J. B. YASINSKY, "Natural Modes 
of the Xenon Problem with Flow Feedback - An 
Example," Nucl. Sci. Eng., 25, 430 (1966). 

t In the framework of the G-group diffusion -
theory approximation, the space- and time-depen-
dent behavior of a reactor, with I groups of 
delayed-neutron precursors and without feedback, 
is described by the matrix relation 

= [#(*,*)] *(x,t) + s(x,t) , (l) 
dt 

where 

\l/(x,t) = col [N,C] , 

N - col [N(1)(x,t),Ni2)(x,t)9.. . , N(G)(x,t)] , 

and 

C = col[c(1)(x,t),Ci2)(x,t),. .. , C (/) (*,*) ] . 

The g
9

th neutron-group density is denoted by 
N(g)(x,t), and the i9th precursor density is denoted 
by C(/) (x,t). The K x K matrix operator [H(x,t)] 
consists of all the production and destruction 
operators, and K = G + I. The column vector 
S(x,t) contains all external sources. 

One method of finding an approximate solution 
of Eq. (1) is to proceed as follows: Consider a 
steady-state reference condition for which Eq. ( l ) 
becomes 

[Ho(x)]^o(x) + S0(x) = 0 . (2) 

Define the eigenvectors of the eigenvalue 
problem 

[H0(x)] tymk(x) = umktymkix) (3) 

as the natural modes of Eq. (2). Expand the 
solution vector \js(x,t) into a finite series of the 
form 

^(x,t) = S S Amk(t)^mk(x) . (4) 
m= l yfe=l 

Substitute this series into Eq. (1), multiply both 
sides of the equation by M • K solutions of the 
adjoint relation 

[//*(*)] ** (x) = u>B/**•(*) , (5) 

and integrate3 each result over all x. The result 
of this procedure is a set of M - K , coupled, 
ordinary differential equations which may be 
written as 

= diag [GO] A + [ P ] A+S , (6) 

aThe Dirac bracket notation < A, B > is used to 
denote integration of the scalar product of the row 
vector AIt, and the column vector B over the volume of 
the reactor. The notation \< AB > is used to denote 
integration of the product of two scalars A and B over 
the volume of the reactor. 
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where 

A = col [Au(t), A i a ( t ) , • . . ,AMK(t)] , 

S = col [ S u ( f ) , S ia ( f ) , • • • , S * K ( f ) ] , 

Smk(t) = <**mk(x), S(X,t)>/<*lk{x), +mk(x)> , 

and diag [w] is an M • K x M- K diagonal matrix 
with elements wmk. The perturbation matrix [ P ] 
has elements 

_ <4>%(x), [H(x,t)-H0(x)) \l/mk(x)> 

where 

H = (n-l)K + j for n = 1,2,. .. ,M and j = 1,2 ,...,K 

and 

y = (m-l)K+k for m= 1,2,. .. ,M and£= 1, 2 , . . . ,/f. 
In the derivation of Eq. (6) it has been assumed 
that 

<ty%(x), tymk(x)> = 0 f o r wmk± u>nj , 

<tytk(x), iKk(x)> * 0 , 

and that tymk(x) and satisfy the same homo-
geneous boundary conditions as ty0(x) and ty%x), 
respectively. 

The result of the above procedure is a set of 
equations [Eq. (6)] which is referred to as the 
ATth order NMA. These equations are solved for 
the expansion coefficients Amk(t). The Amk(tYs are 
then used in Eq. (4) to construct an approximate 
solution. In essence, a problem [Eq. ( l ) ] with 
K -dependent and four independent variables is 
reduced to another with Af• K dependent and one 
independent variables. The motivation is that the 
latter problem may be easier to solve numerically. 

There exist computer codes for the calculation 
of natural modes of one-dimensional reactor 
systems both with7'9 and without6'10"12 xenon feed-
back. The problem of calculation of natural modes 
of two-dimensional systems is discussed in Sec. 
IV of this paper. 

To facilitate the developments which follow, it 

9R. L. EWEN, "Calculation of Complex Natural 
Modes for Spatial Xenon Oscillations and Comparison 
with a Simple Approximation," Trans. Am. Nucl. Soc., 
5, 179 (1962). 

10R. L. EWEN, "MULE - A FORTRAN Program for 
the Calculation of Three Types of Overtone Modes," 
WAPD-TM-369, Westinghouse Electric Corp. (1963). 

n C. A. PRESKITT and E. A. NEPHEW, "Transients 
Induced by Pulsed Neutron Sources in Multiregion Re-
actors," ORNL-TM-993, Oak Ridge National Laboratory 
(1965). 

12T. GOZANI, "The Concept of Reactivity and its 
Application to Kinetic Measurements," Nukleonik, 5, 
55 (1963). 

is desirable to summarize the properties of the 
one-dimensional solutions of Eq. (3), and, thus, 
introduce a terminology which may be used to 
discuss the natural modes. It is well known1'4'12 

that, for a reactor with G neutron and I precursor 
groups, the natural modes come in clusters of 
K{= G +/). The K modes of a cluster have com-
ponents of similar, but not necessarily identical, 
shape. In general, the modes become more 
oscillatory in space as the cluster index m in-
creases. For this reason, the modes of the my\h 
cluster are referred to as the modes of the m'th 
spatial harmonic. Figure 1 represents a typical 
eigenvalue spectrum of the first five spatial 
harmonics of a nonuniform, one-dimensional, 
thermal-reactor model with two neutron (G = 2) 
and one precursor (/ = l ) groups. The following 
features of this figure are generally true. The I 
algebraically largest eigenvalues associated with 
the ra'th spatial harmonic are of the order of the 
precursor decay constants. They are called the 
delayed-neutron eigenvalues and the correspond-
ing modes are called the delayed-neutron modes. 
The remaining G eigenvalues associated with the 
m'th spatial harmonic have larger magnitudes. 
They are called the prompt-neutron eigenvalues 
and the corresponding modes are called the 
prompt-neutron modes. As the index m increases, 
the delayed-neutron eigenvalues approach the 
valuesb - A.*, i - 1,2, . . . , /, while the prompt-
neutron eigenvalues approach -oo. 

Of the G prompt-neutron eigenvalues of the 
m9th spatial harmonic, there is one of algebrai-
cally largest magnitude. This eigenvalue may be 
associated with a relaxation time of the asymptotic 
energy distribution of neutrons in the ra'th har-
monic. It is called the prompt thermal-neutron 
eigenvalue of the m 'th spatial harmonic and it is 
denoted by the subscript k = p. Each comp is a 
sensitive function of the thermal-neutron group 
constants and the geometrical arrangement of the 
core materials. It is shown subsequently that for 
small values of m, the wmp'& may be: l ) measured 
by means of a nonhazardous oscillation test; and 
2) used to indicate the susceptibility of a reactor 
to flux tilting. 

The other (G - l ) prompt-neutron eigenvalues 
associated with the m'th spatial harmonic are 
called prompt epithermal-neutron eigenvalues. 
They effectively represent the decay constants of 
energy transients in the multigroup approximation. 
They are of no particular interest to this paper. 

bFor a reactor model with J feedback variables it is 
possible to distinguish / delayed-neutron eigenvalues 
plus J feedback eigenvalues for each m. The behavior 
of the eigenvalues as a function of m in this case is 
beyond the scope of this paper. 
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Fig. 1. Eigenvalue spectrum of a nonuniform, slab reactor in which two neutron and one precursor groups 
are considered. 

III. APPLICATIONS 

III.l. Interpretation of Oscillation Tests 

Measurement of the Prompt Thermal-Neutron 
Eigenvalues comp. 

Let a reactor, operating initially at steady 
state, be perturbed by a small, localized, thermal-
neutron absorber which oscillates sinusoidally at 
a frequency u>. After some time, during which the 
transients die out, the neutron density also oscil-
lates sinusoidally at the same frequency as, but 
different amplitude and phase than, the absorber. 
The oscillating portion of the reading of a ther-
mal-neutron detector, placed at location xi9 is of 
the form Re[ri(ju)) exp(ju)t)]. If this behavior is 
assumed to be describable by M spatial harmonics 
of the NMA, then it is readily shown (See Appendix 
A) that 

M K 

£ cfckAmk(ju)) , (7) 
m=l k=l 

dfk = <v2af {x)N(:i{x)> , (8) 

and 

Amk(jw) = cmkijio - umkri , (9) 

where crj2) (x) is the response function of the Pth 
thermal-neutron detector, N^l (x ) is the thermal-
neutron component of the k 'th natural mode of the 
ra'th spatial harmonic, t>2 is the thermal-neutron 

speed, and cmk is a constant whose value depends 
on the size and the location of the oscillator. 

Equation (7) can be rewritten in the form 

r;(ju) = Tj d^p Amp(ju)) + eNi(jw) + e^ju)) , (10) 
m-1 

where 
M 

ZNi(ju) = S dmp Amp(joo) , (ll) 
1 

and 
M K 

ei(ju>) = £ S d(:\ A j j o j ) . (12) 
m~1 k=l 

khp 

In the form of Eq. (10), r*(jco) may be interpreted 
as consisting of three parts: 

1) The contributions from the prompt thermal-
neutron modes with the N algebraically largest 
eigenvalues, u)mp, m = 1, 2, . . . , AT. 

2) The contribution eNi(jw) from the remaining 
M-N, non-negligible p r o m p t thermal-neutron 
modes. If the detector is small so that 

G f { x ) = o f s i x - x ) , (13) 

then eN i { ju) ) is an oscillatory function of the de-
tector location X{, and has at least N zero cross-
ings. 

3) The contribution e{{jai) from all the delayed 
and all the prompt epithermal-neutron modes. 
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For oscillation frequencies that are larger and 
smaller than the magnitude of the delayed and 
prompt epithermal-neutron eigenvalues, respec-
tively, this contribution is negligible in thermal 
reactors. 

In general, for the frequency range specified 
above, if N small detectors are placed at the 
locations at which the sum esiiju)) + ei(jco) is very 
small, the oscillatory readings of these detectors 
are given to a good approximation by the relations 

N 

Tjiju)) * £ dmp Amp(ju)) f o r i = 1, 2 , . . . , N . (14) 
m-1 

These relations can also be written in matrix 
form as 

r ^ [v ]A f , (15) 

where Y = col[nO'co),. . . , YN(jw)], A' = col[AiP(ju>\ 
. .. , ANp(ju))]9 and [v] is an N x N matrix with 
elements Uim = d{mP. If N{2)p for m = 1, 2, . . . , N , and 
oy for i = 1 ,2 , . . . ,N are known, Eq. (15) can be 
solved for Af in the range of oscillation frequency 
under consideration. Thus, the prompt thermal-
neutron eigenvalues u)mp for m - 1, 2, . . . ,N, may 
be estimated from the break frequencies of the 
Amt)iju))'s [see Eq. (9)]. 

The maximum number of u>mP's, which can be 
verified experimentally in this fashion, is limited 
by the maximum frequency comax of the oscillator. 
The reasons are that ujmp approaches -<*> as m 
increases, and that the verification of a particular 
ojmp presumes that it is within the range of oscil-
lation frequency of the absorber. Consequently, if 

I , (16) 

then any number N of detectors smaller than or 
equal to D can be used to derive good estimates of 
an equal number of the algebraically largest, 
prompt thermal-neutron eigenvalues. 

The best locations for N detectors [i.e., those 
at which the sum eNi(ju)) + eiijoo) equals zero for 
i = 1, 2, . . . , N] cannot be specified exactly in a 
complex reactor core. There are, however, ap-
proximate techniques which can be used to derive 
reasonable results. For example, as a first 
guess, the AT detectors may be located at the zeros 
of the lowest order, non-negligible spatial har-
monic in eNi(jw). Specifically, if it is found that 

then a first estimate of Nump 's may be obtained 
by locating N detectors at Xi's for which 

< x , P U - ) = 0 . (17) 

These first estimates are often quite good but can 
be further improved. Results from many ex-
amples, which could be analyzed both exactly and 
by means of the NMA, indicate that the estimates 

improve if the detectors are displaced a small 
distance away from the zeros of N^ p(x) in the 
direction towards the oscillator.0 On the basis of 
this experience, the following rule of thumb has 
been found to be helpful: To verify the tomp9s 
associated with N prompt thermal-neutron modes, 
displace N detectors a small distance away from 
N zeros of the lowest order, non-negligible mode 
in ejviO'o?) in the direction towards the oscillator. 
These locations are satisfactory when the phase 
of the inferred A lp(jco) approaches -90° for f re-
quencies U) » \ (j)ip I. 

Results 

The procedure outlined above has been applied 
both to "numerical experiments" and to actual 
measurements. 

For one of the numerical oscillation tests, a 
uniform slab reactor of extrapolated width a = 
200 cm is considered. A plane thermal-neutron 
absorber is oscillated at position x0 = a/4 over the 
frequency range of 10 to 1000 rad/sec. Table I 
shows the nuclear constants of this reactor along 
with the calculated, prompt thermal-neutron eigen-
values of the first four spatial harmonics. It 
follows that only three (N = 3) of these eigenvalues 
can be verified experimentally with the available 
frequency range of the oscillator. 

For this simple example, the natural modes 
are sinusoidal functions of position. In addition, 
the space- and frequency-dependent neutron den-
sity may be evaluated from a closed form solution; 

TABLE I 

Nuclear Constants and Eigenvalues for the Numerical 
Oscillation Test 

Nuclear Constants 

width = 200 cm £ r = 0.03776 cm"1 

Sfl2 = 0.02775 cm"1 Sai = 0.0 cm"1 

vZf2 = 0.0282 cm"1 v?,fi = 0.0 cm"1 

D2 = 0.804 cm Dx = 1.313 cm 
Vi = 2.48 x 105 cm/sec vy = 4.06 x 10s cm/sec 

0 = 0.0074 X = 0.0138 sec 

Inferred Eigenvalues, sec-1 

Spatial Detectors at 
Harmonic Actual Zeros of Fifth Detectors Displaced 
Index, m Eigenvalue, sec-1 Harmonic Towards Oscillator 

1 -49.1 -48.9 -49.2 
2 -355 -348 -358 
3 -850 -788 -860 
4 -1514- - - - -

cThe zero crossings of e^iiju)) + ei ( jw) are displaced 
a small distance from those of N f f ^ p (x) in the direction 
toward the oscillator. Small distance here means a 
distance smaller than that between the oscillator and the 
zero of Nj$*ltp (x) closest to the oscillator. 
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hence, we may calculate exactly the response of a 
detector at any location. Figure 2 indicates the 
calculated responses r ^ j o f detectors located at 
Xi = 2a/5, x2 = 3<z/5, and x3 = 4<z/5. The locations 
of these detectors correspond to the zeros of the 
fifth spatial harmonic which is the lowest order, 
non-zero harmonic in e3i(ju)). The constant ĉ p is 
zero because of the location of the oscillator. 

If the readings shown in Fig. 2 are analyzed 
according to Eq. (15), the three coefficients Amp{j(jo) 
depicted in Fig. 3 are inferred. Fitting these 
Amp(ju))'s, by relations of the form given by Eq. 
(9), results in three u)mp's which are listed in 
Table I. Note that good results are obtained for 
the first two eigenvalues. It is seen from Fig. 3, 
however, that the phase of A l p ( jco) at high f re -

Oscil lation frequency,a> , r a d / s e c 

Fig. 2. Magnitude and phase of the oscillating 
portion of the reading of z'th detector in a numerical 
oscillation test. Magnitude is normalized with respect 
to the steady-state reading of the detector. 

Oscillation frequency , w , rod/sec 

Fig. 3. Comparison of exact behavior of expansion 
coefficients with that inferred from the results shown in 
Fig. 2. Detectors are located at zeros of the lowest 
order, non-negligible mode, not included in the NMA. 

quencies is below its proper asymptotic value of 
-90°. To alleviate this error, the rule of thumb is 
used and all detectors are moved towards the 
oscillator by a distance of 10 cm. Repetition of 
the preceding analysis shows that the asymptotic 
phase of the new Alp(jcv) is indeed closer to -90° 
and that the inferred eigenvalues are as shown in 
the last column of Table I. These estimates of the 
camp's are in excellent agreement with the known 
theoretical values. 

Foulke's thesis6 contains additional results on 
numerical oscillation tests performed with both 
uniform and nonuniform reactors. 

Experimental data from oscillation tests per-
formed on the NORA reactor13 are shown in Fig. 4. 
If the readings of detectors B, D, and E are 

13P. T. HANSSON and L. R. FOULKE, "Investigations 
in Spatial Reactor Kinetics," KR-43, NORA 3, Inst, of 
Atomenergi, Kjeller, Norway (1963). See also: Nucl. 
Sci. Eng., 17, 528 (1963). 
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Oscillation frequency , ca /2w, cycles/sec 

Fig. 4. Experimental data from the oscillation test 
on the NORA13 reactor. 

analyzed according to Eq. (15), three frequency-
dependent modal expansion coefficients are de-
duced and they are shown in Figs. 5 and 6. Note 
that the coefficient of the first (fundamental) 
spatial harmonic is defined to include also the 14 

Oscil lat ion frequency , w , rad / sec 

Fig. 5. Comparison of theoretical magnitude of 
expansion coefficients with that inferred from the data 
shown in Fig. 4. 

Fig. 6. Comparison of theoretical phase of expansion coefficients with that inferred from the data shown in 
Fig. 4. 
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delayed-neutron precursor contributions, that is, 
14 

Aiiju) =Aip(jio) + £ Alk(jw) . (18) 
k=i 

This is done here because the first prompt 
thermal-neutron eigenvalue is of the same order 
of magnitude as the delayed-neutron eigenvalues. 
Superimposed on Figs. 5 and 6 are the theoretical 
results for Ai(jw), A2p{jw), and A3p(jw). The 
natural modes used in this analysis are calculated 
by means of the computer code MUDMO-II,6 which 
was written for the purposes of this work. 

The NORA experiments were not designed to 
measure the (jomp's of higher spatial harmonics. 
For this reason, the maximum frequency of oscil-
lation is not high enough to allow estimation of the 
oomp9s. Nevertheless, it is seen from Figs. 5 and 6 
that the inferred behavior of the expansion coeff i-
cients is reasonable. It should be noted that use 
of other expansion modes, such as Bessel func-
tions for example, would require a much larger 
number of terms for the representation of the 
same experimental data on the NORA reactor. 

TABLE II 

Information Concerning the 240-cm Slab Reactor 
Considered in the Subcriticality and Stability Examples 

Nuclear Constants 

width = 240 cm 
S*2o = 0.2661376 cm"1 

i/S/2 = 0.497857 cm"1 

D2 = 0.409718 cm 
v2 = 2.2 x 105 cm/sec 
j3 = 0.0064 

2 r 

StflO 

Dx 
Vi 
X 

= 0.0164444 cm"1 

= 0.033515 cm"1 

= 0.0194962 cm"1 

= 1.69531 cm 
= 4.06 x 106 cm/sec 
= 0.08 sec 

For Subcriticality Example: = 0.2678515 cm" 

For Stability Example: 

y2t'2iV2 ) (x) = 2.55 x 1010 (cm3 sec X)'1 

YI V\ N0(1) (X) =5.25x10® (cm3 sec°C)_1 

g = 9.42 x 10"12 cm3 - °C/fission, Tx = 0.244 sec, 
r2 = 0.73 sec, r3 = 0.21 sec. 

0.1 - —I — I— I—i —I- M I I ! I I I I ~l 1—TT 

I r,(jcj)l/R°i 

Interpretation of Measurements for 
Subcriticality and Stability. 

When spatial dynamic effects are important, 
the interpretation of some standard kinetic ex-
periments may be ambiguous and the results may 
be grossly in error if only a single neutron 
detector is used. The error may be reduced 
through use of more than one detector and through 
analysis of the detector readings by means of a 
natural mode expansion. 

Subcriticality 

A measure of subcriticality of the fundamental 
spatial harmonic is given by CJIp which is often 
inferred from an oscillation test. To see the 
errors which may arise in such a test, consider 
the following numerical experiment. A uniform 
slab reactor of extrapolated width a = 240 cm is 
made subcritical by a uniform adjustment of the 
thermal-absorption cross section. The nuclear 
constants of this reactor are given in Table II. 

Figure 7 shows the computed responses r{(j a>) 
of three plane, thermal-neutron detectors located 
at xi = a/4, = a/2, and x3 = 3a/4, induced by a 
plane, oscillating, thermal-neutron absorber at 
x0 = a/6. These r^ 'aO's are found from a closed-
form solution of the space- and frequency-depen-
dent neutron density. Included in the figure are 
also the eigenvalues wip derived either from the 
quasi-break frequency of each w) individually, 
or from the break frequency of the 

Axpijoo) [= Cip(ju) - ajip)"1] 

o.— 
en r2(ju>)l/R|_ 

Detector 

~ 0.01 - 1 -907.1 
- 2 - 6 5 4 . 5 

H-
o _ 3 - 5 9 0 . 9 
(D - All - 6 7 4 . 3 
"O 
3 Actual Value - 6 7 4 . 1 
c 
cn 
o Actual fundamental mode coef ' ^ ( j a j J l / R j 

Fundamental mode coef inferred 
from all detectors 

i i i I i i i i i I I I i i 11 I I I I 

100 1000 

Oscil lat ion frequency , cu , rad/sec 

Fig. 7. Comparison of actual magnitude of funda-
mental mode coefficient with that indicated either by 
individual detector readings or that inferred from all 
detector readings. Oscillation test on a subcritical 
reactor. 

which results from the analysis of all the ri ( ju)) 's 
simultaneously according to Eq. (15). These re-
sults indicate the error that may be introduced 
by spatial effects in subcriticality measurements 
and the reduction of the error through the use of a 
natural mode expansion. The natural modes in 
this simple example are sinusoids. 

Stability 

Small amplitude oscillation tests are often per-
formed on reactors to estimate the power range 
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for which the reactor is asymptotically stable.14 

Attention must be paid to spatial effects to avoid 
erroneous interpretations of the results. To illus-
trate this point, consider the reactor model of the 
preceding example and assume that feedback is 
introduced via the group absorption cross sec-
tions. Specifically, 

v^alN{l){x9t) = v&aioN^KxJ) + y1v1Ni0l\x)el(xtt)9 

(19) 

v2Za2N<2)(x,t) = v2Za20Ni2)(x9t) + Y2v2N{02)(x)62(x9t), 

(20) 

where 

Qi(x,t) = T(i)(x,t) - Tf (x) for i = 1, 2 . 

The two incremental temperatures satisfy the 
relations 

Z^pti = g v ^ f ^ K x j ) + gv2Xf2N<2>(x,t) 

- ^ [ei(x,t)-e2(x,t)] (21) 

and 

dSzixJ) = J. [ 0 i { X f f ) _ ^ ^ _ J. _ 
dt T2 T3 

The values of the feedback parameters are listed 
in Table II. 

Figure 8 shows the computed responses r^joo) 
of three plane, thermal-neutron detectors located 
at Xi = a/4, x2 = a/2, and x3 = 3a/4, induced by a 
plane, oscillating, thermal-neutron absorber at 
x0 = a/6. These r/(jco)9s are found from a closed-
form solution of the space- and frequency-depen-
dent neutron density. Note in the figure that each 
result depends upon the location of the detector. 

The useful quantity for asymptotic stability 
analysis is the frequency-dependent coefficient 
of the fundamental spatial harmonic. This coef-
ficient can be inferred from the measured r^jwYs 
by means of an analysis in terms of a natural 
mode expansion and it is shown in Fig. 8. Note the 
substantial phase difference between the phase of 
each of the r^ j u>)'s and that of the coefficient of 
the fundamental mode. The natural modes used in 
the analysis of this simple example are sinusoids. 

Ill. 2. Correlation Between Flux Tilting and 
Prompt Thermal-Neutron Eigenvalues 

The susceptibility of a thermal reactor to flux 
tilting is a function of the prompt thermal-neutron 
eigenvalues. To see this clearly, consider the 

14E. P. GYFTOPOULOS, "Theoretical and Experi-
mental Criteria for Nonlinear Reactor Stability," Nucl. 
Sci. Eng., 26, 26 (1966). 

Fig. 8. Magnitude and phase of fundamental mode 
coefficient inferred from three detector readings. Os-
cillation test on a reactor at power. 

following example reactors whose properties are 
described in Table III. Reactor I is typical of a 
small, uniform, light-water-moderated assembly. 
Reactor II is typical of a large, uniform, light-
water-moderated assembly. Reactor IIId is simi-
lar to Reactor II except for "decoupling" which is 
introduced through the addition and removal of 
absorbing material in the central and from the 
outer regions, respectively. 

Figure 9 shows the eigenvalue spectra of these 
three reactors. Note that although the prompt 
thermal-neutron eigenvalue coi^of the first spatial 
harmonic ((3/A of point kinetics) is essentially the 

dReactor III is virtually identical to the 240-cm 
slab reactor described in Refs. 15 and 16. 

15E. P. GYFTOPOULOS, "Point Reactor Kinetics and 
Stability Criteria," Proc. Intern. Conf. Peaceful Uses 
At. Energy, P/270, Vol. 4, 3 (1964). 

16J. B. YASINSKY and A. F. HENRY, "Some Nu-
merical Experiments Concerning Space-Time Reactor 
Kinetics Behavior," Nucl. Sci. Eng., 22, 171 (1965). 
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TABLE I I I 

Nuclear Constants of Reactors I , I I , and I I I 

Reactor III 

Parameter Reactor I Reactor II Region 1 Region 2 Region 3 

width, cm 60. 240. 60. 120. 60. 
cm"1 0.033706 0.033515 0.0322365 0.0340843 0.0322026 
cm" 0.266184 0.2661376 0.2658284 0.2662750 0.2658203 

vllfi, cm"1 0.0213143 0.0194962 0.0194962 
vllf2, cm'1 0.544286 0.497857 0.497857 
Sr, cm"1 0.0164444 0.0164444 0.0164444 
Di, cm 1.69531 1.69531 1.69531 
D2 , cm 0.409718 0.409718 0.409718 
V\, cm/sec 4.06 x 106 4.06 x 106 4.06 x 106 

v2, cm/sec 2.2 x 105 2.2 x 105 2.2 x 105 

0.0064 0.0064 0.0064 
sec"1 0.08 0.08 0.08 

- I 0 6 

A 
O 

0.0286 
0.268 
0 . 4 9 0 

Im (cd|k) 

Re(( j jk ) 

/ / / 
' ^-lo^ox'-

i /'/ 
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Prompt epithermal-neutron 
eigenvalues 

J L 

Im (cl> 3 k ) 

t Re(cu 3k' 

Im (cU4k) 

Re(a;4k) 

Im (ct»5k) 

- I 0 5 - I 0 4 - I 0 3 - I 0 2 -X 

Eigenvalue, w m k , sec"1 

Fig. 9. Eigenvalue spectra of Reactors I, II, and III. 

Re(a;5k) , 

16 

25 

same for all three reactors, the wmp's for m > 1 
are considerably different. In particular, note that 
the ratio u)ip/u)2p is largest for Reactor III and 
smallest for Reactor I. 

Many calculations of transients following step 
perturbations applied to each of Reactors I, II, and 
III were performed by means of the NMA. The 
perturbation in each calculation is a step removal 
of thermal-neutron absorber from the same frac-
tional, localized, reactor region. 

A tilt parameter e is defined by the relation 

6 = (ulp/u>2P)(PP) , (23) 

where (PP) is the perturbation parameter given 
by the relation 

( p p ) = J _ <iV*(2)U) v26Xa2(x) NQ2*(X)> 
{ wip <N*{1)(x) N«>(x) + N*i2)(x) Nl2\x)> 9 

(24) 

and is the step change in the thermal-
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neutron cross section. The neutron group den-
sities iV (0l)(*) andiV<02) (x), and the adjoint densities 
N*(1)(x) and N$(2)(X) are the unperturbed distri-
butions. The perturbation parameter equals the 
reactivity (in dollar units) that would be calculated 
for a fundamental-mode, space-independent ki-
netics approximation. 

A tilt index r(t) is defined by the relation 

£ A2k(t) 
T(t) = , (25) 

with the conditions that the thermal-neutron com-
ponents of tyik(x) and are normalized so 
that 

NgKa/2) = Ng\a/4) = 1.0 for k = 1, 2,. . . K . 
(26) 

The asymptotic tilt index ra equals r(°©), and it is 
a measure of the amplitude of the second spatial 
harmonic over that of the first (fundamental) 
spatial harmonic when the asymptotic flux shape 
corresponding to the step perturbation is achieved. 

The results of the step transients mentioned 
above are shown in Fig. 10. They are given in 
terms of the asymptotic tilt index ra vs the tilt 
parameter e. The perturbations are introduced 
over the region 0 ^ x ^a/4, and five modes (M= 5) 
are retained in the NMA. It is seen from this 
figure that the susceptibility of these example 
reactors to flux tilting, as measured by the index 
r a 9 correlates rather well with e. It follows, 
therefore, that, for localized perturbations which 

1 1 1 111 1 1 1 I I 1 111 1 1 1 1 1 I I 1 1 

x Reactor 1 = 
~ o Reactor 
~ a Reactor m Y 

// 
/ / 

- / / 
/ A /t 

/ << ' z 
/ / -

: * X 
x' All calculations based on _ • 

— • the NMA with M = 5 

/ -

All perturbations in 

x' 
region 0 < x < a / 4 

1 11 I I I 1 1 I i 11 i n l l 1 I l 11 l l 
O.OI 0.1 1.0 

Tilt parameter , € = ( p p ) w l p / a ; 2 p 

Fig. 10. Correlation between asymptotic tilt index 
and tilt parameter. 

would be equivalent from the point of view of per-
turbation theory, the larger the ratio ooip/u)2p9 the 
larger the flux tilting. 

III. 3. Calculation of Step Transients With and 
Without Feedback 

The first series of calculations is for the pur-
pose of illustrating how the number of modes, 
required for an accurate representation of tran-
sients in reactors without feedback, depends on: 
l ) the magnitude of the perturbation parameter 
(PP); and 2) the degree of localization of the step 
change in the absorption cross section. Two per-
turbations are considered for Reactor II. Pertur-
bation I is applied in the region 0 ^ x ^ a/4, and it 
is representative of changes with a low degree of 
localization. Perturbation II is applied in the 
region a/8 ^ * ^ a/4, and it is representative of 
changes with a high degree of localization. The 
"exact" solution in each case is determined 
numerically by means of the computer code 
MUDMO-II.6 

Figure 11 illustrates the error in the calcu-
lated, reciprocal asymptotic period as a function 
of the number M of spatial harmonics retained in 
the NMA when Perturbation I is analyzed. The 
magnitude of the perturbation is changed so that 
(PP) varies from 0.25 to 1.00. Figure 11a shows 
the error vs M when epithermal modes are ne-
glected. Figure l ib shows the error vs M when 
epithermal modes are included. It is seen from 
these f i g u r e s that the reciprocal asymptotic 
period is estimated to within ten percent in all 
cases when five spatial harmonics are retained. 
The inclusion of epithermal modes decreases the 
error by about two percent. Finally, note that the 
convergence to the exact period is best for the 
smallest perturbation ( PP ) = 0.25, and worst for 
the intermediate perturbation (PP) =0.50. From 
many results of this type we conclude that the 
NMA is particularly suitable either for slow tran-
sients with periods of the order of seconds or for 
fast transients with periods of the order of milli-
seconds or less. 

Figure 12 is similar to Fig. 11 except that here 
Perturbation II is analyzed. Epithermal modes 
are included and the magnitude of the perturbation 
corresponds to ( P P ) = 0.75. It is seen from 
Fig. 12 that at least eight spatial harmonics must 
be retained to estimate the reciprocal asymptotic 
period to within ten percent of its exact value. 

From the results of Figs. 11 and 12 we conclude 
that for an accurate representation of a step 
transient initiated by a perturbation of width Ax, 
at least M + 1 harmonics must be retained in the 
NMA, where M is the spatial harmonic whose 
wavelength is less than 2A*. 

The second series of calculations illustrates 
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Fig. 11. Percent error in the estimated asymptotic 
period as a function of the order of the NMA. Data 
correspond to Perturbation I applied to Reactor II. 

the application of the NMA to the analysis of a 
power excursion in a reactor model with an in-
herent shutdown mechanism. 

A three-region slab reactor, 60-cm thick, 
is considered. The nuclear data are given in 
Table IV. The power excursion is initiated by a 
step increase of the fission cross section in 
Region 1, 0 ^ A; ^ 15 cm. Shutdown is introduced 
by the change of the thermal absorption cross 
section of each region in proportion to the energy 
released in the same region Specifically, 

= for i = 1,2,3 , (27) 

Ei(t) = v2 f dxf f l dtf Ni2)(xr, r) , (28) 

region t 

and y£ is the feedback coefficient of the i'th region. 
The dynamic equations that describe this reac-

tor model are given by the matrix relation 

0 2 4 6 8 10 12 

M, number of spatial harmonics retained 

Fig. 12. Percent error in the estimated asymptotic 
period as a function of the order of the NMA. Data 
correspond to Perturbation II applied to Reactor II. 

dt 
[Ho\xp{ x, t ) + [ h ] t y { x , t ) + / , (29) 

where 

["J 

3 3 vt — — - ( l -p)v2vZ f 2 

9 7-k 9 r\ 
V 2 d x 2 ~ d x " a 2 ° 

1 dx 1 dx 

ViEr 

PVii/Zf! (3V2VZ/2 -X 

a?! - v, [Lal + - (1 -(3)vZfl\ , a2 - v2[La2\ , 

( l - p h ^ d S / i ( 1 - / 3 ) v 2 v 5 Z f 2 0 

[h]= 0 0 0 

Mx,t) = c o l [ N i l ) ( x , t ) , N i 2 ) ( x , t ) , C(x,t)] , 

/ - col 0, -v2 S ^i7iEi(t)Ni2)(x9t)9 0 
i= 1 

(30) 
and A/ = 1 for * in Region i, and A/ = 0 otherwise. 

An approximate solution of Eq. (29) is found by 
expanding in terms of the eigenvectors of 
the operator [#0 ] , that is, 

M 3 

* ( x , t ) = T j T jA m k ( t ) t y m k ( x ) , (31) 

where 

[ H o = Wmk^ mk 

The substitute, adjoint weight, and integrate pro-
cedure outlined in Sec. II leads to a set of 3 M 
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TABLE IV 

Nuclear Constants of the Reactor System 
Considered in the Power Excursion Calculation 

Parameter Region 1 Region 2 Region 3 

width, cm 

Di, cm 
D2, cm 
Er, cm 

cm"1 

£<72, cm-1 

i/S/,. cm"1 (t <0) 

i/2/x, cm"1 (t > 0) 

vX/2, cm"1 {t <0) 

i/S,2, cm"1 (/ > 0) 

yi 

0 to 15 cm 15 to 45 cm 45 to 60 cm width, cm 

Di, cm 
D2, cm 
Er, cm 

cm"1 

£<72, cm-1 

i/S/,. cm"1 (t <0) 

i/2/x, cm"1 (t > 0) 

vX/2, cm"1 {t <0) 

i/S,2, cm"1 (/ > 0) 

yi 

1.69531 

0.409718 
0.016444 

width, cm 

Di, cm 
D2, cm 
Er, cm 

cm"1 

£<72, cm-1 

i/S/,. cm"1 (t <0) 

i/2/x, cm"1 (t > 0) 

vX/2, cm"1 {t <0) 

i/S,2, cm"1 (/ > 0) 

yi 

0.0322302 

0.265827 

0.0213296 

0.025733 

0.544678 

0.65712 

6.515 x 10"6 

0.0340950 

0.266278 

0.0213296 

0.0213296 

0.544678 

0.544678 

2.7 x 10"6 

0.0322302 

0.265827 

0.0213296 

0.0213296 
0.544678 

0.544678 
5.4 x 10"6 

nonlinear, ordinary differential equations which 
may be solved numerically for the coefficients 
Amk(t). By considering the solution in different 
time ranges, the system of 3M equations can be 
effectively reduced to three separate problems, 
each involving only M equations. This reduction 
is possible because of the fact that the eigenvalues 
u),„k fall into three distinct clusters of different 
magnitudes. 

Results obtained for M - 3 and M - 4 are shown 
in Fig. 13. Superimposed on the same figure are 
"exact"1 7 results derived by means of a direct 
numerical solution of Eq. (29). It is seen from 
this figure that the NMA solution for M = 4 is in 
good agreement with the "exac t " results. The 
calculational advantages of the NMA are that: 
1) less computer time is required if many prob-
lems are to be solved for the same reactor; and 
2) it may be more readily extendable to multi-
dimensional systems. 

The accuracy of the NMA results for power ex-
cursions can be improved without appreciable 
computational effort through use of "correction 
modes." Correction modes are approximations to 
spatial harmonics beyond the M9th and are intro-
duced in an algebraic manner, i.e., in a manner 
that does not introduce additional differential 
equations. To clarify this idea, consider the ex-
pansion of the solution vector of Eq. (29) to be of 
the form 

M 3 

ty(x,t) = D T^Amk (t)tymk(x) + 
m=l k=l 

Q 3 

+ S TJ Amk{t)tymk{x) . (32) m=M+l k=l 

17M. RADD, "WIGLE-40, A Two-Group, Time-De-
pendent Diffusion Theory Program for the IBM 7040 
Computer," IDO-17125, USAEC, Idaho (1965). 

Prompt thermal and Prompt thermal and 
epithermal modes epithermal plus 

"correction" modes 

Fig. 13. Volume integral of thermal-neutron density 
vs time, for a power excursion calculation. 

This form involves 3 (Q - M) more coefficients than 
Eq. (31). If the additional 3 ( Q - M ) coefficients 
were to be computed in the usual manner of the 
NMA there would be no savings in computational 
effort. The following simplifications, however, 
seem to be reasonable for certain problems: 
1) spatial harmonics beyond the M9th do not make 
appreciable nonlinear contributions because their 
amplitude is small; and 2) the prompt jump ap-
proximation dAmk(t)/dt = 0 can be made for the 
prompt thermal-neutron modes when loompl for 
m > M is large compared with the inverse, initial 
asymptotic period. These simplifications are 
extremely attractive if the natural modes are easy 
to find for spatial harmonics beyond the M9th. 

For the reactor model described by the prop-
erties tabulated in Table IV it is noted that, as m 
increases, the spatial shapes of the natural modes 
approach those of an equivalent uniform reactor 
(i.e., sinusoids). In addition, it is noted that the 
spectra of the prompt thermal-neutron eigen-
values, for the nonuniform reactor and its uniform 
version, become quite similar as m increases. 
Hence, the correction modes for this example may 
be taken as the natural modes of the equivalent 
uniform reactor. Results obtained using correc-
tion modes for M= 3 and M = 4 are shown in Fig. 
13. In each case, Q = 8. Note that the results for 
both M = 3 and M = 4 agree very well with the 



432 FOULKE AND GYFTOPOULOS 

"exact" results. A summary of results using 
different degrees of approximation is given in 
Table V. 

Finally, it should be noted that the computer 
time used by Wigle17 with six groups of delayed 
neutrons for the calculation from 0 to 18 msec 
was 4.8 min. The NMA results for M = 4 with four 
correction modes required 4.2 min for a calcula-
tion from 0 to 15 msec. Of this time, 2 min were 
consumed for the calculation of the natural modes, 
0.5 min for the calculation of the necessary inte-
grals appearing in the NMA, and 1.7 min for the 
integration of the resultant ordinary differential 
equations. Subsequent calculations on the same 
reactor would require only the time necessary for 
the integration of the differential equations. 

TABLE v 

Comparison of Calculations of the Asymptotic Period 
and the Power Using Different Approximations 

Calculation 

Initial 
Asymptotic Period 

T, msec 

Power at 
t = 10 msec 

(Arbitrary Units) 

WIGLE17 0.504 3.77 

Natural Mode 
Approximation: 

Without Correction 
Modes 
M = 3 0.532 1.70 

Without Correction 
Modes 
M = 4 0.509 3.15 

With Correction 
Modes 
M = 3 0.505 3.55 

With Correction 
Modes 
M = 4 0.505 3.55 

IV. CALCULATION OF TWO-DIMENSIONAL 
MODES 

The purpose of this section is to present pre-
liminary results of calculations of higher order, 
two-dimensional natural modes by means of a 
"synthesis"5 technique used in conjunction with a 
"Stabilized March Technique"18. The synthesis 
technique consists effectively of reducing an i -
and £-dependent problem to a £-dependent prob-
lem by expanding each x- and z-dependent mode 
in a series of products of unknown >2-dependent 
coefficients, and known x-dependent trial func-
tions. For example, expand the g-'th component of 

18D. R. EDWARDS and K. F. HANSEN, "The Sta-
bilized March Technique Applied to the Diffusion Equa-
tion, " Nucl. Sci. Eng., 25, 58 (1966). 

the prompt thermal-neutron mode of the (m ,n)'th 
spatial harmonic (m'th harmonic in the x-direc-
tion and ra'th harmonic in the £-direction) as 

/ 
Kgn]p ( * , * ) = S Xmp'^Hx) Znp <*/>(*) . 

(33) 
The substitute, adjoint weight, and integrate pro-
cedure then leads to a set of differential equations 
which may be solved for Znp{£'i) (z) by a numerical 
method such as the Stabilized March Technique. A 
pair of computer codes, SYNSIG and MUDMO-II, 
developed for the construction of modes in this 
manner, is described by Foulke.6 

The preceding technique is used to find natural 
modes of the two-dimensional reactor example 
shown in Fig. 14. The nuclear data for this 
example are given in Table VI. Figures 15 and 16 

2 4 0 r 

180 -

£ 
120-

X 

60 -

0 L 

I I I I I 
0 6 0 120 180 2 4 0 
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Fig. 14. Reactor geometry for two-dimensional 
mode calculations. 

TABLE VI 

Nuclear Parameters of a Two-Dimensional Reactor 

Parameter Region 1 Region 2 Region 3 

Dai, cm" 1 

2*2, cm" 1 

0.0322365 

0.265828 

0.0340843 

0.266275 

0.0322026 

0.265820 

vl)fi, cm" 1 

v%f2, cm" 1 

E r , cm" 

Di, cm 

D2, cm 

t>i, cm/sec 

v2, cm/sec 

X, sec-1 

0.0194903 

0.497707 

0.0164444 

1.69531 

0.409718 

4.06 X 10® 

2.2 X 105 

0.0064 

0.08 

Region 3 

Region 2 

Region 1 
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Fig. 15. Synthesized thermal-neutron component of 
the two-dimensional natural mode ^ (x,z). 

show the thermal-neutron components of the 
eigenvectors (x,z) and ty22,p (x,z), respec-
tively. The spectrum of the prompt thermal-
neutron eigenvalues comntP is given in Table VII. 

Since there are no exact calculations of two-
dimensional modes, the success of the procedure 
outlined above may be judged by considering how 
well the orthogonality relations 

< tf/* 
T mn,p 

(34) 

are satisfied. Table VIII presents the results of 
testing the orthogonality relations for the example 
under consideration. Note that in some cases the 

T 1 1 1 1 1 1 1 1 1 r 

240 

240 

Fig. 16. Synthesized thermal-neutron component of 
the two-dimensional natural mode p (x»z )* 

modes are not orthogonal. This means that the 
trial functions used to construct either the mode 
or its adjoint are not suitable. More experience 
with the behavior of two-dimensional modes will 
overcome this difficulty. 

TABLE VII 

Spectrum of the Prompt Thermal-Neutron Eigenvalues 

of the Natural Modes of a Two-Dimensional Reactor 

z index, n 

x index, m 

z index, n 1 2 3 4 

1 -416.6 -1036.3 -2829.3 -5681.0 
2 -1049.1 -1869.8 (-3634.)a 

-6129.8 
3 -2592.4 -3603.3 -5391.2 -7804.3 
4 -5656.2 -5829.2 -7834.8 -10126. 

aCoincided with extraneous eigenvalue, could not calculate 
eigenvector. Changed weighting vector from adjoint eigen-
vector to unit vector to break multiplicity; eigenvalue was 
then -3670. 

TABLE Vm 

Results of a Check on the Orthogonality of a Number of the 
Synthesized Natural Modes of a Two-Dimensional Reactor 

Normalized Value of < (x^z), $?nstp (x^z) > 

\ n,s 
1,1 1,2 1,3 1,4 2,1 

CM
 

cvT 2,3 2,4 

1,1 1.0 + + + + + + + 
1,2 + 1.0 + + + + + 0.083 
1,3 + + 1.0 + 0 . 0 1 1 + + + 
1,4 + + + 1.0 + + + + 
2,1 + + 0.217 + 1.0 + + + 
2,2 + + + -0.034 + 1.0 + + 
2,3 -0.031 + + + + + 1.0 + 
2,4 + -0.096 + + + + + 1.0 

+ Denotes that the magnitude is less than 0.01. 
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Another difficulty involved with the construc-
tion of two-dimensional natural modes is that the 
synthesis technique introduces extraneous eigen-
values. The synthesis technique transforms a 
two-dimensional problem with K-dependent vari-
ables into an approximate, one-dimensional prob-
lem with J>K-dependent variables, where J is the 
number of trial functions used in Eq. (33). 
T h e r e f o r e , the approximate, one-dimensional 
problem has J- K eigenvalues associated with the 
(m,n)'th spatial harmonic, (J - 1 )K of which are 
extraneous. This difficulty can be overcome. For 
example, MUDMO-II can be used to scan the 
entire range of eigenvalue magnitudes so as to 
locate the eigenvalues roughly. After a few of the 
modes are determined, a pattern of relative 
behavior is recognized which allows the actual and 
extraneous eigenvalues to be separated. Difficul-
ties caused by extraneous eigenvalues can be quite 
serious if an actual and an extraneous eigenvalue 
are so close in magnitude that they appear as a 
multiple eigenvalue. MUDMO-II cannot calculate 
the eigenvectors for multiple eigenvalues. This 
situation occurred in the attempt to synthesize 
^32 ,p(x,z) for the reactor shown in Fig. 14. The 
multiplicity was broken, however, by a change in 
the weighting function X%{pg'j)(x). 

V. CONCLUSIONS 

The NMA has been shown to be suitable for a 
broad class of kinetic problems and to involve 
experimentally verifiable parameters. An experi-
mental procedure is outlined for the verification 
of the parameters by means of small signal 
oscillation tests. It is shown that the relative 
magnitudes of the verifiable parameters are 
sensitive functions of the geometrical arrange-
ment of the reactor and are sensitive indicators of 
the susceptibility of the neutron density to undergo 
shape changes following a localized perturbation. 
The same experimental procedure is also used to 
interpret subcriticality and stability measure-
ments when the experimental observations are 
functions of position and time. 

A series of calculations of transients in one-
dimensional reactor models without feedback in-
dicates that the number of spatial harmonics 
required for accurate representation of a trans-
ient is a function of the magnitude of the pertur-
bation, and the degree of localization of the 
perturbation. 

A power excursion in a reactor model with 
feedback is calculated with a low-order NMA. The 
results compare well with those of independent 
calculations which are considered to be exact. 
The introduction of correction modes gives an 

increase in accuracy of a low-order NMA without 
a corresponding increase in computational effort. 

One of the major difficulties associated with 
the NMA, namely, the calculation of multidimen-
sional natural modes, is attacked by means of a 
synthesis technique. The preliminary results 
indicate that such calculations are feasible. 

APPENDIX A 

Consider a reactor at very low power described 
by the equation 

(x) + S o(x) = 0 . (A . l ) 

The vector tyo (x ) is a /C-vector containing the 
/f-dependent variables of the system as com-
ponents; [#o] is a K x K matrix operator governing 
the relationships between variables; and S0(x) is a 
vector containing external sources. Let the re-
actor be excited by a localized, thermal-neutron 
absorber which oscillates sinusoidally with f re-
quency co. The kinetic behavior of the perturbed 
system is described by the equation 

[H0(x)]xls(x,t) + \h]*(x,t) exp ( j u t ) 

+ S o i x ) = d - ^ , (A.2) 

where it is to be understood that only the real 
parts of complex numbers will be considered. The 
perturbation matrix operator [h] contains only one 
element which gives the magnitude and location of 
the oscillating thermal-neutron absorber. 

After the perturbation is introduced, the mean 
value &o (x) of ty(x,t) will be different from tyo{x) 
of Eq. (A. l ) . In addition, the operator [ # 0 ] will be 
slightly different from [Ho] of Eq. (A. l ) . One 
reason for the differences is that the introduction 
of the perturbation mechanism must be accom-
panied by a small change in reactor properties to 
keep the reactor critical. Another reason19 for the 
differences is that the product of [/z] exp { j u t ) and 
[ty(x,t) - tyoix)] causes the power level to increase. 
This increase, which must be balanced by a change 
in [Ho], is neglected. It is assumed that the 
variation of ty(x,t) from its mean value if/o(x), is 
so small that [h] ty(x,t) may be replaced by 
[h] if/0(*). Now, if it is assumed that the solution 
vector may be expanded in a finite series of the 
natural modes of [i70] as 

= * 0(x) 
M K 

+ Z ) E Amk{joo)eMju)t)^mk{x) , 
m=l k=1 

19A. A. WASSERMAN, "Contributions to Two Prob-
lems in Space-Independent Nuclear Reactor Dynamics," 
IDO-16755, USAEC, Idaho (1962). 
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then the usual substitute, adjoint weight, and 
integrate procedure yields the following expres-
sion for the expansion coefficients: 

Arnkfju) = C m k ( j w ~ Umk)~l f o r 

m = 1, 2, . . M, and 

k = 1,2, . . K, 

if it is assumed that 

[ f f o ] ^ o ( * ) + So(x) = 0 . 

The constant cmk is given by the relation 

_ <»**(*), o(x) > 
Cmk — 

<;//* (x), (x) > 

The reading Ri(t) of the Vth thermal-neutron 
detector is composed of an oscillating portion 
Tjijoo) exp(ju)t), superimposed upon a time-
averaged detector reading The oscillating 
portion is given by 

r- {joo) exp(jut) = 

M K 

<v2d^{x) E S Amk(ju>) exv(jut)N,J»(x) > 
m- I k = l 

M K 

= Z) S dmk{i) Amk(jw) exp(jwt) , m-1 k~1 

where 

dVk~= <vio?(x) N%(x)> . 
The function o}2)(x) is the response function of the 
Vth. thermal-neutron detector. It depends upon the 
size and location of the detector. 




