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by applyiog & small modulating signal or by switching,
using an electromagnetic field or plasma injection.

FUTURE POSSIBILITIES

In large power applications for space (above 1,000 kWe),
the nuclear thermionic system appears to have advantages
over a vapour cycle turbine system, partly because of its
inherent compactness.

In terrestrial nuclear power systems thermionic conver-
sion is superior to either the magnetohydrodynamic
(Mup) generator or the thermoelectric system for power
plant topping. With fossil power, however, the MHD sys-
tem may be a more attractive topping technique.

Extensive undersea applications, both small power aond
large power, still await development. For this use the
thermionic converter is substantially more efficient than
the thermoelectric system.

BIBLIOGRAPHY. S.L.500, Direct Energy Conversion (1968),
a modern text dealing with all aspects of direct energy con-
version, devices, comparison, and long-range prospects, in-
cluding an extensive bibliography; s.N. LEVINE (ed.) Selecled
Papeys on New Techniques for Energy Conversion (1961), an
overall survey and collection of important papers on progress
raade to 1960; E. BLUR ard J.H. INGOLD, “Thermionic Energy
Conversion,” in ¢.w. sUTTON (ed.), Direct Energy Conver-
sion, pp. 239-335 (1969), a discussion of recent surveys,
emphasizing basic theories of plasma physics and solid-state
pbysics; and G.C, SZEQO and J.B. TAYLOR (eds.), Space Power
System Engineering (1966), a general survey including com-
parison of various devices, selection and rapge of application,
and costs for space emissions.

For information on recent devclopments, see the Proceedings
of the Intersociety Energy Conversion Engineering Confer-
ence (annual).

(S.L.S.)

Thermodynamics, Principles of
Thermodynamics is that part of physical science that js
concerned with the conditions that material systems may
assure and the changes in conditions that may occur
either spontaneously or as a result of interactions be-
tween systems, including interactions such as heat, which
cannot be described in terms of mechanics, It is basic to
the distinction between mechanics and thermodynamics
that according to mechanics all the energy of a system in
any state is convertible to work, whereas according to
thermodynamics only a fraction of the energy of a system
in most states is convertible to work without other effects.
The scope of thermodynamics has been steadily broaden-
ing since early in the 19th century as a result of a better
u_n?crstanding that has grown up of its underlying prin-
ciples.

The word thermodynamics was derived from the Greek
words rhermé (“heat”) and dynamis (“force”). The
beginnings of the study of thermodynamics are found in
the early 19th century in the study of the motive power
of heat; that is, the capability of hot bodies to produce
mechanical work. These early studies revealed several
underlying principles, the most important of which ‘are
the first and second faws of thermodynamics. The discov-
ery and clear enunciation in 1850 of the two laws by
Rudolf Julius Clausius, a German mathematician and
physicist, broadened greally the scope of the subject.
Throughout the rest of the 19th century it developed into
a science, now known as classical thermodynamics, con-
cerned primarily with physical systems in or passing
through stable equilibrium states (the terms systern and
stale are defined below). More recently thermodynamics
has been extended to include physical systems in non-
equilibrivm states.

Altbough the development of thermodynamics, in con-
trast (0 other aspects of the study of physics, has pro-
gressed without regard to the details of the microscopic
structures of physical systems, many scientists, begin-
ning with Ludwig Eduard Bolizmanp, Austrian physi-
cist, have felt that the laws of tbermodynamics might
be justified and explained by means of detailed micro-
scopic descriptions of matter and the laws of mechanics
(classical or quantum) and statistics. Work in this di-
rection has resulted in the development of the branch of

thermodynamics known as statistical thermodynamics,
which, though it plays an important role in the evaluation
of properties of systems, has not achieved one of its
original goals, namely, the derivation of the laws of
thermodynamics from the laws of mechanics. In particu-
lar, it now appears that the second law of thermodynam-
ics is an independent law of nature. This particular point
will be clarified below.

This article is divided into two parts. In the first part,
the general principles of thermodynamics that apply to
any physical system in aoy state—and the corollaries of
these principles—are presented withiout reference to the
detailed microscopic structure of matter. The presenta-
tion, therefore, encompasses both classical and nonequi-
librium thermodynamics. In the second part, the detailed
microscopic structures of physical systems are considered,
and the states of such systems are discussed in the light of
the laws of both quantum mechanics and thermodynam-
ics. Quantum mechanics and thermodynamics are shown
to be complementary parts of physical science, and they
are neither separable nor are they derivable one from the
other.

This article is divided into the following sections:

1. Brief history of classical thermodynamics
11, Basic concepts and laws of thermodynamics
Systems, states, and properties
Work and nonwork
First taw
Second law
Entropy
Stable equlibrium
I11. Simple systems
Stable equilibrium states
Maxwell relaiions
Phase rule
‘Simple one-component systems
Simple multicomponent systeras
Bulk flow
Chemical reactions
Availability functions
Negative temperature
Third law
IV. Force fields
Nounrelativistic effects
Relativistic effects in a gravity field
V. Steady rate processes
Approach to mutual stable equifibrium
Flow of a substance through a barrier
VI. Statistical thermodynamics
Gibbsizn statistics
Quantum statistical thermodynamics
Statistics of grand systems
VII. Concluding remarks

I. Brief history of classical thermodynamics
Temperature is probably the earliest thermodynamic
concept to attain operational status. Early in the 17th
century Galileo, an Italian astronomer and physicist,
devised a thermoscope that was a rudimentary ther-
mometer. Soon thereafter a liquid-expansion thermometer
with bulb and stem, open at the top, was devised in France
by Jean Ray. In 1640 the grand duke FRerdinand II of
Tuscany, ope of the founders of the Florentine Academy
of Experimeat, invented the sealed-stem alcohol ther-
mometer. Such devices were put to clinical (determining
degrees of fever), agricultural (incubation),.and me-
teorological uses.

The purpose of these instruments was to measure a
quantity, that had as yet been undefined, that was more
objective in nature than the physiological sensations of
hotness and coldness. An equilibrium concept was prob-
ably involved; namely, that all bodies exposed to the
same atmosphere would ultimately attain the same de-
gree of hotness or coldness, despite any contrary evi-
dence of the senses. An associated concept of the equi-
librivm concept was that temperature is a driving poten-
tial that causes some influence to pass from one body
to another of unequal hotness or coldress. Thus, when a
body is taken from a warm room to the cold outdoors, its
length begins immediately to decrease.

What was it that passed from one body to another at
different temperatures? Was it temperature itself that was
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transmitted? The Bnglish philosopher and scientist Fran-
¢is Bacon as early as 1620, and the Florentine Academy
a few years later, began to make this distinction between
this influence and temperature; but it was more than a
century before Joseph Black, a chemist at the University
of Glasgow, in 1770 made the distinetion sharply. He
showed by mixing equal masses of pairs of liquids of dif-
ferent temperatures that the temperatures of the two
substances often changed by radically different amounts.
Indeed, a farge change in temperature of a solid body
produced no change at all in the temperature of a mix-
ture of ice and water or of water and steam. Temperature
was not necessarily conserved or even transmilled in the
process.

Black established the science of calorimetry, which led
to the establishment of the caloric theory, based upon
the following postulates: (1) Caloric is an all-pervading
elastic fluid, the particles of which repel one another
strongly, (2) Particles of caloric are attracted by parficles
of matter. (3) Caloric is conserved. (4) Caloric is either
sensible (i.e., change in caloric is associated with change
in temperature) or latent, (5) Caloric has weight. These
postulates were intended to account for expansion and
contraction upon heating and cooling, variations in heat

capacity, calorimetry, latent heat, and gain in weigbt of,

certain metals when heated in air (calcined). Frictional
heating was subsequently accounted for by postulating
that friction reduced the attraction between caloric and
matter.

Toward the end of the 18th century, Count Rum-
ford (Benjamin Thompson), an expatriate American
colonial engineer and physicist, attacked the validity of
the caloric theory on the basis of experiments intended to
show that caloric could be created and, therefore, was
not conserved. More refined measurements on the gen-
eration of heat by frictional work were made nearly 2
half century later by an English physicist, James Prescott
Joule.

Io 1824 Sadi Carnot, a French military engineer, in-
troduced the concept of the heat-engine cycle, a concept
that permitted a sharp distinction to be made between
interactions of systems and changes in their states. Car-
not then proved from conservation of caloric and the
impossibility of the production of work without compen-
sating.changes in the environment that (1) a reversible
cyclic engine is the most efficient possible means of pro-
ducing work from heat, and (2) all reversible cyclic
engines operating between the same pair of heat reser-
vojrs must have the same efficiency. Although the proof,
as it turned out, was invalid, Clausius asserted in 1850
that Camnot’s principle is itself a basic postulate and is,
in effect, what came to be known as the second law of
thermodynamics.

In the decade of the 18405 Joule laid the foundations of
the first law of thermodynamics by showing that the
amount of work required to bring about a given change
of state is independent of the kind of work (whether
mechanical, electric, or magnetic), the rate of doing
work, or the method of delivering it. Joule concluded
that work can be converted into heat, with a fixed ratio
of one to the other, and that heat can be converted into
work. In 1844 Julius Robert von Mayer, a German
physicist, postulated that in a work-producing cycle the
heat introduced must exceed the heat rejected by an
amount proportional to the work. He deduced the value
of the proportionality constant from calculation of cycles
in a gaseous system.

In 1849 Lord Kelvin (Williamx Thomson), an engineer
of Glasgow, pointed out the conflict between the caloric
basis of Carnot's arguments and the conclusions reached
by Joule. In 1850 Clausius resolved the difficulty by stat-
ing explicitly the first and second laws of thermody-
namics. Within a few years Clausius defined and named
the property entropy that is conserved in all reversible
processes, and derived from the second law the principle
of increase of entropy.

The first law was stated by Clausius as follows: In all
cases in which work is produced by the agency of heat, a
quantity of heat js consumed that is proportional to the
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work doae; and, conversely, by the expenditure of an
equal quantity of work, an equal quantity of heat is pro-
duced. He applied this statement to a cyclic process in a
system (2 concept with which he credits Carnot) in order
1o obtain a statement of the first Jaw in terms of work and
heat without reference to alteration in the state of the
system. This led naturally to a definition of the property
energy—called mechanical energy by Xelvin aod con-
tracted to emergy by J. Willard Gibbs, an American
mathematician and physicist. Clausius stated the second
law in the following terms: A passage of heat from a
colder to 2 hotter body cannot take place without
compensation.

Clausius’ paper of 1850 marked the birth of the science
of thermodynamics. Immediately thereafter, Kelvin, who
had previously displayed an jnterest in the theory of tem-
perature, proposed and discussed various definitions for
thermodynamic temperature scales, including the one
that now bears his name, James Clerk Maxwell, a physi-
cist of Edinburgh and Cambridge, averred that two
bodies each equal in temperature to a third body are
equal in temperature to each other. This statement, which
is somefimes called the zeroth law of thermodynamics, is
an jncomplete version of a condition for equilibrium,
subsequently derived by Gibbs and others, that is a corol-
lary of the second law. Maxwell also devised a number of
mathematical relations that now bear his pame. Kelvin
and Max Planck, a German physicist, later restated the
second law, so as to avoid the undefined term compensa-
tion used by Clausius, in terms of the impossibility of a
perpetual-motion machine of the second kind (see be-
low).

In the years 1873-78 Gibbs published three papers that
proved to be definitive as regards the conditions fotr equi-
librium. These papers provided a mathematical method
so orderly and systematic that they have served as the
foundations of physical chemistry and many subsequent
applications of classical thermodynamics.

At the turn of the century, the French mathematician
Henri Poincaré addressed the problem of definition
of temperature and heat and the statement of the first and
second laws. In 1909 Constantin Carathéodory, a Greek
mathematician teaching in Germany, presented an alter- ~
native logical structure in which he shupned use of the
term heat. It i8 closest in method and spirit to that used
here. He states the two laws as follows: First, an exten-
sive property exists the increment in which is the work
received by the system while surrounded by an adiabatic
wall (an adiabatic wall being one that permits only work
interactions between the system and its surroundings).
Second, in the neighbourhood of any prescribed initial
state are states that cannot be reached by an adiabatic
process.

Tn 1918 Walther Nernst, 2 Nobel-Prize winning chemist
of Germany, stated the Nernst heat theorem, treated be-
low, which is essentially the third Jaw of thermodynam-
ics, which rounds out the exposition of classical thermo-
dynamics by providing a common base for values of
entropy for all atoms or molecules that can be formed
from simpler species.

II. Basic concepts and Jaws of thermodynamics
SYSTEMS, STATES, AND PROPERTIES

The description of physical phenomena is based on the
concept of state of a system and the changes of state that
occur either spontaneously or because of interactions
with other systems. Knowledge of the states of a system is
equivalent to knowledge of the outcomes of all possible
observations on the §ystem; namely, observations of all
its properties.

The term system means any identifiable collection of
matter that can be separated from everything else by a
well-defined surface so that changes in everything clse
need not affect the condition of the collection. Examples
of systems mre a number of water molecules confined
within a watertight container, a thermonuclear plasma (a
special collection of charged particles) confined by a suit-
ably designed magoetic field, and the vapour of & solid
within a cavity in the solid.
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Measure-
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The particles of a system may have a finite rest mass, as
do molecules, atoms, or electrons, or zexo rest mass, as
do photons. The number of particles of a system can be
large, as in a cubic centimetre of tungsten, or small, as in
a hydrogen atom. .

At any instant of time a system is in a condition called 2
state, which encompasses all that can be said about the
results of any measurements or observations that can be
performed on the system at that time. The state at a given
instant of time determines the properties of the system., A
property is any quantity the value of which depends upon
the state but not the history of the system. For a given
state the value of a property can be determined by some
type of measurement (some physical operation or t‘est).
When the values of all properties of two states are iden-
tical, the two states are identical; otherwise they are dif-
ferent.

Because of unavoidable quantum mechanical considera-
tions, a simple measurement, no matter how nearly per-
fect, will not vield the precise value for a property. In
general, a very large number of measurements of the
same kind is required to yield the precise value, each
measurement performed on a duplicate of the system in
the given state and each yielding a different result. The
value of a property is defined, therefore, as the sum of
all the results of the measurements of the property
divided by the number of measurements (in other words,
the arithmetic average or expectation value of all the
results of the measurements of the property). It will
be shown below that a state can be described by a set
of wejghting factors, or probabilities, that enter into the
evaluation of all properties.

Although an indefinite number of properties can be as-
sociated with a siate, the values of these properties are
not all independent of each other, The number of inde-
pendent properties is finite and is either small or large,
depending on the type of state in question; that js, on
whether or not it is a stable equilibrium state. The mean-
ing of the terms that define the various types of states will
be given below.

WORK AND NONWORK

An interaction between two systems such that whatever
happens in each of the interacting systems could have
been brought about while the sole effect external to each
system was the change in level of a mass in 2 gravity field
will be defined as work; that is, work is an inferaction that
must satisfy a test: each of the interacting systems is
separately required to expericnce the same changes as in
the actual interaction, but, through alteration of circum-
stances external to that system, the effect ouiside of it is
solely the rise or fall of a mass. If this test can be satisfied
in the case of both systems, then the original interaction
is work.

It can be shown from experimental evidence that the
following interactions conform to the definition just cited
and are, therefore, work interactions: (1) the displace-
men( of a point on the boundary of a system at which
point a force is exerted in the direction of the displace-
ment by another system (this is essentially the defimtion
of work in mechanics, which is less general than the one
given here, which covers interactions other than those
considered in mechanics; the present definition implies
that the force applied on a body- by a stationary force
field, such as gravity or an electrostatic field, results in no
work, even though the body is in motion—for e¢xample,
freely falling); (2) the electromagnetic interactions be-
tween primary and secondary coils of a transformer; and
(3) the exchange of radiation emilted by lasers. Such
radiation consists of wave parlicles, which are in order
relative to each other as contrasted with those, for exam-
ple, from an incandescent lamp, which are randomly ar-
ranged. On the other hand, it can be shown by virtue of
tbe second law that the exchange of radiation between a
hot system and a cold system (such as blackbody radi-
ation) does not conform to the requirement stated in the
definition of work and is not, therefore, a work inter-
action,

Work is one of several distinguishable types of interac-

tion that can occur between two systems. Any jnterac-
tion that is not work will be hereinafter called nonwork.
A special type of nonwork interaction that will be treated
below in detail is 2 heat interaction. In general, an inter-
action is fully specified if the exact sequence of states,
called the path, of each of the interacting systems is
specified. Tn turn, the path of one of the systems and the
interactions that occur specify the process experienced
by the system. In an interaction that satisfies the defini-
tion of work, each system is said to be experiencing an
adiabatic process.

The state and, therefore, the values of the properties of a
system can change either spontaneously or as a result of
interactions with other systems. During changes of state
the values of certain properties are subject to limitations
imposed by the laws of physics. The Limitations imposed
by thermodynamics are consequences of the first and
second laws, which will be stated here in an unusually
general way.

EIRST LAW .

The first Jaw is a stalement of existence of a property
called energy. It is based on the concept of work and can
be stated as follows: For any process involving no effects
external to the system except displacement of a mass
between specified levels in a gravity field, the magnitude
of that mass is fixed by the end states of the system and is
independent of the details of the process. This law has
many implications or corollaries, some of which are as
follows.

1. Uniqueness of work values. By virtue of the first
law a unique number can be assigned to a work inter-
action between two systems. This number is n when n
arbitrarily selected upits of mass are displaced between
two arbitrarily specified levels in a gravity field. The
sign of work is selected positive when work is done by a
system—that is, when the sole external effect would be
the rtise of a weight.

2. Definition of energy. By virtue of the first law, the
work in an adiabatic process depends on the initial and
final, or end, states only. It follows that a property of a
system can be defined, called energy, such that its change
of value between states 4, and A, is equal to the work
Wi involved in an adiabatic process that has A, and 4,
as end states. In terms of symbols, if E; and E, denote
the epergies of states 4, and A, respectively, and W5
the work done in any adiabatic process connecting A, and
Ay, the difference E, — E, is equal to the negative of
Wa, ie.,

E2 - El = -—ng. (1)

Energy is only partially defined by equation (1) because
the diflerence between E,; and E, does not specify the
values of E; and E,. An atbitrary value such as zero,
however, can be assigned to E, of some reference state
A, so that the energies of all other states are fixed by
eguation (1).

It wiil be shown below that by virtue of the second law
of thermodynamics certain interactions that cause change
of energy cannot be Jescribed as work. The correspond-
ing process is, by definition, 2 nonadiabatic process. Be-
cause energy is a property, the energy change associated
with any nonadiabatic process will equal numerically the
work in any adiabatic process between the same end
states,

Because work values are additive, energy js an additive
or extensive property; that is, the emergy of a whole
is equal to the sum of the energies of its parts.

3. Conservation of energy. The magnitude of the
work in an adiabatic process can be positive, negative,
or zero, depending on the end states of the process, but
zero adiabatic work does not necessarily imply identical
end states. An adiabatic zero-work change of state may
occur spontaneously in a system, as, for example, when
an electrical capacitor discharges throngh an internal
resistor. During such a process, equation (1) requires
that the energy of the system remain invariant. This is the
so-called law of conservation of energy, which is a
consequence of the first law of thermodynamics. The
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first law, on the other hand, cannot be deduced from
the Jaw of conservation of energy.

A systern that experiences an adiabatic, zero-work pro-
cess is said to be isolated from all other systems in the
environment.

4. Impossibility of perpetual-motion machine of the first
kind. A perpetual-motion machine of the first kind
(pMM1) 1s any system that undergoes a cycle and has no
external effect except the rise of a weight. The term cycle
(or cyclic process) is defined as a process in which the
initial and final states of the system are identical.

By virtue of the first [aw, the work of an adiabatic cycle
must be equal to zero and, therefore, a PMMI is Hopossi-
ble.

5. The first law and relativity. According to the gen-
eral theory of relativity, the energy E of a system is equal
to the product of its mass m and the square of the speed
of light ¢ in a vacuum, namely,

(2)

By virtue of the first law, the energy E of an isolated
system is conserved. Therefore, equation (2) requires
that the mass m of the system is also conserved, regard-
less of the processes occurring withia the system (such as
chemical reactiops, nuclear reactions, and creation and
annihilation of particles). Moreover, if the energy of a
system is altered by virtue of an adiabatic or nonadiabatic
interaction, the mass of the system must also be altered in
accordance with equation (2). In most applications the
energy transferred to or from a systern is so much smaller
than the total energy mc2 of the system that the change in
mass is negligible.

E = mc2,

SECOND LAW

The second law is a statement of existence of stable equi-
{ibrium states and of special processes that connect these
states to others. More than the first law, the second law
distinguishes thermodynamics from other parts of phys-
ics. Because it has far-reaching implications concerning
the properties and behaviour of matter, it is frequently
invoked in discussions of philosophy as well as in discus-
sions of physics.

Of the many statements of the second law, those of
Clausius, Planck, and Carathéodory are the most notable.
All of these statements imply the existence of a stable
equilibrium state for given values of energy, the number
of particles, and the constraints (see below)—an impli-
cation that is here taken 10 be the essentjal element of the
second law.

The term equilibrium state means a state that does not
change with time while the system is isolated from all
other systems in the environment. Equilibrium state is
sometimes confused with steady state: a steady state does
not change with time even though the system, rather than
being isolated, is interacting with other systems.

If a system is in an equilibrium state, a finite change of
state may be caused by interactions with the environment,
including those that leave no finite net effects in the envi-
ronment. Several types of equilibrium states can be dis-
tingnished. Among these is the stable equilibrium state
for which a finite change of state cannot occur, regard-
less of interactions that leave no pet effects in the en-
vironment,

Consistent with its nature, a system might assume any
one of a set of possible-states, but some of the possible
states may be prohibited by restrictions imposed by the
environment. These restrictions are called constraints.
For example, a given amount of gas may assume any of a
large number of states. The same amount of gas, how-
ever, confined in a gas-tight container of fixed volume is
restricted to states with volumes smaller than or cqual to
the volume inside the container. The possible states of the
system that are consistent with the constraints will be
called allowed states.

The second Jaw can now be stated as follows: Among all
the allowed states of a system with given values of en-
ergy, numbers of particles, and constraints, one aod only
one is a stable equilibrium state. Such a state can be
reached from any other allowed state of the same energy,

Thermodynamics, Principles of 293

numbers of particles, and constraints and leave no effects
on the state of the environment.

The second law cannot be derived from the laws of
mechanics (either classical or quantum}). The second law
asserts that a stable equilibrium state exists for each value
of the energy, whereas in mechanics the only stable state
is that of minimum energy, what is known as the ground
state.

Some corollaries of the second Jaw are as follows.

1. State principle. By virlue of the second law, stable
equilibrium states exist, and a unique stable equilibrium
state corresponds to cach set of values of epergy, num-
bers of particles, and constraints. The uniqueness implies
the following corollary: the value of any property of a
system jn a stable equilibrium state may be expressed as a
function of the values of the energy, numbers of particles,
and constraints only. This corollary is known as the state
principle.

2. Reversible and irreversible processes. A process is
reversible if the system and its environment can be re-
stored to their initial states, except for differences of
smaller order of magnilude than the maximum cbanges
that oceur during the process.

According to the second law, a system may start from
any allowed state and reach the corresponding stable
equilibrium state with no net effect on the environment.
Such a process could not be reversible. For if jt were, the
system, starting from the stable equilibrium state, could
undergo a process that ends at another state with no net
effect on the environment. This conc¢lusion, however, vio-
lates the definition of a stable equilibrium state. It follows
that irreversible processes exist.

3. Impossibility of perpetual-motion machine of the
second kind. 1t can be shown from the definition of a
stable equilibrium state that a system in such a state can
receive but cannot produce work. The plausibility of this
corollary will be evident from the observation that work
can always be used to change from any state to a non-
cquilibrium state by creating relative velocity of parts or
compression to a smaller volume. If a system in a stable
equilibrium state were to produce work, that work could
be uséd to cause the system itself to end in a nonequili-
brium state with no net effects on the environment-—con-
trary to the definition of its initial state.

This corollary applies strictly only to systems of which -

the energy can be increased indefinitely, such as any sys-
tem with particles free to move from one place to another
or any system with translational degrees of freedom.
Most practical systems satisfy this requirement. The gen-
eralization to systems that do not satisfy the requirement,
such as a nuclear-spin system, is discussed below under
Negative temperature.

A perpetual-motion machine of the second kind
(pMM2) is any device that would deliver net work; i.e.,
raise an external weight, while undergoing a cycle and
interacting with a single system in a stable equilibrivm
state. A perpetual-motion machine of the second kind
is a device that permits a system to violate the corollary
stated above and is, therefore, impossible.

Prior to the discussion of the fourth corollary, it is
necessary to define the terms mutual stable equilibrinm
and reservoir. Two systems 4 and B are said to be in
mutual stable equilibrium if the combined system 4B is
in a stable equilibrium state. It can be readily verified that
if two systems are in mutual stable equilibrium, each
system must be in a stable equilibrium state. Moreover, if
the two systems are brought into communication so that
interactions are not prohibited, no interactions will occur
unless the allowed states of at Jeast one of the systems are
altered.

A reservoir R is a special kind of a system that provides
useful reference states for applications of the second law
and satisfies the folfowing conditions: (1) it is closed to
the transfer of rest mass—i.e., its boundaries caonot be
crossed by material particles; (2) its constraints are in-
variant with time—for example, its volume bas the same
value at sll times; (3) it passes through stable equilib-
rium states only; and (4) in the course of finite interac-
tions it remains in mutual stable equilibrivm with a dupli-

Reservoirs
as systems
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cate of itself that experiences no such interactions. An
example of a reservoir is a mixture of solid, liquid, and
vapour water in mutual stable equilibrium while enclosed
in a container.

Figure 1: Production of work by a system A interacling with
a resarvolr A through an intermediate davice X (see text),

4. Work done reversibly by a system in combination
with a reservoir. A system A in combination with a res-
ervoir R can experience a work interaction with other
systems either directly or through an intermediate device
X, or both, while X is undergoing a cyclic process (Figure
1). During this work interactior no rest mass is exchanged
between A and R while the state of 4 changes from A,
to A,. The work done is denoted by Wi for processes in
gencral and by (W), for processes that are reversible.

By virtue of the second law it can be shown that for a
given change of state from 4, to 4,, the woik WE)reo
is the same for all reversible processes and for all res-
crvoirs in muiuai stable equilibrium with each other; that
is, (Wireo is fixed by the end states 4, and 4, More-
over, W cannot gxceed (Wig)reo when both corre-
spond to the same change of stats from Ay to 4.

ENTROPY

The two laws of thermodynamics imply the existence of a
property called entropy that is conserved in all feversible
processes. Its definition is based on anotber property
called available work.

Available work. Because for a given system and res-
ervoir (Wi%),., depends on the end states of the system
only, a property can be defined called available work
(symbolized Q, omega), such that its change of value
between states 4, and 4, is equal to the work (Wﬁ)rw;

that is (using the symbol = to imply definition),

(- )= “(Wﬁ)rav- 3)
It can be easily verified that available work is an additive
or extensive property,

Definition of entropy. Because both energy and avail-
able work are extensive properties, the difference between
them is also anm extensive property. Entropy will be de-
fined as the extensive property S-the change of which, DS,
in a change of state is equal to a positive constant cg
times the difference between the corresponding changes
of energy DE and available work DQ evaluated with
respect to a standard reservoir. This definition can be
written in the form of an equation; i.e.,

DS = cx (DE — D). (4)

The symbol D denotes a cbange, finite or infinitesimal, in
maggitude of the property the symbol of which it pre-
cedes.

The standard reservoir may be chosen to be a mixture of
solid, liquid, and vapour water in mutual stable equilib-
rium, and an arbitrary value, as explained below, may be
assigned to the constant ca. Subject to subsequent consid-
erations, an arbitrary value may be assigned to the entro-

py of an arbitrarily selected reference state of the system.
Thereafter, by means of equation (4), a value may be
found for any state, equilibrium or nonequilibrium, once
values for E and Q have been determined by appropriate
measurements.

Euntropy changes in adiabatic processes. If the process
from state 4, to state 4, in system A is adiabatic—that
is, system A experiences only work interactions—then the
work done by A must, by equation (1), equal the de-
crease in the energy of 4. For a reversible adiabatic
process the work done must, by equation (3), also equal
the decrease in available work, so that the difference
between the decrease in energy and the decrease in avail-
able work must be equal to zero. It follows from equation
(4) that for a reversible adiabatic process the entropy
change of the system is equal to zero; that is, the entropy
is invariapt. Moreover, because the fourth corollary
states that the work for amy adiabatic process cannot
exceed that for the reversible adiabatic process, it follows
that for an adiabatic process in general the entropy
change must be greater tban or at least equal to zero. In
terms of symbols these conclusions can be written as

(DS),2, = 0, for reversible adiabatic processes, (5)

-and

(DS)® > 0, for adiabatic processes (6)

(the symbol > means “greater than,” and > means
“greater than or equal to").

Principle of increase of entropy. When equation (6) is
applied to any process jn an isolated system—i.e., o an
adiabatic process for which tbe work is zero—it becomes

DS (isolated) > 0. (1)

Thus, the entropy of an isolated system may remain con-
stant or mway increase, but a decrease of entropy in an
isolated system is impossible. Because any process in
any system may be conceptually changed to a process in
an isolated system by including in the isolated system all
systems with which the original system interacts, the con-
clusion represented by equation (7) is of great generality.
Equafion (7) is known as the principle of increase of
entiropy, although it may be more strictly said to be the
principle of the impossibility of a decrease of entropy.
According to this principle, whenever any process occurs
in nature, the total entropy of all systems involved in the
process must either increase or, if the process is rever-
sible, remain constant.

STABLR EQUILIBRIUM

Criterlon for stable equilibrium. Changes of state in
an isolated system can occur only until the system reaches
the unique stable equilibrium state consistent with the
given values of energy, numbers of particles, and con-
straints. It follows from equation (7) that the entropy of
the stable equilibrium state must be larger than that of
any equilibrium or ponequilibrium state with the same
values of energy, numbers of different particles, and con-
straints. By the same toKen, a criterion for stable equilib-
rium is that the entropy should be at its maximum value
for fixed values of energy, numbers of particles, and
constraints.

Equations relating properties for stable equilibrinm
states. By virtue of the state principle, the simplest illus-
trations of the laws of thermodynamics are provided by
applications to systems in or passing through stable equi-
librium states. For the properties and the relations be-
tween properties of systems in such states can be ex-
pressed by means of relatively simple mathematical
forms.

The term numbers of particles, as used in the state prin-
ciple, implies certain species of particles. The set of spe-
cies selected must be 2 minimum set in terms of which the
composition of all allowed states may be described. Such
a minimum set of species, which will be unique in tbe
number of members for a given system regardless of the
choice of species to make up the set, is called 2 set of
components.

For a system 4 with given fixed values E of energy,




Ny, Mgy ooy Ny of the numbers of particles of components
1, 2, ..., k of the sct of k components, and B8,, 8,,

., B. of constraints I, 2, ..., s of the set of s con-
straints, the uniqueness of the corresponding stable equi-
librium state implies that the value of any property of 4
in that state must be fully and uniquely determined by
. the given fixed values. Moreover, for all stable equilib-
rium states, the values of a property F may be expressed
as a mathematical function having 2 single value for

each single set of values E, ny, ny, . . ., m, By, By
<y By
F=F(E nyny ooy My, By, By o Ba). (8)

Several relations like equation (8) for several properties
may be manipulated mathecmatically to express the values
of any property as a function of the values of any set of
independent properties of stable equilibrium states. A set
of independent properties is such that the value of each
property in the set can be varied without affecting the
values of the remaining propertics in the set.

Two functions of interest to subsequent considerations
are those that relate the values of entropy S to the values

of E, ny, ng, - ., Nk Bys Boy - - -, B, and the values of
energy E to the values of S, ny, 1y, . . ., Hy By B
., B.. These functions are denoted as
. S=S(E.l nl) n2l"'))1k) ﬂl) 582)’ '!ﬁ') (9)
and
E=E(S, nqng, ooy niy By, Boy vy B (10)

In general, the change of entropy per unit change of
energy, or of any of the numbers of particles, or of any of
the constraints can be evaluated with the help of equa-
tion (9). The same remark applies to energy and equa-
tion (10). Such changes are called partial derivatives and
are used to define a number of useful properties that have
meaning for stable equilibrium states only.

Mutual stable equilibrium of closed systems. If  two
systems A and B that are closed to the transfer of rest
mass taken together constitute a system in a stable equi-
librium state, then the entropy of that system must be at a
maximum for_the value of its energy. One of the conse-
quences of this requirement will be seen from a possible
variation—a conceptual alteration of state consistent
with the description of the system and the constraints
imposed on it and its parts 4 and B by the envircnment
—in which the encrgy of A is increaséd by a small
amount denoted by dE., and that of B is decrcased by
the same amount, while both A4 and B pass through sta-
ble equilibrinm states without changes of values of their
constraints. Tbe entropy of part A is correspondingly
altered by the amount 4S,. This amount can be ex-
pressed as

aSA)
dS, = | == dE4,
4 aEA nG A

in which (3S4/3E.).g5 denotes the rate of change of S
per unit change of E4 as 4 passes through stable equili-
brium states while its numbers of particles (#) and its
constraints (8) are held constant, namely, the paniial de-
rivative of S« with respect to E4. A similar expression can
be written for the entropy change dSs of B, so that
the alteration dS of combined system AB is given by the

expression
aSA) (aSB
= dE4 - { —= dEg. (1
aEA n,B 4 I aEB B B ( )

It can be shown that if the entropy § is to be at a max-
imum for the given fixed value of energy E. -+ E; of the
combined system AB and for both positive and negative
variations dE«, then it is necessary that the two partial
derivatives (2S1/9E4)n.z and (3S3/0Ez)..3 be equal to
each other, naroely,

054) _ (2%) 2
DEA/np 2ER/ g (12

The quantity (25/9E).,g of a system may be thought of
as a potential that governs the tendency of epergy to
pass from one system to another. It can be shown that

as =
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it is a “capturing tendency” in tbat if

254) 5 (252)
QEs/np QER/ng'

then dE, may be greater than zero (energy may pass from
system B to system A) In an actual process but not Jess
than zero (because less than zero would be contrary to
the principle of increase of entropy). Conversely, the
reciprocal quantity (0E/35)x.q may be thought of as an
“escaping tendency.”

Temperature. The potential that governs the flow of
energy is called temperature, A scale of temperature may
be defined in terms of any function of (35/2E)a.g or
(OE/28)n,g that continuously increases or decreases with
either. The scale commonly used in thermodynamics is
the Kelvin scale of temperature. It is denoted by I and

defined as
oE
ra ()
GRYAY: (3

so that 7 becomes a measure of the escaping tendency
of energy. The necessary condition, equation (12), for
mutual stable equilibrium between two systems 4 and B
i1s equivalent to an equality between the temperatures
Tx and Ty of 4 and B, namely,

T, =Ts. (14)

From the observations that the work produced by the
combination of systems A4, X, and R used in the definition
of entropy change is the decrease in energy of the com-
bination AR and that for a reversible process the entropy
of that combinalion is conserved, it is readily shown that
the constant ¢z in equation (4) is cqual to the partial rate
or derivative (0S:/QEr)sg of the entropy of the res-
ervoir R or the inverse of the temperature 7'r of the res-
ervoir. Because the magnitude of constant ¢, is arbitrary, a
selection of a value for it for a simple reservoir fixes not
only the scale of entropy but also that of the Kelvin temp-
erature, By international agreement the value of T for
solid, liquid, and vapour water in mutual stable equilib-
rium is 273.16° K. Among the reasons for the selection
of this five-digit figure is that it causes the temperature
interval between the freezing and boiling points of water
under a pressure of one atmosphere to be almost exactly
100 degrees. If any other reservoir R’ is used with X and
A, the change in entropy found from equation (4) for a
change in state of system A from A, to 4, will be the
same as that found using R if constant ¢z’ is taken equal
to the inverse temperature of the reservoir R’

When the number 273.15 is subtracted from the value
of any given Kelvin temperature T, the result will be the
Celsius temperaturc f#, or t (degrees Celsius) = T —
273.15.

Heat. An argument will now be outlined to prove that
certain nonwork interactions are entirely distinguishable
from work in that no fraction of any one such interac-
tion will satisfy the definition of work.

If two systems A and B are in stable cquilibrium states
and ecach is under constant constraints, but they are not in
mutual stable equilibrium, then an interaction could oc-
cur between them. By virtue of the third corollary of the
second law, any such interaction must be a nonwork
interaction; that is, its effects on at Jeast one system, say
A, could not have been produced while the sole external
effect was the rise of a weight. In general, however, the
effects on 4 could be produced while weights external to
A are raised and, in addition, a change of sfate of B takes
place. It can be shown that maximum work will be deliv-
ercd to the weights if the process is carried out reversibly
and each system passcs through stable equilibrium states.
A reversible cyelic device X (Figure 2) iaterposed be-
tween systems A and B will permit these conditions to be
fulfilled. The device X may produce work, but the re-
versible interactions experienced by A with X and X with
B cannot be work by virtue of corollary 3 of the second
faw. -

For the reversible process just described it can be shown
from the functions that relate energy to entropy and
other independent properties that the work 3W that will

“Captur-
ing” and
“escaping”
tendencies

Entropy
constant
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Meaning
of beat

be delivered to the weights is equal to the negative of
the energy change dE of system A times the ratio (71 —
T»)/T4. This conclusion can be written as an equation;
ie.,

sw=_Ta=Ts ;0 (15)
T4

In equation (15), the symbol 4 denotes an infinitesimal
change of the value of a property, wherecas & denotes an

W

Figure 2: Production of work by a reversible cyclic
device X \hat undergoes reversible nonwork interactions
with sysiems A and B (sge text).

infinitesimal amount of a quantity that is not a property
or state function. Work is not a property of any system,
and therefore §W is the appropriate way 10 indicate an
infinitesimal amount of W,

Because dE, is 2 measure of the magnitude of the inter-
action experienced by 4 with X, equation (15) expresses
the work produced as a fraciion of the magritude of that
interaction. As systems 4 and B approach mutual stable
equilibrium, temperatures 7x and I’z approach equality,
a necessary condition, and the fraction that represents the
ratio of 8W over dE, approaches zero; that is, the work
that can be obfained from the interaction between A and
B through X becomes a vanishingly small fraction of the
magnitude of the interaction. Moreover, it can be shown
that then the interactions between A4 and X and between
X and B are exactly equal, and each may be expressed as
a product of temperature and entropy change T4 dS4 and
Tn dSs.

In the limit, therefore, as T. approaches Ty, the cyclic
device X is no longer required, and the nature of the
interaction approaches something completely distinguish-
able from work. It is this special kind of interaction that
is called heat and depoted by the symbol Q. Moreover,
for any process for which a system passes only through
stable equilibrium states of fixed constraints and for a
change of state corresponding (o changes 45 in entropy
and 4E in energy, the infinitesimal amount of heat (§Q),««
received by the system js given by the relations

(8Q)reo = TdS = dE. (16)

If the interacting systems pass only through stable equi-
librium states, then the process will be reversible.

Heat is not a property of a system. Accordingly, the
symbol 8Q is used to denote an infinitesimal amount of
heat but not the change in value of a property. Nor is
heat contained within a system. Being an interaction, its
magnitude depends upon the arbitrary selection of bound-
aries between systems. .

The term heat i3 used here in a special sense that is quite
foreign to the popular conception of its meaning. A dif-
ferent term might have been unsed were it not for the
historical association of the word heat with thermody-
namics. It will be observed from the context that the word
heat is reserved here for a very special kind of interaction
between systems, which only by virtue of the second Jaw

is entirely distinguishabfe from all other kinds of interac-
tions, including the special kind called work. If a less
restrictive definition had been used, then some of the
relations between heat and entropy given here would not
always hold.

Heat and flow of entropy. When a heat interaction oc-
curs between two systems 4 and B that pass through
stable equilibrium states, the process is reversible. For the
combined system AB the process may be considered an
adiabatic process for which the work is zero, so that, in
accordance with equations (5) and (7) expressed in
terms of subsystems 4 and B, DS, + DSy = 0. Because,
from equation (16), DS, is equal to {(8Q«/T)rew and
different from zero, the heat interaction is associated with
a flow of entropy from 4 to B if heat flows from A to B
and conversely. By way of contrast, work in a reversible
process leaves the entropies of the interacting systems
unaltered.

To system B may be added a part that is not in a stable
cquilibrium state and that may experience an irreversible
process without affecting the state of the other part or the
interaction between .4 and B. Although the process as a
whole is no longer reversible, the interaction is the same
as before and could appropriately be called heat. A flow
of entropy from A4 to B is still associated with the flow of
heat from 4 to B, but the increase of entropy in B exceeds
the amount that has flowed from A4; that is, the state-
ment 45 > 8§Q/T may be written for the irreversible
process, and

70
as > Vil an
for processes in géneral,

For an adiabatic process equation (17) reduces (o equa-
tion (6). For other processes equation ({7) will apply
provided that the only nonwork interactions are heat;
that is, at least locally where the interaction occurs, the
behaviour on each side of the boundary is the same as if
both systems weYe passing through stable equilibrivm
states, with identifiable temperatures, and the process was
reversible. It can readily be shown that certain nonwork
interactions when used in place of 8Q will not satisfy
equation (17).

Inequality of Clausius. An inequality that was first
stated by Clausius bears his name. It is as follows: For
an irreversible cycle the sum of ratios, each of which is a
heat 8Q received by the system divided by the tempera-
ture T at which the heat is received, is always less than
zero, When each amount of heat §Q is very small, the
sum of the ratios 8Q/T can be represented by a cyclic in-
tegral, and the inequality of Clausius is given by the re-

lation
50
(éT)Irrtv < 0‘ (18)

(The symbol ¢ means to integrate over a closed path,
the complete cycle.) The inequality of Clausius follows
directly when the inequality of equation (17) is applied
to each step of an irreversible cycle and summed up for
all the steps, because dS, being the change in a property,
sums up to zero, Application of the inequality of Clausius
is restricted, of course, to processes for which ail non-
work interactions are heat.

Work, heat, and change of energy. 1f work and heat in-
teractions occur successively, then the total energy change
dE will be the sum of the work effect (—8§W) and the
heat effect 8Q; or, by equations (1) and (16),

dE =80 — 8W, (19)

the minus sign resulting from the conventions regarding
the signs for heat and work.

In practice it is not always necessary that work and heat
should be successive in time. For example, if simply by
shifting a boundary between systems a process can be
made either adiabatic or heat only, then simultapeous
heat and work are identifiable and may be used together
in equation (19).



Expression (19) for change of energy is applicable, of
course, only to those processes for which tbe interactions
are identifiable as heat and work. Because heat and work
are limiting cases of actual processes, equation (19) is
strictly applicable only where all interactions have been
carried to these limits.

Reversible cyclic engine. By refercnce to the definition
of heat, it will be observed that the reversible interactions
between A4 and X and between X and B in Figure 2 are
heat interactions in which ope part of X is in equilibrium
with A and another part with B, whether or not A and B
are close to mutual stable equilibrinm. Because the pro-
cess for the combined systemn 4 XB is adiabatic, it can be
shown that the heat §Qs received by B is equal to the
heat §Q4 received by A times the negative of the ratio
T's/T4; namely, o

305 = 22504 20)
A

The work produced by cyclic device X is, by equation
(19), equal to the negative of the sum 8§04 -+ 8Qr, and,

. because of equation (20),

Ty —Tp,
T( 8Q).

It is seen from equation (21) tbat X will produce posi-
tive work if T4« >T= and 8§Qa4 < 0; that is, if heat flows
from the hotter system to X and from X to tbe cooler
system. The efficiency n with which X converts to work
the heat it receives from the hotter system is thus

W = —8§04 — 505 = 21

_Ta—Tsn
(A e
This quantity is called the Carnot efficiency after Carnot,

who, before the discovery of the first and second Jaws
of thermodynamics, made the following statements con-

22)

= cerning the efficiency of engines working between re-

servoirs at specified levels of temperature: The efficiency
of a reversible engine has a fixed value that is the same

- for all reversible engines and is greater than that of any

irreversible engine.

An example of a reversible cycle in which 2 system
receives all heat atone temperature and rejects all heat at
another with reversible adiabatic changes between the
two temperatures is the Carnot cycle, devised by Carnot.
1ts efficiency is given by equation (22).

Work-producing systems and devices. A problem of
economic and social importanee in heat engineering is the
production of work to be used for practical purposes such

| as lifting weights, driving electric generators, propelling
i vehicles, or operating cuiting tools. Work can be ob-

tained from any system that is not in a stable equilibrium
state as it changes toward a stable equilibrium state with-

{ out changes in constraints. For example, work may be
| obtained by lowering a weight inside a closed system
. while causing—through appropriate levers, beilts, and

L

pulleys—a weight to rise outside. The production of work
need not end until the internal weight has reached the
lowest position jn the gravity field that the configuration
of the system permits. Similarly, an electric storage bat-

| tery may produce work until it is compietely discharged.

The maximum work that can be produced by the system

5» adiabatically will be obtained if the process is executed

k

|

reversibly—that js, at constant entropy. By virtue of
. the second Jaw the maximum work is only a fraction of

. the energy of the system. This fraction is larger the far-

ther the system is initially from stable equilibrium; i.e.,
. the larger the difference between the maximum entropy
. corresponding to the initial energy and the entropy of the
- initial nonstable state. The fraction is equal fo zero when
. the difference in entropy just described is equal {o zero—
- namely, when the system is initially in a stable equilib-
-~ rium state.

. On the other hand, a system in any state, including a
- stable equilibrium state, can produce work when com-

through stable equilibrium states but is not in mutual
- stable equilibrium with the first. The maximum work that

Ebi.ned with a system In the enviropment that passes

' can be obtained is the maximum possible decrease in the

available work when the system in the environment acts
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as a reservoir, or it is the maximum possible decrease of
once of the other availability functions discussed below
when other conditions are imposed by the environment.
In order to obtain this maximum, the work-producing
process must be completely reversible. For example, if
the system with the elevated weight described in the pre-
ceding paragraph is at a higher or lower temperature than
the atmosphere, then further work may be obtained by
interposing a Carnot heat engine between the system and
the atmosphere, so that the system is graduvally cooled or
heated to the temperature of the atmosphere as heat
flows to the engine and produces work. If the whole pro-
cess is executed reversibly, then the maximum possible
work will be produced.

The greatest sources of work are fuels found in nature
that are either not themselves in stable equilibrium states
—for example, uranium in a reactor—oOr are mnot in
mutual stable equilibrium with the atmosphere from
which they have been isolated in the course of geologic
history—for example, the fossil fucls coal and petrole-
um. In either case, the maximum work can be obtained
only by a reversible approach to stable equilibrium or
mutual stable equilibrium.

In the case of uranium, a reversible nuclear reaction
is required; for the fossil fuels, a reversible chemical re-
action. A close approximation to a reversible chemical
reaction is found in lead storage batteries used in auio-
mobiles for starting and for lighting. No close approxima-
tion to a reversible nuclear reaction has yet been realized
in practice, although in principle such a reaction is pos-
sible.

Because the cost of work includes not only fuel costs but
also capital costs that usually increase as irreversibility in
the process is reduced, the economical means of produc-
ing work may in some respects depart radically from the
reversible means. Ror example, in fossil-fueled central
power stations, fuel and oxygen in the air enter into an
irreversible chemical reaction that raises the temperature
of the resulting products by about 2,000 degrees on the
Kelvin scale and reduces the work available by about one
quarter. Energy from these hot products is then trans-
ferred irreversibly across a large temperature difference
to appear as beat added to liquid and vapour water that is
the working fluid of a heat engine. The loss in work
available is again about one guarter of that of the original
fuel and air. Izeversibility in the heat-engine cycle ac-
counts for another 10 percent, so that about 40 percent is
actually realized as work delivered to the electrical distri-
bution system.

A Carnot cycle js an obvious but uvsually impractical
means to produce work from beat interactions with hot
products of chemical or nuclear reactions. Most com-
monly used is the Rankine cycle, in which heat is used to
generate vapour from a liquid; the vapour js expanded
through a work-producing engine, condensed to liquid as
it rejects heat to the environment, and pumped back into
the vapour generator. The Stirling cycle, which has had
only limited application, passes through gaseous states
only.

I. Simple systems
STABLR EQUILIBRIUM STATES
A closed simple system is one in which the numbers of
particles of the various components are fixed and the only
constraint provided by the environment is an upper value
for the volume of the system. By virtue of the state princi-
ple, volume. (regardless of shape) and emergy become
sufficient to determine a stable equilibrium state, and the
number of independent properties is two. A system that is
not influenced by capiliarity and external force fields is a
simple system. These conditions may be satisfied despite
capillarity and gravity fields if homogeneous parts of the
system are Jarge, so as to have small surface-to-volume
ratio, yet shallow in the vertical direction of the gravity
field and free of electric and magnetic fields created by
external bodies.

For stable equilibrium states of a closed simple system,
entropy S or any otber property can be regarded as fixed
by the two independent properties volume ¥ and eoergy

EBconom-
ical
production
of work

Definition
of a
simple
system
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Pressurs (p) ——

U; therefore, S can be expressed as a function of ¥V and U
of the form '

S = S(v,U). (23)

For a number of reasons the energy E of a simple system
is denoted by a different symbol U and is called the in-
ternal energy. Alternatively, equation (23) may be
solved for U in terms of S and V to give

U = UBSY). (24)

The energy change dU between two neighbouring stable
equilibrium states can be expressed in terms of the corre-
sponding entropy and volume changes, dS and 4V, re-
spectively, by means of the relation

w- (B () o

The first partial differential coefficient has already been
identified (by equation 13) as the Kelvin temperature.

= The second is the rate of energy change (the rate of
receiving work) with change in volume in reversible adia-
batic compression or expansion. It can be shown to be
the negative of the pressure p that the system exerts on
constraining walls. Substitution of the temperature T° and
the pressure p in equation (25) results in the equation

dU = TdS — pdV, (26)

in which the first term in the right-hand member repre-
sents the heat and the second the work of a reversible
process. It may be observed, however, that equation (26)
holds for any change between neighbouring stable equi-
librium states regardless of the nature of the process,
because it is a relation between properties and changes in
values of properties. But for the gemeral process, the
terms (T4S) and (—pdV’) are not in general equal to the
respective heat and work that may be involved in the
process.

By .means of the criterion of stable equilibrium and
equation (26), it can be shown that not only the tempera-
ture but also the pressure must be uniform throughout a
simple system in a stable equilibriom state.

Representation of siates on diagrams. Because a stable
equilibrium state in a simple system is determined by two
independent properties, all such states may be represented
by points on a surface in a space in which two of the
three coordinates represent independent properties and
the third the dependent property. Alternatively, the traces

/
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VOIUME (V) e ontropy (8) ——-
Figure 3: Relatlonships belweaen thermodynamlc propenies

of systems.

(Laft) Ralationships of prassure and volume of systems
maintalned at fixed temperature (T) or ai fixed entropy (S).
(Right) Relationships between temperature and entropy

of systems malintained at fixed pressure (p) or at fixed
velume (V).

of planes of constant value of one property may be
shown on a8 two-dimensional chart in which the coordi-
nates represent the other two properties. Two common
choices of the latter class are pressure-volume (p-¥)
and temperature—entropy (7—S) charts. An example of
the former is shown in Figure 3 (left), with traces of
planes of constant temperature from the pressure-vol-
ume~temperature space and of planes of constant en-

ropy from the pressure-~volume—entropy space. On the
p-V chart the area under a curve of states represents the
work done ot a slowly moving piston that confines the
fluid in a cylinder. On the T-S chart (Figure 3 [right])
the area under the curve represents the heat received by
the system in a reversible process passing through the
states represented by the curve. Because the change of
energy of a system undergoing a cycle is equal to zero, it
is seen from equation (19) that the cyclic integral $5Q
must be equal to the cyclic integral $8W. For a reversi-
ble cycle, TdS may be substituted for 8Q and pdV for
8W s0 that

$7dS = $pdV. (27)

For any cycle, therefore, the area enclosed by the repre-
sentation on the TS chart is equal to that on the p-V
chart; for example, the areas enclosed by the representa-
tions of the Carnot cycle in the p-V and 7S charts
(Figure 4 [left] and 4 [right]) are equal.

pressure (0) —
temperalure (7) —»
w

VOIUM@ (V) === entropy (S) —»

Figure 4: Relatlonship bstwsen work done and heat recelvad
by a fluld undergolng a Camot cycle.

The linas from stdte 1 to atate 2 represent reversible and
adiabatic expansion of the fluid; from 2 to 3, reversible
compression at fixed temperature accompanied by heat rejaction;
from 8 to 4, reversible and adiabatic comprassion; from 4 to 1,
revarsible expansion at fixed temperature accompanied by heetl
recaption. The anclosad area (left) ropresants the net work
donse by the fluld during tha complete cycle; it Is exactly

equal to the enclosed area (right) that represents the net

heat flow to 1he fluid.

Reversible constani-pressure process. The  reversible
process at comstant pressure, because of its practical
importance, warrants special consideration. Because for
constant pressure the change.in the product pV is also p
times the change in V, pdV, it can be shown that the
expression for the beat (8Q), received by the system is
equal to the change of an extensive property called en-
thalpy, which is defined by the relation H = U -- pV; that

© s,

(8Q)y = dH. (28)

Thus, in any heating of a simple system in such a way
(for example, under a piston loaded by a weight) that its
boundary expands slowly as it maintains constant pres-
sure, the enthalpy of the system increases by the amount
of heat added.

MAXWELL RELATIONS
For a closed simple system that assumes only stable
equilibrium states, it can be shown that the partial deriva-
tive (0T/9V)q is equal to the negative of the partial de-
rivative (2p/35)v, thus,
oV/s oS v’

This relation is one of the Maxwell relations, named for
the man who first stated them.

Entbalpy, Helmholtz free energy, and Gibbs free energy
are, respectively, defined as follows:

H=U-+pV, (29)
v=U— TS, (30)
Z=H_TS. (31)

Entt




These properties can be manipu]ﬁted mathematically to
obtain the following equations:

(%IV‘ s % v (32)
(%)s = (), 2
).~ (37), 2

These equations are Maxwell relations. They relate the
entropy to the relatively easily measured properties pres-
sure, volume, and {emperature.

PHASE RULE

An intensive propertly of system A is defined as 2 property
of which the value at a spatial point in a part of A4
approaches 2 limit independent of the size of the part as
the size is reduced until it can no longer be identified as a
system. As a system is subdivided into smaller and
smaller parts, at some point a part becomes so small as
compared with the extent of force fields between the parts
that it is no longer isolatable and may not, therefore, be
considered a system.

For certain stable equilibrium states of a simple system,
parts of the system may assume different values of inten-
sive properties; for example, Jiquid and vapour water
may coexist in mutuval stable equilibrium for which liguid
and vapour parts have the same pressure and temperalure
but radically different densities. Each such part is called a
phase. More generally, a phase of a system is the collec-
tion of all hamogeneous parts open to the iransfer of rest
mass and having identical values of thejr intensive prop-
erties.

In the absence of chemical reactions and membranes
that are permeable to one substance and pot to anotber,
the number of components of a2 phase of a multipbase
system will be identical with the number of molecular
species present in the whole system. As soon, however, as
a chemical reaction is permitted in which some of these
species may-be formed from others, then the number of
components is reduced by one.

A closed simple system has two independent prop-
erties; a simple system open to the transfer of rest
mass will have these same two plus the number n of
components for the system, because the quantity of each
component may be independently varied. On the other
hand, the number of independent properties of the same
simple open system is also equal to the sum F 4 r, in
which F denotes the number of independent intensive
phase properties and r the number of phases, because
the F intensive properties fix the intensive states of the
phases, and the r masses of the r phases fix the size of the
system. From these remarks it follows that F is given by
the relation

F=n42—r (36)

This is the phasc rule of Gibbs. It reveals, for example,
that for a single-component open system, such as water,
the number of independent intensive properties may be 2,
1, or O if the number .of phases present is I, 2, or 3,
respectively. Thus, for water vapour, temperature and

pressure are independent properties; i.e., after the valve

of one is arbitrarily selected, the value of the other may
be arbitrarily selected. For. coexisting liquid and vapour,
either pressure or temperature may be considered the
independent property; for coexisting solid, liquid, and
vapour (the triple pojnt), the values of all intensive phase
properties are fixed by the nature of the substance, and
the value of none may be arbitrarily selected.

SIMPLE ONE-COMPONENT SYSTEMS

Phases. All systems that consist of a single pure molec-
ular species, such as argon, oxygen, or water, exhibit
largely common patterns of coexisting phages. A closed
system of this kind, being a simple system, has two inde-
pendent properties and the relationships between proper-
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ties for stable equilibrium states may therefore be shown
as a surface in three-dimensional space. The projection of
one such surface onto the pressure—lemperature plane is
shown in Figure 5 (top) and onto a pressure-volume
plane in Pigure 5 (bottom). It will be evident from these

critical
poiat
8
2 sohd
g vapour

(riple point

lemperature ——-

——

crliical point

Pressure —

liquid and vapour

solid

liquid and solid

(riple pomt

voluma —»

Figure 5: Relatfonships between phases of a pure substance.
(Top) The horizontal broken line \hrough & and b represents
the effects of absorption of heat by a subsiance at a constant
pressure. (Bottom) The broken line from lower right to upper
left represents the sffects of compressing & substance, inltially
entirely vaporous, while keeping the tamperature fixed (an
sothermal process).

figures that the solid may be heated under constant pres-
sure until some liquid appears. Further heating increases
the proportion of liquid present at constant temperature
until the solid vanishes, leaving only liquid. Further
heating increases the temperature of the liquid until
vaporization begins, provided that the pressure is less
than the critical pressure. Continued heating increases the
proportion of vapour present at constant temperature
until the liquid vanishes, leaving only vapour. The va-
pour may then be raised in temperature indefinitely or
until chemical dissociation destroys the assumed purity
of the molecular species.

At the critical pressure the coexisting liquid and vapour
states are identical, and the vaporization process con-
tracts to an infinitesimal process. At higher pressures no
vaporization occurs. It becomes clear, then, that Jiquid
and vapour states differ in degree rather than in Kind,
because any liquid state can be transformed to any va-
pour state by a process for which the system remains in a
single-phase condition throughout. The same camnot be
said of the transition from solid states to either liquid or
vapour states.

Processes at constant volume and at constant pressure.
When a simple system is heated at constant volume, no
work occurs at the boundaries, so that the heat, accord-
ing to equation (23), is equal to the increase in energy as

Heat
capacities
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well as to the product of temperature and increase in
entropy: :

The heat of a constant-volume process is therefore equal
to the area under the curve on a temperature-entropy

chart. The constant-volume heat capacity is defined in
terms of the partial derivatives of energy and entropy as

follows:
aU) (BS) .
=({Z) =171%)
Cv (aT v oT)v

and the constant-volume specific-heat capacity is defined

similarly as
_(2s) _ g2
€= (aT o T(aT J

in which lowercase letters denote values per unit of mass
or per mole. By reference to equation (28) it will be seen
by analogy that the corresponding definitions of heat
capacities at constant pressure are as follows:

(37

(38)

_ (2HY _ A(3S
C» = (aT )p - T(aT)p (39)
and
= (27 _ r(es
» = (aT)p - T(aT p‘ (40)

By means of Maxwell relations it can be shown that the
difference between the two heat capacities is given by the
product of two partial derivatives, both of which are fixed
entirely by the relation between p, V, and T

op (aV)
—cy =T (22) (2. 41
Cy—Cy (aT (&), (41)

When a phase change occurs during constant-pressure
heatitfg or cooling, the temperature is unchanged by the
heating or cooling as long as both phases are present. The
heat required in such a process to change a vnit mass
from one phase to the other is equal, according to equa-
tion (28), to an increase in enthalpy. It is called the latent
heat of that phase change. Thus, a latent heat of fusion
hji, a latent heat of vaporization hy,, and a latent heat of
sublimation /i:x can be defined by means of the relations

h]l = hl — h; = T(Sx —_— S;), (42)
h/g = h, —_ h; = T(Sp — S[), (43)
hi=he — hi = T(Sk—-Yf): (44)

in which subscripts j, /, 1, g, i, and k refer, respectively, to
solid in equilibrium with liquid, liquid in equilibriom
with solid, liquid in equifibrium with vapour, vapour in
equilibrium with liguid, solid in equilibrium with vapour,
and vapour in equilibrium with solid.

Ip a two-phase region the change in any extensive prop-
erty is directly proportional to the corresponding change
in any other for a fixed value of temperature, and the
pressure is a function of temperature only. From these
observations and Maxwell relations (33) or (34), it fol-
lows that the rate of change of pressure with temperature
change for a two-phase mixture is equali to the ratio of the
entropy change to the volume change when a fixed quan-
tity of the substance is changed from one phase io the
other—e.g., from liquid state to vapour state. Alternative-
ly, the ratio of enthalpy change to volume change gives
the rate of change of pressure with change in the natural
logarithm (In) of temperature:

d_p Sy — 5
daT = vz — v
dp _dp _ha—In
d(lDT)— {I_T_Ug — Ul.
These equations are used to express the Clapeyron re-
lation,

Equation of state. The mathemati¢al relation betweed
the pressure, volume, and temperature for stable equi-
librium states of a closed simple system is called its equa-
tion of state. Although it will be subsequently shown to
be a relation that does not completely specify the nature
of the system, the mathematical relation is an important

(45)

(46)

one because the three properties it relates are relatively
easily measured.

Experimentally it is found that the relation between the
pressure, volume, and temperature of a system i8 ex-
tremely complicated. No explicit mathematical expres-
sion has ever been devised that represents all the stable
equilibrium states of any ome simple system. Instead,
equations have been proposed, each of which represents
some limited range of states of a particular system. The
complexity of equations of state ranges from that for a
perfect gas with a single constant to those for liquid and
vapour states, of which that for water is an example,
which often have between 10 and 100 constants, the val-
ues of which must be determined so as to fit experimental
data.

For the range of liquid and vapour states of a pure
molecuiar species, the general pattern of the p-v-T rela-
tion is best shown by drawing a graph of the quantity
pv/RT versus the ratio of pressure to critical pressure, If
v is taken to be the specific volume (the volume per unit
mass) and R is chosen so that pv/RT becomes unity at
zero pressure and infinite specific volume for any tem-
perature, then a c¢oincidence occurs: pv/RT is upity for
every temperature for that substance, provided only that
the specific volume is infinitely large. The constant R is
called the gas constant of the molecular species.

The molecular weight of oxygen js 32 and the molecular
weight M for any species is inversely proportional to the
gas constant R of the molecular species. Thus, the molec-
ular weight M of any species can be defined as 32 times
the ratio of the gas constant of oxygen and the gas con-
stant of the species:

R (for Oy)
—x

It follows that the volume occupied by & molecular
weight of a gas at very Jow pressure is the same for all
gases for any selected pair of values of p and T. More-
over it 1s directly proportional to T and inversely propor-
tional to p.

The product of molecular weight M and gas constant R
is the same for all gases and is called (he universal gas
constant (denoted by R). The result js an equation, called
the perfect-gas equation of state, that appears frequently
in the literature of thermodynamics; that is,

po/RT =1, (48)

in which o is the volume occupied by one molecular
weight, or one mole, of gas.

The equation of state (48) applies, therefore, to any
pure molecular species ip states for which the specific
volume is extremely large and the pressure, at finite tem-
perature, is therefore extremely small. It holds within 2
percent for water vapour at a pressure of one atmosphere
and with correspondingly better precision as the pressure
is lowered. A gas that conforms 10 equation (48) is called
a semiperfect gas.

By means of Maxwel!l relations and equation (23) it can
be shown in the case of a semiperfect gas that internal
energy, enthalpy, and both heat capacities are functions
of temperature only and are independent of the effects of
volume or pressure. Moreover, the difference ¢, — ¢
between the specific-heat capacities is equal to the gas
constant R when zll three quantities are defined in terms
of unit mass or, alternatively, in terms of molecular
weight.

When quantum effects are not important, an approxi-
mate expression for the specific-heat capacity may be
obtained from statistical thermodyvamics. It is

M=132 47

co =22, (49)
in which f denotes the number of active degrees of free-
dom of the molecule (the number of independent ways in
which the space configuration of the molecule may
change), For a mass concentrated in 2 point, f would
be three (corresponding to the three directions of trans-
lation), and ¢, would be 3R/2. With spatial distribution
of the mass, additional degrees of freedom appear by

The
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virtue of rotation and vibration of the molecule. The
number of such degrees of freedom active in a molecule
depeads, in accordance with quantum theory, on tbe
temperature. In Table 1 are shown the molal heat capac-

Table 1: Molal Specific Heat Capacities of
Gases at Room Temperature
Cy () co/(4R) Cp/”R) k =cp/cy

He* 2979 4.965 3.000 5.000 1.667
H: 4,88 6.87 4.92 691 1.406
(o1 502 7.00 5.05 7.04 1.406
N2 497 696 5,04 7.00 1.400

[ co 487 696 5.01 7.00 1.400

E H:0 6.02 8,01 6.07 8.06 1.330

;; COs 6.81 R.80 6.86 8,85 1.292

*And all other monatomic pases.

ities of several gases at room temperalure along with the
corresponding number of degrees of freedom cv/(¥2R).
For a monatomic gas this number of degrees of freedom
proves to be three almost exactly; for diatomic gases it is
nearly five (corresponding to two degrees of rotational
freedom); and for more complex molecules, a number
in excess of five, which implies vibrational degrees of
freedom. For all except the monatomic molecule, the
value of ¢, increases with temperature as new degrees of
freedom become active.

- The expressions for cnergy, entbalpy, and entropy of a
- semiperfect gas are as follows:

i S T TR R S B e e g

W= codl + u(Ty), (50)
To
T
= ; cpdT + w(To) + RTo, (51)
... 0
1 7
‘-.. 5= S o3+ Rin % 4 (T, o)
4 <
=i ——Rln£+s(ro,pa>; (52)
~ Ty Po

in these equations the subscript 0 refers to an arbitrarily
selected state,

The perfect gas js a special case of the sem)perfcct gas
—namely, that for which the heat capacities are indepen-
dent of temperature. The integrals of the previous expres-
sions can now be resolved to give the following:

u = co(T — Tp), (53)
h = ¢T — ¢oTo, (54)
s=c.,lnz + Rln =+ so
T vy
T
=c,,lnTO—Rln1%+So, (55)

in which s, denotes the arbitrary value of s at T, (for
which u is zero) and at p,,.

For a reversible adiabatic process in a perfect gas, the
following relations hold: pv* = constant, Tv*™* = con-
stant, and pT-*'*-" — constant, and X is the ratio cy/cy.

In 1873 the Duich physicist Johannes van der Waals
proposed the following equation, which in a qualitative
way describes the liquid and vapour states of a pure
species;

_ _RT a
PEC—D T &
| which a and b are constants for any one species. Not
Td0¢s this equation approach that of the semiperfect
v goes to infinity, but the equation also provides
a region of coexisting states that is capped by a criti-
state, as in actua} substances. Below the temperature
. (equal to 8a/27Rb), three values of v correspond to
ach value of p. Pairs of high-volume and low-volume
‘states, such as P and R (Figure 6), may be found at each
pressure—temperature combination. The one pair for
= .which the areas PObP and QaRQ are e¢qual can be shown

(56)
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10 be the pair that can coexist in mutual stable equilibri-
um.

An approximate justification of the van der Waals equa-
tion can be made based in part on the Newlonian equa-
tion of motion for a collection of particles having the
following characteristics: (1) the particles are uniform
rigid spheres; (2) their diameters are appreciable frac-
tions of the mean distances between them, except at infi-
nite specific volume; and (3) they exert finite altractive
forces, which vary with the distance between them, as
well as infinite repulsive forces upon contact.

Pressure —m-

Oressure=zero

volume ——»-

Figure 8: Relalions between pressura (p) and volume (v) of
liquid and vapour states of a pure molecular specles al different
temperatures according to the van der Waale equation

{ses 1&Xt).

Equations of state, by proper assignment of values of
constants, can be made to represent quantitatively (as
contrasted with gualitatively for the van der Waals equa-
tion) the properties of many molecular species with fair
precision. An equation has been developed that repre-
sents the properties of water within the precision of vir-
tually all experimental measurements on liquid and
vapour water.

A general type of equation of state, which can be made
to fit almost any range of gaseous states at the expense of
indefinite increase in the number of constants, is the virial
form. It may be written as

=14 Bp+ Cp? + Dp? + ..

RT

in which p denotes the density, and the coefficients B, C,
D, ..., called the second, third, fourth, . . . virial coeffi-
cients, are functions of temperature only. Substantial
progress has been made in determining the forms of the
functions B and C for the simpler molecular structures by
means of models of the structure and farce fields between
them.

Critical point. In recent decades the relationships be-
tween the various properties of a pure molecular species
at and near the critical point have been the subject of
many studies. It appears from these that certain mathe-
matical singularitics ocour at the critical point, including
an infinite vaiue for the heat capacity at constant volume,
which indicate that no continuous equation (such as the
van der Waals equation) relating pressure, volume, and
temperature can represent the actual variation in these

&)

Virial
eguations
of state
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Chemical
potential

properties for states closer than a few degrees in tempera-
ture to the critical point. A so-called scaling law bas been
devised to cope with the mathematics of this region.

Fundamental equations. As was implied above by the
development of the equation of state for a semiperfect
gas, such an equalion alone is not adequate to yield the
values of energy u, enthalpy h, and eatropy s. It must be
supplemented by a knowledge of the variation of heat
capacity with temperature.

A type of equation for which any of the properties
p, T u0,s (or any algebraic combination of these) not
explicit in it are found by differentiation is called a funda-
mental equation, and the corresponding function has
been called a characteristic function, For a simple system,
the four characteristic functions—specific energy u, spe-
cific entbalpy h, specific Helmholtz free energy y, and
specific Gibbs free energy {—are expressed in terms of
fundamental equations as follows:

=i, 7= (2) v=(2), (s9)
=30, v= %f;)r,s = —(2—7{ KR

where the specific Helmholtz free energy y and the specific
Gibbs free energy ¢ are defined by

v=u—Tsand{=h—Ts. (62)

SIMPLE MULTICOMPONENT SYSTEMS
Gibbs equation. The change of entropy dS between
neighbouring stable equilibrium states of a simple system
open to the transfer of rest mass can be expressed in
terms 6f the corresponding change of energy dU, volume
dV, and number of particles dn; (| = 1,2, ..., k) of the
k components in the system. By use of equation (9) it
can be shown that the expression for 45 involves partial
derivatives as coefficients that multiply the changes in the
independent properties U, V, ny, #g, - . ., 1!

28 aS) 55)
(= o> v (& d
as dU vndU+(aV U,nd + omtu v m +

dnk, (63)

. Nk JU,v.n

in which subscript n denotes all of a,, n,, . .., rn that
can be held constant. Upon identifying, as in equation
(23), the first two partial derivatives in terms of pressure
p and temperature 7 and introducing a new quality g to
be defined shortly, equation (63) becomes what is called
the Gibbs equation:

dS = LdU + Bav —Ban —... ~Fdu (69
The quantity g, which is called the chemical potential
of component { in the system, is defined as follows:

o)
=—T|—=
s (am‘ U.V.n

Mutual stable equilibrium. Upon secking the condi-
tions that must be satisfied in order that two or more
phases should be in mutual stable.equilibrium while open
to transfer of rest mass between them, it is unnecessary {0
consider any states for which any one phase would be in a
nonequilibriunr state if it were saddenly isolated. It is
unnecessary because any change of state that could occur
spontaneously while the phase was isolated would be one
of many allowed changes of state when it was not isolated
and would, therefore, serve as an indication that at least
one spomtaneous change is possible and that equilibrium
does not exist.

1t is sufficient, therefore, to consider only those states
for which tbe individual phases are in stable equilib-
rium states when isolated. The Gibbs equation provides a
general statement of the change of entropy of a simple
phase that may exchange component substances with
neighbouring phases as it passes through stable equilib-
rium states. If the formation of any new part unlike the

for1=12,...k% (65)

existing parts is prohibited by the definition of the phase,
then a set of stable equilibrium states is prescribed for
which the Gibbs equation expresses changes in entropy
between states in the set.

A heterogeneous system may be considered to be made
up of scveral homogencous phases, within each of which
the formation of a new part is prohibited as proposed
above. The states that these phazss may assume consistent
with mutval stable equilibrium may now be found by
seeking out the state of maximum entropy of the whole
system for a given volume and energy. This kind of pro-:
cedure was used above to show that the phases of such a
system must have equal temperatures. By similar reason-
ing it can now be shown that the phases must have equal
pressures and equal values of the chemical potential p« of
each component | present in all the phases. That is,
among the necessary conditions for stable equilibrium of
a multiphase simple system (i.e., in the absence of force
fields and capillarity) is uniformity throughout the mul-
tiphase system of temperature, pressure, and chemical
potential of each component present in alf the phases.

Of these conditions the one most open to exception is
equality of pressure. In order for it to apply, an encroach-
ment of the volume of each phase upon every other, for
constant energy and composition of each phase, must be
an allowed variation in state of the system. Wherever
phases are separated by a rigid boundary, which may be
permeable to one or more components, then equality of
pressure between such phases is not necessary to mutual
stable equilibrium. W

If two phases are separated by a wall that is permeable
to some components but not permeable to others, then
equality of chemical potential of those other components
across the wall is not necessary. An exception can be
made as regards the potentials 7, p, and g in cases in
which a transfer of energy, volume, and component |
can occur at stable equilibrium in one direction but not
in the other direction. Then a condition for mutual
stable equilibrium becomes, because entropy is to be
maximized, that the temperature in the phasc that can
receive energy but cannot supply it may be greater than
or equal to the temperature in phases that can both re-
ceive and supply energy. Similar statements can be made
in regard to pressure and the transfer of volume and in
regard to chemical potential of component i and the -
transfer of that component,

These statements imply that potentials T, p, and u; are
escaping tendencies for energy, volume, and component i,
respectively. For equilibrfium each escaping tendency
must be balanced as between phases, unless the escape of
one flux has reached its upper limit for a phase so that no
further escape is possible. For such a phase it is necessary
for equilibrium that the escaping tendency be not Jess
than in other phases, but it may be more. This consider-
ation is relevant for certain quantum effects at low tem-
peratare, for two phases separated by a movable solid
boundary that has come up against a stop and behind
which the pressure may be greater than in front {but not
less), and for exhaustion of a phase as regards one com-
ponent.

From the definitions of enthalpy H (29), Helmholtz
free energy ¥ (30), and Gibbs free energy Z (31), it is
readily shown that the chemical potential can be ex-
pressed jn alternative forms; that s,

= (@ _ (a_H
H oni/Jv.g.n o

(@), - @)
M) v, T o) p.M\n

The [ast of these is known as the partial Gibbs free energy
¢i of component i in the pbase. In view of the definition
of Z, x; may also be expressed in terms of the partial
enthalpy A, and the partial entropy s:; thus,

- (?1) - (i’ _ T(?ﬁ
H o/ p. Tn M/ p, T on/ ».Tn

=t = hy — T

p,8n

(66)

(67)



In gencral, lowercase symbols with subscript i denote the
partial property, For a phase of pure component 7, any
partial property is identical with the corresponding spe-
cific property—that is, the value of the property per unit
mass, which is here taken to be the mole. The chemical
potential of a component { in a mixture containing { is
equal to the specific Gibbs free energy of i in a phase of
pure / in equilibrium with the mixture through a mem-
brane permeable to I alone.

A semipermeable membrane such as the one just pro-
posed is onc across which the pressure need not be bal-
anced for equilibrium. By definition of the membrane,
encroachment of the mixture phase into the volume of
the pure phase cannot occur, but the reverse encroach-
ment can occur. The membrape must, of course, have
sufficient structural steength to support the pressure dif-
ference.

The expression for the chemical potential of a semiper-
fect gas in terms of temperature and pressure is found
from equations (67), (51), and (52). It proves to be the
sum of a simple function of pressure p and temperature T
plus a relatively complicated function fi(7T) of tempera-
ture as follows:

pi=RT Inp + f«(T), (68)

in which the function f;(7') is different for different semi-
perfect gases i. For a given temperature, however, equa-
tion 68 indicates that the chemical potential increases
with increase in pressure. That is, temperature being
fixed, the escaping tendency increases as the pressure in-
creases.

Three equations will be recorded here but not derived.

1. The Gibbs equation as an expression for the change
in Gibbs free energy of a phase between neighbouring
stable equilibrium states:

dz = Vdp — SdT + %u.‘ dn;. (69)

In the equation the short notation = u; dn; has been used
‘

to denote p dny + pydn, + -+ > 4 pudny, in Which sub-
script { = 1, 2, ..., k denotes a component substance.

2. The Gibbs free energy as a summation of products
of chemical potentials and numbers of moles of com-
ponent substances i of a phase:

Z = Ptlm n; (70)

3. The Gibbs-Dohem equation, which relates for a
phase the changes between stable equilibrivm states in
temperature, pressure, and numbers of moles of compo-
nents:

SdT — Vdp —I—‘(.En,-dp; =0,

Mixiures of gases. Gibbs—-Dalion rule for mixtures.
Gibbs revised the earlier rule of the 18th- and 19th-cen-
tury English physicist John Dalton for determining the
properties of a mixture of gases from the properties of
the pure components. Two equivalent statements of the
Gibbs—Dalton tule for mixtures arc as follows: (1)
The pressure in a2 mixture of different gases is equal to
the sum of the pressures of the different gases as existing
each by itself at the temperature of the mixture and
with the same value of the chemical potential as it has
in the mixture. (2) The pressure of a mixture of different
gases is equal to the sum of the pressures of the pure
components each existing as a phase in equilibrium with
the mixture through a membrane permeable to the com-
ponent.

Using single subscripts to refer to components in the
mixture and double subscripts to refer to pure component
phases, the Gibbs-Dalton rule takes the form

P =Py t+Dyat P33t (72)
for

T =T, =Ty=..., (73)
and

By = Hygs Hg = fggs v v v e (74)-

(7 -
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In this notation p, would have no “operational” meaning
because no instrument has been devised that can mea-
sure the pressure of component 1 when it is part of a
mixture.

It can now be shown from the Gibbs—Dalton rule and
the Gibbs-Duhem equation that the number ¢; of mass
units of component i in unit volume of the mixture (the
concentration ¢, of [ in the mixture) is equal to the den-
sity p:: or the inverse of the specific volume v of i in
the pure phase in mutual stable equilibrium with the
mixture. The concentration ¢; denotes the ratio of mass
n¢ of i in the mixture to the volume v of the mixture. It
follows immediately that the density p (or 1/v) of the
mixture is the sum of the densities p«; (or 1/v¢() of the
pure phases.

Further application of the Gibbs-Dubem equation
yields the following expressions for ¢xtensive properties:

U=nny= }‘lm ug,
H=nh=Zn; ki,
1

S =ns = 2 ngsi,
1

£ 4

I
I

ny Z ni iy and

Z =n¢= ?"ifo‘i=§”{#ii= ?n;m- )
In these equations the mass »; of component i in the mix-
ture will be identical with n;, the mass of [ in tbe pure
phase if the volume of the pure phase ii that is in mutual
stable equilibrium with the mixture is made equal to
the volume of the mixture. The result is in accord with
Dalton’s concept that each component behaves as if it
were present alone.

A further conclusion that can be reached is that a
Gibbs~Dalton mixture of semiperfect gases is itself a
semiperfect gas. That is, for the mixture the ratio po/RT
is equal to unity if v is the volume per mole of all com-
ponents and R the universal gas coastant, If a specific gas
constant is used and o is the volume per unit mass, then
the mixture behaves as a semiperfect gas with a mole-
cular weight M that {s the mass m of the mixture divided
by the total number » of moles of all components. It is
also the average of the molecular weights M, of the com-
ponents, each weighted proportionately to the mole frac-
tion y. of that component in the mixture:

m
=2 o2y M
M= =2y M,

Mixing gases. Some further results of the Gibbs-Dal-
ton rule will be given here without proof. If a number of
pure species are confined by thin partitions in separate
parts of an insulated volume ¥ in such quantities that
their pressures are equal when their temperatures are
equal, then when the partitions are removed (or de-
stroyed), the gases will mix jrreversibly without change
in temperature, pressure, energy, or enthalpy. The change
of entropy AS is greater than zero, as is appropriate for
an adiabatic irreversible process. It is given by the nega-
tive of the product of the number n of moles of all com-
ponents multiplied by the gas constant R and a mean
logarithmic mole fraction:

AS = —nR z)y.- In yi, (76)
in which y; denotes the moje fraction of the species i in
the final mixture. Both the Helmholtz free energy and the
Gibbs free energy decrease in the mixing process.

The Gibbs-Dalion rule holds in regions of state in which
the pressure is low relative to the critical pressure of
every componcnt. Outside these regions an equation of
state for a mixture may be devised from the equations of
state of its components, with varying degrees of precision,
by means of certain combining rules. One of these mles,
proposed by the 19th- and 20th-century French physicist
Bmile-Hilaire Amagat, states that the volume of a mix-
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The
Poynting
effect

tare is the sum of the volumes of the pure components—
cach at the pressure and temperature of the mixture.
A 20th-century U.S. chemist, James Alexander Beattie,
later proposed a rule of more general application that
prescribes how the coefficients in the Beattie-Bridgman
equations for the pure components may be combined in
order to obtain the corresponding coefficients for the
mixture.

Vapour pressures of pure liquids. The vapour of a
pure species may be in muatual stable equilibrium with its
liquid at a flat interface at the normal or saturation va-
pourt pressure correspondmg to its temperature. The va-
pour may also, however, be in mutual stable equilibrium
at 2 nonwetting porous wall that is permeable to vapour
but not to liquid or at a curved interface, either of which
can support a pressure difference between liquid and va-
pour. The effect of change in pressure of tbe liquid on the
correspondmg vapour pressure is called the Poynting cf-
fect. It is found by equating chemical potentials of hqmd
and vapour. For an incompressible liquid and a semiper-
fect vapour, the Poynting effect proves to be approxi-
mately proportional to the change in pressure on the
liguid. For water at 40° C (104° F) the equilibrium
pressure of the vapour increases by 1 percent when the
pressure on the liquid is increased by a factor of 200.

puce vapour (1)

—_—_———e————

Figure 7: Equilibrium between a pure volatile liquid (1),
a solutlon of nonvolatile substance (2) In liquid (1), and the
vapour of substance (1). Substance (1) can pass through
the membrane (M), but substance (2) cannot. The difference
in the vapour pressures of solvent and solution causes the
liquid levels to be unequal. The difference In pressure
between pure liquid and solution s called the osmotic
pressure (sas text).

Ideal solutions, When a solute is added to a volatile
solvent, the volatility of the solvent is reduced. The effect
is to reduce the pressure of solvent vapour that is in
eqmllbnum with the liquid in proporhon to the reduction
in the mole fraction of solvent in the solution. Thus the
effect on the volatility is the same for equal pumbers of
moles of different solutes in solution, the mole being
measured as described by equation (47). This observa-
tion, which holds only for dilute or ideal solutions, is

expressed in Raoult’s rule. The rule states that at given
pressure p and temperature T the pressure p‘l' of pure

solvent vapour in equilibrium with the solution is equal to
the product of the mole fraction x; of solvent in the

solution and the vapour pressure p? of pure liquid

solvent at the pressure and temperature of the solution.
By ignoring the small Poynting effect on the vapour pres-
sure of the solvent, the rule of boiling-point raising may
be derived from Raoult’s rule by mathematical deduc-
tion, It is that the rate of change of boiling temperature T
with mole fraction x, of solute 2, as solute is added to a
dilute solution, is equal to the rate of change of boiling
temperature of pure solvent 1 with the logarithm of the

pressure p© on the pure solvent. The mathematical state-

ment of the rule of boiling-point raising js given by the
relation

(6x2)z —0 [d(lnp ) 2,=0 7
For water at 25° C (77° F) the value of (91/0x,) is
about 17° C (31° F) or, more practically, 0.17° C for
each mole percent of solute regardless of the nature of
the solute.

Figure 7 depicts a coptainer in which volatije solvent
liquid 1 is separated from a solution containing nonvola-
tile solute 2 by a wall M permeable to 1 only. The wall
extends only part way to the top, leaving a vapour space
with free access of vapour 1 from one liquid surface to
the other. Because the pressure of vapour in mutual sta-
ble equilibrium with the solution is less, by Raoult’s rule,
than that in equilibrium with the pure solvent, the height
of the solution surface must be greater than that of the
pure liquid by enough to provide the appropriate hydro-

* static head of vapour between them. The corresponding

hydrostatic head of liquid, of course, is much greater and
accounts, except for the head of vapour, for a substantial
difference between the pressure of the solution and the
pressure of the solvent with which it is in equilibrium
through the semipermeable wall. This difference in pres-
sure, which is required to prevent migration of solvent
into the solution, is called osmotic pressure. With the
usual approximations for a dilute solution and a perfect
vapour, it can be shown by equating chemical potentials
of solvent across the wall that the osmotic pressure P is
approximately equal to the product of gas constant R,
temperature T, and number of moles ¢, of solute per unit
volume of solution.

By means of the Gibbs-Dubem equation (71) and the
assumption of perfect vapours for the two components of
a binary solutiop, it can be shown that Raouit’s rule

requires that the pressure p‘z’ of solute vapour in equilib-
rium with a solution is proportionzl to the mole
fraction x, of solute in the solution; that is, p: is equai to

—p
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Figure 8: Variation of vapour pressure above solulions of two
completely miscible volatile substances, 1 and 2, from pure 1

(2 =0, P] = p{)to pure substance 2 (x = 1, P} = p3). The
Heanry's rule constant, kz, is shown as the tangent to the graph
of py at x =0,
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kox,, ko being a constant of proportionality. Tbis rela-
tion is known as Henry’s rule. Unlike Raoult’s rule, in
which the coefficient of ¥, is the vapour pressure of the
pure solvent, the proportionality comstant k4 bears no
simple relation to the properties of the components. Of
course, if Raoult’'s and Henry’s rules were to hold over
the whole range of x, from 0 to 1, then k, would be the
vapour pressure of pure solute. In general, however, ihe
laws hold only for dilute solutions; that is, for x, nearly
zero. An example of the variation of vapour pressures of
a binary mixture of two completely miscible volatile spe-
cies is shown in Figure 8, in which the distinction between

Heary’s rule constant k, and the vapour pressure p‘; of

pure solute is made evident.

Equation (68) for the chemical potential of a serniper-
fect gas can be used in combination with Raoult’s and
Henry's rules to show that any change in chemical poten-
tial of solvent in a solution between two states at the same
temperatuge {3 proportional to the change in RT In x,.
Similarly, the change in chemical potential of solute is
proportional to change in RT In x,. Expressions for the
chemical potentials, therefore, are

m = RTInxy + 4
pe = RTlnxz-l-#z,

(78)
(79

in which ,fl‘ is the chemical potential of pure solvent
(2, = 1) at the pressure and temperature of the solution,

" The quantity p: is the chemical potential of pure solute

in a hypothetical idcal-solution state for which x, is
unity. Bquations (78) and (79) indicate that the loga-
rithm of the mole fraction of 2 component is the measure
of the escaping tendency of that component.

When to an ideal solutiop at a given pressure and tem-

~ perature is added some pure solvent starting from the

same pressure and temperature, it can be shown that the

- total volume occupied by sofution and solvent remains

unchanged by the process of dissolving. Similar state-
ments may be made concerning the total energy and total
enthalpy. One comsequence is that no heat flows to or

. from the fluids during this process of solution; thus, the

heat of solution is zero, and tbe process is adiabatic. The
total entropy, on the other hand, increases during the
process of solution, as would be expected from equation

. (6) for an, irreversible adiabatic process. In general, a

similar addition of pure solute to an ideal solution will

- result in cbange in total volume, encrgy, and enthalpy,

and the heat of solution will not be zero. The change in
volume, energy, and enthalpy per unit of solute added
will be independent of the composition of the solution
over the range of ideality.

BULK PLOW

- A kind of transfer of matter in which each elementary

piece of the flowing fluid can be ¢onsidered to be 2 closed
and separable system bounded by a prescribed surface is
called bulk flow. Contrasting with this definition is
transfer of material by molecular diffusion, in which the
Nowing molecules cannot be considered to be closed and
separable systems, .

Figure 9 shows a system A4 enclosed within a fixed
boundary o and an infinitesimal adjacent mass dm sepa-
rated from A by a part of o that is penetrable by A. The
mass dm may be pushed across ¢ to join the larger mass
inside. The work done by the surroundings on the com-
bined system comprising 4 and dmn will be equal to the
product pvdm—namely, the pressure p multiplied by the
specific volume v and the mass dm. This statement must
be qualified by limiting it to slow motion of the boundary
of dm and to zero shear effects in the fluid.

It can now be shown from equation (19) that the
change in energy found within the boundary o is the
initial value of E - pV for the mass dm, or (e -+ pv) dm,
e denoting energy per unit mass. To this must be added
any heat §Q that crosses the boundary of the combined
system, and from it must be subtracted any work 3Wo,
called shaft work, that crosses boundary ¢ by virtue of
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a

Figure 9: Schematic cgleulation of the changa in energy
of system resulling from the introduction of additlonal
mass (see text).

torque in a rotating shaft or the equivalent. The corre-
sponding statement for the energy change 4dF within o
when an infinitesimal mass of fluid dm crosses o is

dE = (e 4 po)dm + §Q — §W.. (80)

Equation (80) is sufficiently general to apply to other-
wise simple systems that may chbange level in a gravity
field and that depart from equilibrium to the extent that
elementary parts acquire the uniform velocity ¢. Then it
may be shown by consideration of work in adiabatic
processes that the energy ¢ of unit mass is the sum of the
internal energy w, the kinetic energy ¢2/2, and the gravity
potential energy gz for height z above a datum level z = 0,
¢ denoting the gravity constant, which has the dimen-
sions of acceleration:

82
e=u-+ §-+ng (81)
Equation (80) may now be repeated after snbstituting
the enthalpy symbol % for u + pu:
2
dE = (h + % +g)dm 450 — W.  (82)

A special case of the problem of bulk flow is one for
which inward flow and outward flow occur, each in one
or more channels, and the state of the fluid within the
control volume is the same at all times. The state of the
control volume for which this assumption holds is called
a steady state, and the flow condition is called steady
flow. A simple example with single eptry and single exit
is shown In Figure 10. Tt would apply to a boiler, for
which W, is zero, and to a steam turbine, for which Q is
nearly zero, as well as to many other engineering devices.

Z,
!
1
z,

O —1

Figure 10: A system in a steady state in which the state
of the fluid batween boundaries 1 and 2 is the same at
all times. The net mass flux across the entire boundary
of the system must be zero. The helghis of boundarios

1 and 2 2bove a datum are denoted Z; and Z; (see text).

Stcady
flow
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The condition of steady state requires that dE be zero.
The value of (1 -+ %— + g2)dm is then summed up over

all entry and exit conditions. For the simple example of
Figura 10, equabon (82) indicates that the difference be-

tween (h + -|—gz) at entry and cxit when added to the
heat @’ and shaft work W, passing inward across ¢ for
each unit of mass entering must equal zero:

2 2
(lz-l-%—i-gz)l—(/l‘i‘% +g22+ Q' — W' =0. (83)

CHEMICAL REACTIONS

Stable equilibriwm states. An isolated closed simple
system in which chemical reactions occur will attain a
stable equilibrium state if the reactions are left uninhibit-
ed to proceed as far as they will. Such a state is fixed by
two independent properties such ag energy and volume oy
temperature and volume, and it 1s called a state of chemi-
cal equilibrium. Among the properties of the chemical
equilibrium state fixed by the two mdcpendcnt properties
are the proportions of the molecular species present.

When a cbemical reaction proceeds at such a rate that
chemical equilibrium is not achieved, each state passed
through may be considered, for the purposes of analysis,
to be a stable equilibrium state for which an anticatalyst
has prevented chemical reaction. Between these states the
system muy experience chemical reaction in such degree
4s to produce a certain chemical aggregation in a second
state different from that in the first. These states may be
considered to have been achieved by snccessively remov-
ing and replacing an agent, such as an anticatalyst, that
prohibits a chemical reaction. In the presence of such an
agent each stable equilibrium state would correspond to
a different set of proportions of species that would consti-
tute a system with its own set of allowed states. To identi-
fy the stfte, therefore, it is necessary to add to the {wo
independent properties required by the state principle an
additional property that ideatifies the system. For exam-
ple, for a mixture of moJecules of nitrogen (N,), hydro-
gen (H,), and ammogia (NHj;) and the chemical re-
action of formation of ammonia from the elements N,
and H,,

1
§N2 + %Hz = NH;,

the energy, volume, and some measure of the degree to
which this reaction has proceeded in one direction or the
other would be required to identify the system and its
stable equilibrium state.

Heat in chemical reactions. For any chemical reac-
tion in a simple system, for which heat Q and work W
are the only interactions, the energy change AE is given,

according to equation (19), by the difference between |

heat and work: AE — Q — W. For a chemical reaction
in a system held at constant volume, the heat (Q)v, in
the absance of other interactions, is given by the incre-
ment in energy:

(Q)v = AE. (84)

For a chemical reaction in a system held at ‘constant
pressure, the heat (Q), is given by the increment in

enthalpy:
(@) =AH. (85)

For steady flow belween entry section 1 and exit section
2, the heat interaction, in view of equation (83), is the
increase in enthalpy H, — H, between the two sections
plus any shaft work W.:

0 =H,—Hy + W..

For a chemical reaction at constant volume in an iso-
lated system, po change in energy occurs despite the
large change in temperature that is usually observed, as
may be seen from equation (84) in which (Q)v (and
therefore AE) is equal to zero for an isolated system.

When values are sought in the Jiterature for the proper-
ties E and H for use in the preceding equations or for §
and Z for use in other equations, it is found that for

“tained when the chemical potentials g4, gs, .

different molecular species they are not available on a
common base—that is, an arbitrarily selected zero state is
used for each separate species independently of that for
any other. It is necessary, therefore, to supplement data
for the molecular species with data on change in vatues of
properties when each species is formed from the chemical
elements without change in pressare or temperature.

Equilibrium between chemically reacting species. In-
cluded in the description of a system is the set of possible
states that the systern may assume, The choice of this set
is often arbitrary and may be made to suit convenience
in approximating a real system and its behaviour. For
example, a system consisting of a mixture of hydrogen
and oxygen gases may or may not have included among
its possible states those in which water has been formed
by chemical reaction.

The description of a multicomponent system may or
may not permit a certain chemical reaction in which
some species are formed from others. Whenever a reac-
tion is permitted that was not permitted before, the num-
ber of components, each of which must be independently
variable, decreases by one. Moreover, one new kind of
change of state is introduced—namely, a variation in
which certain species leave phases in which they are ac-
tual components to form other species in phases in which
these others are actual components.

fFrom Q.A. Hougen, K.M. Walson, and R.A. Ragatz, Chemical Process Principles,
2nd ¢d, (1867), used with parmission of John Wiley and Sons, Ine.

Hy(@) + 30,

CO(g} + 3 0:(9)
10,600

equilibrium constant (Kp)
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200 400 600 800 1,000  1.200 1,400
’ temperalurs, °K

Figure 11: Variation in equilibrium constant, Kp, with variation

in tamperaiure for several chemical reactions (see text).

For a rcaction such that @ moles of 4 combine with b
moles of B, etc., 1o form & moles of K plus / moles of L,
etc., the stoichiometric (chemical-reaction) statement is

aA L bB 4 ... kK IL4.... (86)
This statement implies that the change An, in number of
moles of species A resulting from the reaction, when di-

vided by the coefficient a, is numerically identical with
similar quotients for the other species; i.e.,

_ Ang Any,

Any _ _ _ b

a b k l

The common value of the ratios, sometimes called the
degree of reaction, is denoted by Az The stable equilib-
rium state in a system for which reaction (86) is al-
lowed must be the state for wbich the entropy is at a
maximum for all the states having given values of energy
and volume of each phase. By refereace t¢ the Gibbs
equation (64), it can be shown that this maximum is at-
oy ME, B,

.of species 4, B, ... K, L, .. . are related as in the
following equation, which is called the equation of chem-
ical equifibrinm:

apg + bpa . .. .= 0. (88)
Because for each component of a Gibbs—Dalton mixture

= — At (87)

—,C.ux—lp-b—--




of semiperfect gases the chemical potential may be sim-
ply expressed, as in equation (68), in terms of the loga-
rithm of the partial pressure of the species in the mixture,
the condition for stable equilibrium becomes such that a
product of powers of the partial pressures pz, ps, . - .,
Px, P, » « » is the same for a given temperature regardless
of the proportions of the components that make up the
mixtuge. This product is called the equilibrium constant
in terms of pressure. For reaction (86) it is given by

pEpi ...
pPiPR ...

The variation of K, with variation in temperature for a
number of familiar reactions is shown in Figure 11.

For a chemical reaction among the componeants of an
ideal solution, a similar equilibrium constant is found for
which the mole fraction x; of component I is substituted
in equation (89) for the partial pressure of component I:

xkx}

Fo
KL kAT
x4 x%. .. «D

= p(T ). 89%)

(90)

When a gas mixture is not a Gibbs-Dallon mixture or a
solution is not ideal, then a property called the fugacily
takes the place of pressure in equation (89), and one
called activity takes the place of mole fraction in (90).
(For the definitions of these properties, see SOLUTIONS
AND SOLUBILITY: }

Because each of these so-called equilibrium constants
chapges with change in temperature, some knowledge of
the rate of change of the value of X with temperature is
of great value. This rate is expressed most simply as the
rate of change of In X with temperature, and it proves to
be equal to the quotient of the change in enthalpy when
the reaction occurs at constant pressure and temperature
and the product R72. In non-ideal mixtures (or solu-
tions) the chapge in enthalpy must be measured between
a reaclants state for which the fugacity (or activity) of
each reactant species is unity and = product state for
which the fugacity (or activity) of each product is unity:

T dn Ko)/dT)y = 5. o)

AVAILABILITY FUNCTIONS

The economic and engineering importance of a system in
a given state is often determined by its available work
Qr with reference to ambient systems as a reservoir. The
function Qr, which was used above to introduce and de-
fine entropy, proves to be one of a number of availability
functions (all of which were stated or implied by Gibbs
in his papess of 1873 and 1877-78).

~ The decrease in Qr between two states of a system is the
maximum work that can be obtained from the system and
a reservoir at T, no net changes of state oceurring in any
other systems aside from, for example, the rise of an ex~
ternal weight. The maximum work is also the value of
the work produced by system and reservoir in a rever-
sible process and is a valuc common to all reversible
processes joining the two prescribed states of the system.
In view of equation (4) and the definition of the entropy
constant cp, the decrease in available work £z may now
be identified as the decrease in the quantity (E — T,S),
in which the subscript 0 is introduced to refex to the reser-
voir, The value of Q itself may be taken to be the maxi-
mum possible decrease in (E — T4S), which is also the
decrease when the system changes to a state of mutual
stable equilibrium with the reservoir.

If the system is surrounded by an atmosphere at tem-
perature T, that applies a constant pressure p, at all
interfaces with other systems, then some of the work dis-
cussed in the previous paragraph is associated with
change in volume of the atmosphere. The net maximum
useful work, (W.)mae, that can be delivered by system
and atmosphere to other things for a change from state
1 of the system to state 2, no net changes in state oc-
curring in any other things aside from the rise of a weight,
is given by the decrease in an availability function & de-
fined as E 4 PyV — TyS:
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(Wu)mggj = ‘Pi —_ Qz.

The function & is useful io evaluating the performance
of a work-producing device that changes volume as it uses
up its capacity for doing work.

A less well krown availability function is that for a
system exposed ag before to a large reservoir at fixed
pressure p, and temperature T, with which the system
can exchange (through permeable or semipermeable
membranes) component species; that is, transfer of these
species can occur until the chemical potential of each in
the systcm equals that in the reservoir. This availability
function, denoted by 5, has a minimum value of zero. It
is given by the relation

E=FE4 pV — TS — = pione, (92)
1

#1o denoting the chemical potential of component i in the
reservoir.

NEGATIVE TEMPERATURE

In the interest of simplicity, the third corollary of the

second law was stated above as follows: A system in a
stable equilibrium state can receive but cannot produce
work. Although this statement is satisfactory for all ordi-
nary systems, which are also called normal systems, re-
cent developments in the theory of nuclear spins—the
spinning of neutrons and protons of the atomic nucleus
that contributes to both the angular momentum and the
magnetic moment of the atom—have shown that some
systems, which will be called special systems, in stable
equilibrium states can produce work but cannot receive
work.

A special system requires the following characteristics:
(1) the energy of its allowed states has a finite upper
limit; and (2) it must be coextensive in space with anoth-
er system that shields it from work interactions that
would change its volume or the velocity of its parts. For
example, a litbium fluoride crystal may be considered to
contain two distinct systems occupying the same space.
The first, a special system, consists of the nuclear spias of
the atoms of the crystal and has the energy of these spins.
The second, a normal system, consists of the same atoms
in the crystal, but its energy does not include that of the
nuclear spins of the atoms, The stable equilibrium states
of the two systems can be identified and distinguished
because each comes to equilibrium in itself much more
rapidly than they together approach mutual stable equi-
librium.

It can be shown by reference to the second law of
thermodynamics that for a closed special system the en-
tropy-energy diagram js as shown in Figure 12, The
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Flgurs 12: Entropy-energy diagram for a closed
special system, tor which negative absolule
temperatures exist (seo toxt),

curve ABC represents stable equilibrium states as well as
the upper boundary for the region of all allowed states
for given values of constraints 8. Normal stable equilibri-
um, states, which a special systern may assume, are those
on the AB part of the curve, Special stable equilibrium
states are those on the BC part of the curve, and for these
special equifibrium states the emergy decreases with in-
crease of entropy. In view of the definition of tempera-

Character-
istics of
special
systems
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wre (equation [i3]),

the temperature is therefore rep-
resented by a negative pumber.

The significance of negative tempera(ures on the scale of
botness and coldness can best be described in terms of the
reciprocal Kelvin scale r, jn which r = 1/7. The possible
range of values of 7 is from minus infinity to plus mfnity,
with the hottest temperature possible at minus infinity
and the coldest temperature possible at plus infinity.
Thus, negative temperatures correspond to hotter levels
(the direction of heat flow being from hot to cold) than
plus infinity on the Kelvin scale. The so-called absolute
zero on the Kelvin scale becomes plus infinity on the =
scale of temperature.,

THIRD LAW

Valid calorimelric experiments at temperatures near zero
on the Kelvin scale invariably are in accord with the
following postulate, which is the third law of classical
thermodynamics: The entropy of any finite system ap-
proaches a noninfinite value as the temperature on the
Kelvin scale approaches zero.

The third law applies only to stable equilibrium states
and implies that the heat capacity at constant constraints
must go to zero at zero temperature. It follows tbat a
substance cannot be treated as a perfect gas at tempera-
lures near zero, because for a perfect gas the specific heat
capacity at conslant volume is constant, and the entropy,
as given by equalion (55), approaches minus infinity. For
crystalline substances near zero temperature, the varia-
tion of heat capacity is often found to be proportional 10
7™, n being greater than unity.

From the third law in combination with the second law,
it can be shown that for aay finite system all paths of
stable equilibrium states for fixed values of constraints g
must converge on & single value of eatropy as they ap-
prosch zero temperature, as shown in Figure 13.

B8i =8y
61=Fx
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Figure 13: Convergence of values ol entropy of siable
equilibrium states of a system upon 2 single value at very tow
femperatures, as posiulated by lhe third taw of thermogynamics.
For a given value B of constrainl 8¢, Pm represents siable
equilibrium states and Pn matastable states (see texi),

From the curve of stable equilibrium states for constant
values B¢ of constraints 84, a branching may occur, as
shown Dy Pn of Figure 13, but the states along Pn cannot
be stable equilibrium states. They may be metastable or
unstable, and the constant-entropy process nk from one
of these states to the corresponding stable equilibrium
state can be neither reversible nor adiabatic. Moreover,
the change at zero temperature from » to m may be a
spontaneous jrreversible change to a stable eguilibrium
state. It follows that, as the temperature approacbes zero,
the magnitude of the entropy change in any isothermal
reversible process approaches zero. This is the Nernst
heat theorem, named for the Nobel-Prize winning Ger-
man chemist, which is a corollary of the third law as
stated above. An equivalent statement is that, as the tem-
perature approaches zero, the magnitude of the entropy
change between any pair of stable equilibrinm states at
the same temperature approaches zero.

Because the change between stable equilibrinm states

may involve a change in value of a constraint, such as the
volume, all states that can coexist in stable equilibrium at
2ero temperature must have the same minimum value of
the entropy for the same mass. Moreover, if a system
consisting of chemically reacting species can be brought
into a stable equilibrium state by imposing appropriate
electrostatic forces in an electrolytic cell, then the system
must have the fame minimum value of entropy whether
in the reactants state or the products state.

It 1s appropriate now to assign the value zero (o the
minimum value of the entropy for 2 given system. The
energy at any finite temperature for given values of con-
straints 8 may be found from the experimentally deter-
mined relation between the heat capacity Cg and tem-
perature by integrating the product CgdT from tempera-
ture zero to temperatore T

T=7T

[E = Eirao)ls = q 3, cl
Similarly, the entropy at any finite temperature may be
found by integrating the product (Cg/T)dT:
T-T7T Cﬂ
Sg = - S_ 0 T dr,

It 1s possible, therefore, to determine the values of Gibbs
free energy (E + pV — IS) for chemically reacting
species at some standard pressure and temperature and,
from these values, the conditions for chemical equilib-

‘rium, including the equilibrium constants—all without

experimental values for the chemical reaction as such
between the species.

IV. Force fields
NONRELATIVISTIC RFFECTS

Whean to the conditions for a simple system, gravitational,
electrical, and magnetic constraints in the form of applied
force fields are added, an additional term appears in the
Gibbs equation for each additional constraint. Each
added term i8 a product similar to the product pdV in that
it represents the work done in a reversible process in
which the value of a constraint is varied.

When a gravity field is applied to a system of mass small
enough so that the field is affected by it only negligibly,
a gravily potential y may be defined as the increase in
energy per unit mass of an elementary system as it is
moved from a reference level (y = 0) to the given level
while entropy, number .of particles, and volume con-
straint are held constant. The Gibbs equation (64) for
a system of mass m then becomes

dS = £1dE + pdV 2 i = may). 93)

A simple and familiar condition for stable equilibrium
that can be deduced from the Gibbs equation in form
(93) is that for an otherwise simple fluid system in a
gravity field, the rate of change of pressure with vertical
distance is proportional to the density of the fluid, The
proportionality factor proves to be g, the so-called accel-
eration of gravity.

A modification of the Gibbs equation similar to but
more complicated than that given above for a gravity
field has been devised to apply to a diclectric material, a
material of which the electrically charged component
species cannot move from one position in the material to
aoother as it changes between neighbouring stable equi-
librium states in an eleciric field between the plates of a
capacitor. Another has been devised for a magnetic mate-
rial in a magnetic field. (They will not be given here.)

RELATIVISTIC EPFECTS IN A GRAVITY FIELD

In an extremely intense gravity field, relativistic effects
cannot be ignored. By combining the Einstein relalion
between energy and mass (E = mc2) with the first and
second laws, the following two conclusions are reached:
(1) For stable equilibrium in a vertical column, it is
necessary, as in noarelativistic systems, that the tempera-
ture, (DE/3S).g, be uniform. (2) If a system is held at
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constant volume and lifted reversibly and adiabatically
—that is, at constant entropy S—the pressure and tem-
perature of the system both increase. More specifically,
the increase in the natural logarithm of the pressure when
the sysiem is lifted from the level at which the gravity
potential y is arbitrarily assigned the value zero to a level
at which it has the value ¥y is equal to the quotient of y
and the square of the speed of light ¢. A similar staternent
holds for temperature. Since the square of the speed of
light ¢ is a very large number, the effect on pressure and
temperature will be small except in very intense gravita-
tional fields.

The relation belween temperature and gravity potential
may be derived by consideration of a cycle in which a

- pure mojecular species in a triple-point state (for exam-

ple, solid, liquid, and vapour in mutual stable equilib-
rium) js lifted reversibly, adiabatically, and at constant
volume {rom the reference fevel y = O to the level v,
heated reversibly at constant temperature, lowered re-
versibly and adiabatically to y = 0, and cooled to the
original state. Because of the increase in mass in the
beating process, the work of descent will ¢xceed the work
of ascent. The cfficiency of this cycle may then be equated
to that of a Carnot cycle in terms of temperalure, as in
equation (22), to obtain the desired relation.

V. Steady rate processes

Many applications of thermodynamics involve interac-
tions between systems some or all of which are passing
throngh nonequilibrium states. For example, chemical
and nuclear reactions and flow of energy and matter are
processes occurring in systems passing through nonequilib-
rium states.

The analysis of nonequilibrium states is more difficult,
both conceptually and numerically, than that of stable
equilibrium states. For example, because the number of
properties required for the description of nonequilibrivm
states is larger than that for stable equilibrium states, the
mathematical relations between propertics are corre-
spondingly more complicated.

In the interest of simplicity, the following applications
are restricted to systems in steady states having fixed
time rates Of change of extensive properties. These ap-
plications will be called steady rate processes.

APPROACH TO MUTUAL STABLE EQUILTRRIUM

If two systems I and 1/ are each in a stable equilibrium
state but not in mutual stable equilibrium, a process in
which they change toward mutnal stable equilibrium will
oceur if they are connected by an intermediate system M.
Depending upon the nature of the three systems and their
states, the process that occurs may be caused by the trans-
fer through 3 of energy alone or of matter with energy.
The rate at which such trapsfer occurs will depend upon
the initial departure from mutual stable equilibrium of
systems I and II, By means of the first and second laws of
thermodynamics and one additional postulate to them, a
pumber of useful relationships between rates and poten-
tial differences or gradients may be determined for a
substantial variety of rate processes, most of which are
irreversible.

Generally it is possible to conceive of the process in M
as being caused by two systems I and 7, each of which
would immediately assume a stable equilibrium state if
the communication with 3 were suddenly stopped. To
meet this requirement, the conductivity of matter or en-
ergy in 7 and II must be very great, so that whatever the
inflnence on I of interaction through M with 1I, that
influence will be felt uniformly through I and similarly
with Z1. If the region is fluid, this result coufd be attained

- by minimal stirring of the fluid.

Under these circumstances, values of properties may be
assigned to I angd I7. Region M, on the other hand, is in a
nonequilibrium state. Nevertheless, values of intensive
properties such as temperature and chemical potential of
component i can be assigned to a poini A in the region M
by the method of local isolation. This method consists
of isolating a region comprising point 4 and measuring
the intensive property for this region when it reaches a
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stable equilibrium state. The value of the property in the
limit as the size of tbe region is reduced to the smallest
consistent with isolation may be taken to be the value at
point 4,

Region M will be assumed to be in a steady state; that s,
the rate of change of any intensive property of I, 17, or M
is negligible. Extensive properties of 7 and 1, oo the other
hand, may change at a finite rate, and any such rate js
called a flux. Thus, an energy flux J, is defined as
the negative of the change of energy of I per unit time
and, because of steady state in M, the change of encrgy of
IT per unit time :

(%4)

Similarly a flux of component i is denoted by J; and is
given by

_dmy _ dngr
at dar -

Under the steady-state conditions assumed and with 7
and II each held at constant volume, any one flux must
depend upon those differences in intensive properties be-
tween / and 17 that measure the departure from stable
equilibrivm. Among these may be differences in tempera-
ture, pressure, mole fraction of component 7, potential of
component i, etc. The choice of differences that is made
is governed by the postulate to be employed. It is made
by expressing the rate of entropy generation in the pro-
cess in terms of the Gibbs equation and using the re-
sulting expression to define conjugate pairs of fluxes and
forces. Bach flux is then expressed in terros of all the
forces so defined. '

The region M between I and Il may be subdivided into
vertical laminas dM, over any face of which, for interac-
tion in one direction only, the values of -all intensive
properties are uniform. For any one lamina, therefore,
constant-volume stable equilibrium regions I and I7 may
be substituted for material adjoining M without alter-
ing the process in the lamina (Figure 14).

Ji 95)
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Figure 14: Two systems, / and //, each in siable equilibrium ,
but not in mutual stable equilibrium, interacting through a thin
intermediate system dM, which is in a2 nonequilibrium state.
The symbol 7 represents the quaniity 1/7, the reciprocal of
the absolute temperatura (see text).

For steady state in dM the rate of entropy generation in
the process will be wholly accounted for by changes of
entropy in I and I7. Because the Gibbs equation (64)
states the entropy change of a phase such as I or I7 in
terms of the temperature, chemical potentials of compo-
nents, change-in energy, and chapge in masses of compo-
nents, it will yield an expression for the rate of entropy
change in terms of temperature, chemical potentials, and
rates of change of energy and masses. These rates of
change are the fluxes, J, and J,, of energy and of compo-
nent, as indicated above. Because of the steady-state con-
dition these fluxes may prove to be identical for regions
I and I, but they will differ at most only infinitesimally
for an infinitesimal thickness of the lamina dM.

The rate of eniropy generation in the whole process is
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found by summing for regions I and 77 the rates of entro-
py change, ope of which will be negative and the other
positive, to get an infinitesimal difference between two
finite rates. This rate of entropy generation will then be
the sum of products of fluxes and differences between /
and /I of potentials. These products are J.d(1/7T) and
J:d(—pi/T), symbol d denoting the difference between
the vafue in I/ and the value in I of the potential in
parentbeses. Thus the expression for the rate of entropy
generation d§ is '

as = ud(3) + 2.4 <),

in which %‘. denotes summation over all component sub-

(96)

stances i = 1,2, ... k.

This last expression serves the purpose of identifying
conjugate fluxes and forces; that is, for energy flux J, the
difference d(1/7) is the conjugate force, efc.

Each flux J,, J. of eguation (96) is a function of the
state of one of the stable equilibrium regions I or /I and
of the forces d(1/7), d(—u:/T), with the further condi-
tion that, whatever the state, the flux will be zero when
all forces are zero—that is, for mutual stable equilibrium.
Purely mathematical considerations indicate that the
functional relation between a flux such as J, and the
forces d(1/T), d(—pi/T) is a very simple one, pro-
vided that the fluxes are small; e, provided that the
deparlure from mutual stable equilibrium is small. This
functional relation is that the flux is equal to the sum
of terms each consisting of a force multiplied by a co-
efficient L. From thermodynamic considerations it can
be shown that the magnitudes of the coefficients L are
fixed once the nature and states of regions I and M are
fixed. They are independent of the magnitudes of the
forces d(1/T) and d(—pu/T). The functional relation
is thus given by

Ju = Luu d(%-) + ?Lud d(—%‘)

1 i
5 = Lud( ) + 2 Lud( -%),

in which the first subscript on an L refers to the flux and
the second to the force term in which it appears. Al-
though exceptions to them may doubtless be found, these

7N

(98)

‘equations are of general application to rate processes and

become increasingly valid the more nearly all the fluxes
approach zero. They are known as phenomenological
equations, and the coefficients L are known as conduc-
tivities.

The Onsager reciprocal relatiop, the additional postu-
late referred to above, is as follows: The matrix of coeffi-
cients L of a set of equations such as (97) and (98), in
which conjugate pairs of fluxes and forces are identified
through expression (96) for the rate of entropy produac-
tion, is symmetrical; that is,

(99)

Lars Onsager, a Norwegian—American theoretical
chemist, stated this new law in 1931 in an argument
based on a principle of statistical mechanics called the
principle of microscopic reversibility and a postulate that
is closely related to the second law of thermodynamics.
The new law was subsequently shown to be of general
application in irreversible processes and was extended to
a wide variety of phenomena.

The phenomenological equations reduce to special
forms for various special systems and force conditions
and are known under different names. For example, Fou-
rier's law of heat conduction (for the 1Sth-century
French mathematician and physicist Jean-Baptiste Four-
ier), Ohm's law of electric current flow (for the 19th-
century German physicist Georg Simon Ohm), Fick's
law of neutral particle difusion (for the 19th-century
German physiologist Adolf Eugen Fick), and the law of
ambipolar diffusion of positive and negative charges are
all special cases of the linear phenomenological equations.
The constants appearing in the laws just cited, such as

L¢,=L,¢fori,i=u.1.2....

electric resistance in Ohm's law, may be expressed easily
in terms of the conductivities L of the phenomenological
equations.

FLOW OF A SUBSTANCE THROUGH A BARRIER

A relatively simple application of the thermodynamics of
rate processes is to the flow of a single-component sub-
stance through a barrier M under conditions such that
the phenomenological equations (97) and (98) are valid.
An example would be the flow of heJium through a rub-
ber membrane between two stable equilibrium regions /
and I1. The Onsager reciprocal relation is simply that
L., = Ly., subscript 1 referring to helium.

The two forces are the djfferences across the membrane
d(1/T) and d(p,/T). When the flux of helium is zero,
then the difference d(1/T) causes its conjugate energy to
flow downgrade in temperature and upgrade in 1/T,
When the temperature diffcrence and d(1/7) are zero,
then its conjugate helium will flow downgrade in chem-
ical potential and in z,/7. Each of these forces, however,
tends to cause its nonconjugate flux, as well as its con-
jugate flux, in one or the other direction. This bebaviour
is called coupling. In the absence of coupling, the co-
efficients L.; and L,. would both be zero.

By virtue of coupling, the two forces may be set in
relation to each other so as to stop the flow of helium
because of a balance between the opposing influences of
the two forces. Such a steady state will be attained spon-
taneously if a temperature difference is maintained be-
tween / and // for a long enough period of time while the
volumes of 7 and /T are held constant. The flow of helium
will eventually cease—or at least approach zero as a lim-
it as time proceeds. A flow of energy will persist, how-
ever, in the steady-state condition by virtue of the tem-
perature difference.

It can be seen from the second phenomenological equa-
tion (98) that the ratio L,./L,; is equal to the ratio of
forces d(py/T)/d(1/T) when J, is zero, From the two
equations (97) and (98) taken together it can be seen
that the ratio L.,/Ly; is equal to the ratio of fluxes
J./J, when d(1/T) is zero. Because the Onsager recip-
rocal relation requires that L,. be equal to L., it fol-
lows that the ratio of forces when J is zero must equal
the ratio of fluxes when the temperatures of I and I/
are equal.

By means of a simple thermodynamic analysis, the
ratio of forces d(g,/7)/d(1/T) may be expressed in
terms of the ratio ok pressure difference to temperature
difference dp/dT, which then proves to be proportional
to the excess -of J,/J, for dT equal to zero over the
enthalpy A, of helium in region /. The actual relation is

D), - ()]
(JT si=0  oaTL\J1/ar=0 i |- (100)

This relation gives the ratio of the pressure gradient to
the temperature gradieot for which the particle flow is
stopped. Because it can be shown that for simple bulk
flow Ju/J; is h, for fluid crossing any section in which
the temperature is uniform in the direction of flow, it fol-
lows from equation (L00) that bulk flow may be stopped
even in a temperature gradient by zero pressure gradient.
Whenever the energy flux per unit particle flux differs
from h, in constagt-temperature flow, then a pressure
gradient is necessary to stop flow in a femperature
gradient.

Application of equation (100) to the flow of a perfect
gas may be made for a porous plug with pore sizes very
small compared with the mean distance travelled by gas
molecules between collisions or compared to flow be-
tween emitting and receiving surfaces separated by a dis-
tance that is very small compared with the mean distance
between collisions. For both of these the result is the
same and can be shown to be

f_fe) _1r
(dT ssmo 2T on
or, for a finite length,
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These relations describe what is known as the Knudsen
effect.

The excess over the enthalpy flux of the energy flux
across the barrier.per unit of matter flowing when d7T is
zero is called the heat of transport and is denoted by

a1 ;
uw
— — Hy.
Jl)d7'=0 !

It is the direct beat interaction that must be provided
between regions /I and I (Figure 14) when one unit of
mass flows from / to /I through M if the tempecatures
of I and /] are to be maintained equal. Its magnitude can
be found, in accordance with (100), by a measurement
of the ratio dp/dT that corresponds to a flux J; of zero.
The value found in this way for the heat of transport
through a rubber membrane for nitrogen is —260 calories
" per gram mole and for hydrogen + 100.

g1 = (103)

VI. Statistical thermodynamics

The mechanical theory of heat was developed concur-
rently with thermodynamies. It relates heat to changes in
the motion of the atoms and molecules of matter. The
history of the theory can be traced back to the Greek
philosophers Democritus (¢. 400 Bc) and Epicurus (e.
300 Bc). The French philosopher Pierre Gassendi de-
veloped in the 17th century a theory in which all material
phenomena are attributable to the indestructible motion
of atoms. Although the English philosopher Robert
Hooke, the German philosopher and mathematician
Gotlfried Wilhelm Leibniz, and the Swiss mathematician
and physicist Daniel Bernoulli improved upon it in the
17th and [8th centuries the theory was not firmly estab-
lished until Joule demonstrated experimentally in the
19th century, that a quantitative relation exists between
heat and work when they produce identical effects.

After Joule's demonstration the theory devejoped rapid-
ly into a science of major importance that became known
as statistical mechanics or statistical thermodynamics. Its
subject is the relation between the laws of thermodynam-
ics and the details of the structure of matter. Its develop-
ment, which can be traced through Hermann Ludwig
Ferdinand von Helmholiz, 2 German physicist and anat-
omist; Clausius; Maxwell; and Boltzmann, culminated in
the work of Gibbs, who in 1901 presented an exposition
of statistical tbermodynamics that excels in complete-
ness, rigour, and generalily. Although.the exposition of
Gibbs is stated in terms of classical mechanics, it is better
adapted to quantum mechanics, which in some ways it
anticipates.

Perhaps because Gibbs’s contribution was not fully un-
derstood, a Jess general and less rigorous molecular sta-
tistics prevailed in the literature, with few exceptions,
until after World War II.

GIBBSIAN STATISTICS

According to classical mechanics, the state of a system
having N degrees of frcedom (independent ways in which
the space configuration of the system may change) is
fully specified by the values of N position coordinates
4y Qs - - - > gy, and N momentum coordipates py, py,

., pv. For example, the state of a system consisting of

n point particles (particles without internal structure and
therefore without internal degrees of freedom) is speci-
fied if the position coordinates along three Cartesian axes
¥, ¥, and z and the corresponding momentum coordinates
along these same axes for each of the particles are speci-
fied. For such a system the number N of the degrees of
freedom js equal to three times the number n of the
particles of the system,

The position of a particle in space may be represented
geometrically by a point in three-dimensional space hav-
ing coordinates x, y, and z. The state of the particle in-
volves not only the values of the coordinates x, y, and z
but also the values of momentum component (which
fixes the velocity component) p. in the x direction, py in
the y direction, and p, in the z direction, These considera-
tions suggest a2 mental extension of the concept of space
to six dimensions, having coordinates x, ¥, z, P=, Py, and
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p., The state of the particle could then be completely
described by a point in the six-dimensional space for
which the values of x, y, z, p, py, and p. are appro-
priately fixed.

The particle just discussed is said to have three degrees
of freedom, and its state can be represented by a poiot in
a six-dimensional space. A collection of two such parti-
cles might have six degrees of freedom, and the represen-
tation of ijts state would call for a 12-dimensional space.
The number of degrees of freedom of a more complex
system is the number of independent kinds of displace-
ment to which it is subject. The state of such a system
having N degrees of freedom may be represented geo-
metrically in classical mechanics by a point im 2N-
dimensional space having as coordinates gy, go, » . . s qr,
Py Pgs + + » 4 Px. This 2N-dimensional space was called
by Gibbs phase space.

According to Gibbs, the term thermodynaric state of
a system with N degrees of freedom does not necessarily
correspond to a unique point in phase space, but to a set
of probabilities of the system being in any one of the al-
Jowed points consistent with the constraints jmposed
on the system. Because any set of allowed states in clas-
sical mechanics forms a continuum, Gibbs introduced a
probability density or distribution P, which he called the
coefficient of probability, such that the product Pdq,dq,
... dqydp,dp, . .. dpy is equal to the probability of the
system being in states baving values of coordinates be-
tween g, and g, - dgy, g, and g5 + dg,, . . . , g~ and
gy + dgy and values of momenta between py; and
py -+ dpy, py and py + dpy, . . ., and py and py - dpx.
For a given thermodynamic state, the distribution P will
be a corresponding function of ¢’s and p’s. Furtheymore,
because a systern must be at some one of the allowed
states, the sum of all the probabilities must always be
equal to unity or, by the same token, the integral of the
distribution P over all ¢’s and p's must be always cqual
to unity.

Various types of thermodynamic states correspond to
particular matbematical forms of the distribution P.
For example, Gibbs assumed without proof that, for the
stable equilibrium states of a system with N degrees of
freedom, the coefficient of probability P corresponding
to the state gy, gay « + « s @y, Pyy Po « - -, Py Of energy ¢ is
equal to the number 2.718282 (the base of natral
logarithms) raised to the (¥ — £)/0 power, in which
¥ and 6 are constants; in other words, P is given by the
exponential relation

P = exp(\ye_e).

He called this distribution of probabilities a canonical
distribution. Further discussion of Gibbsian statistics will
be omitted because the quantum statistical thermodynam-
ics discussed below, though based on Gibbsian ideas, is
more complete.

(104)

QUANTUM STATISTICAL THERMODYNAMICS

Definition of state. In contrast to classical mechanics,
a fundamental premise of quantum mechanics is that at a
given time the most that can be said about results of
measurements on a system is the probability of finding
particular values of properties, such as coordinates and
momenta, rather than the particular values that will be
observed. This premise reflects the principle of indetermi-
nacy first introduced by the German physicist Werner
Heisenberg. It tequires a description of the state of a
system in terms of probabilities.

The principles of quantum mechanics may be stated by
means of a number of mathematical formulations.
Among these, the best known are the wave formulation
by the German physicist Brwin Schrédinger, the vector
formulation by the English physicist P.A.M. Dirac, and
the matrix formulation by Heisenberg. The matrix for-
mulation is especially suited to the exposition of quantum
statistical thermodynamics and is adopted below (for a
discussion of matrices in general, see the article ALGEBRA,
LINEAR AND MULTILINEAR ),

Any property of a system that in classical mechanics

Phase
space
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may be expressed as a function of position and momen-
tum coordinates is expressed in quantum mechanics by a
matrix. For example, the Hamiltonian function of classi-
cal mechanics, which is the emergy of the system, is
represented by the Hamiltonian matrix. Matrix represen-
tations are used also for properties (such as spin) that
have no classical analogue. The method of calculation of
clements of matrices is specified by the principles of
quantum mechanics.

Each matrix possesses elgenvalues that is, a set of num-
bers that can be found by solving the characteristic equa-
tion of the matrix. The eigenvalues of the matrix of a
property are real, as distinguished from complex, in the
mathematical sense. Each one corresponds to a possible
outcome of a measurement of the property performed on
the system. For example, 2 measurement of the energy of
a system in a giveo condition will yield any one of the
real eigenvalues of the Hamiltonian matrix of the system.
The number of cigenvalues of a property may be either
finite, as with spin, or infinite, as with energy for most
systems.

According to quantum mechanics, it is impossible to
predict from knowiedge of the condition of a system
which eigenvalue a measurement will yield. Instead, the
most that can be said at any instant of time is the
probability that a measurement will yield a given eigen-
value.

The state of a system is defined as the set of all
probabilities for the outcomes of all measurements that
may be performed at a given instant of time, That is, the
statc of a system js represented by Table 2, in which F, G,

Table 2; State of a System
property F G H
Probabilities ~ W(F) W(G) W(HD ...
W(F) W(GY) W(HY) ...
H, ... denote observable properties and in which
W(F ) denotes the probability that any ome measure-
ment of property F will yield the eigenvalue Fy, . . .,

W(Gy) denotes the probability that any one measure-
ment of property G will yield the eigenvalue G4, .. . and
so forth. Tt can be shown that these probabilitics can be
combined (o form a matrix [p], called the density matrix
or statistical matrix. Conversely, a systematic procedure
exists for determiniog from a given density matrix [p]
the probability W(E.) that a measurement of emergy
corresponding to the Hamiltonian matrix [E] will yield
the energy eigenvalue E, of (E]. Again, the procedure
yields the probability W (F) that a measurement of prop-
erty F corresponding to matrix [F] will yield the eigen-
value Fn of [F].

Expectation values of properties. Because measure-
ments of a property F of a system in a given state yield
different eigenvalues F,., each with a probability W (Fn)
specified by the density matrix [p) that represents the
state, an expectation value or simply a value of the prop-
erty corresponding to the given state is defined-as the
weighted average of the various possible eigenvalues,
each eigenvalue being weighted by the probability that
it will be observed. Symbolically, the value ¥ of a proper-
ty F may be represented as a sum over many terms, each
of which is the product of a probability W(F.) and the
eigenvalue F,; that is,

F = 2 W(Fw)Fn, (105)

in which the symbol E denotes summation over all ei-

genvalues, and each elgcnvalue is represented by a differ-
ent symbol (different value of the subscript m) even
when two or more eigenvalues haye the same value. (For
some matrices several distinct eigenvalues may have iden-
tical numerical values. The eigenvalues are then called
degenerate.)

Reversible equation of motion. Quantum mechanics
provides an equation, called the equation of motion, from
which can be found the rate of change of the density
matrix [p] with time for each of the numerous processes
that are reversible and adiabatic. The equation will not
be given here,

Conditions for equilibrium are found from the equation
of motion. If the eigenvalues of the density matrix [p] for
an equilibrium state are denoted by ¥, x5, . . ., Xm, .. .
and the eigenvalues of the Hamiltonian matrix [E] by
E,E,...,En...,itcan be shown that, in the ab-
sence of irreversibilities, a necessary and sufficient con-
dition for equilibrium is that the first eigenvalue x; be
equal to the probability W(E,), that a measurement of
the energy will yield the first eigenvalue E,, the second
eigenvalue x, be equal to W(E,), etc. Moreover, for
equilibrium states the expectation value of the energy
E can be expressed as a sum of terms each of which js
the product of x» and Eg; that is,

E = 2 xmEp. (106)
m

General expression for entropy. According to the first
and second laws of thermodynamics, entropy is a prop-
erty or state function of a system. Moreover, it must be
invanant in any reversible adiabatic process. From these
two conditions and the requirement that it is an exten-
sive property, the expectatioun value S of entropy can be
shown to be proportional to 2 mean of the natural loga-
rithms of the eigenvalues of the density matrix. When
Yis Yoo+« 5 ¥Ym, . . . denote the eigenvalues of the den-
sity matrix [p] (corresponding to an arbitrary state, which
is not necessarily equilibrium or stable equijlibrium), the
mecap is calculated by weighting each In y. with the
value yn. In mathematical form this statement is ex-
pressed

S = “"kﬁym]-n)"m; (107)
in which % is a universal constant that proves to be the
Boltzmann constant.

Pure states. A pure statc is defined as one for which
the eigenvalues of the density matrix [p) are all equal to
zero, except for one that is equal to unity. It follows from
equation (107) that the entropy of a pure state is equal to
Zero0.

It can be shown that any pure state may be described
also by means of a wave function of quantum mechanics;
apd, conversely, states that can be described by wave
functions correspond to zero entropy. In general, how-
ever, the entropy of a system is not cqual to zero, and the
state of the system cannot in gencral, therefore, be de-
scribed by a wave function.

Stable equilibrium states. In the language of quantum
statistical thermodynamics, the criterion for stable equitib-
rium (see above Stable equilibrium) implies that the
density matrix for a stable equilibrium state be such that
the entropy (equation [107]) is at its maximum for given
expectation values of energy and numbers of particles.
When this criterion is applied to a system of which the
numbers of particles are known without uncertainty (the
probability of the value for the nuraber of partticles of a
given kind that is found by a measurement is unity), it
yields the eigenvalues x§, x5, . . ., X3, . . . for the stable
equilibrium states as functions of the energy eigen-
values E|, E,, . . ., En, . . . of the Hamiltonian ma-
trix of the system and the temperature of the stable
equilibrium state in question. The various mathematical
functions are as follows:

o . exp(—E/kT), o _ exp(—Es/kT) |
e ﬁexP(—Em/kT)’X’ = Sexo(—En7kry 1O
_ (oE
r= 3_-9):3' (109)
ZEq exp(—Em/KT)
E= i n En = 3 exp(— En/kT) (110)



and

S=—-kZx5mnx5
7

%10 [ = exp( = En/kD)) + 2. (111

T

Because the eigenvalues x4, xg, . . + , Xm, . . . Of the
density matrix for any equilibrium state and, therefore,
the eigenvalues x§, x5 ..., x5, . . . of the density ma-
trix for any stable equilibrium state represent prob-
abilities that measurements of energy will yield eigen-
values E;, E,, y Em, . . ., respectively, equation
(108) can be thought of as analogous to the canorical
distribution postulated by Gibbs, provided that the two
constants © and ¥ in equation (104) are expressed in
terms of the temperature T and the enecgy eigenvalues

Il

E,Es ..., En, ... .It can be shown that & and ¥ are
given by the relations

= kT (112)
and

E,/kT)]. (313)

It can be readily verified from equatiops (111) and
(113) that the function ¥ is equal to the Helmholtz free
energy of the system; i.e., equal to E — 7.§. Moreover,
because the energy eigeavalues By, E,, ..., En, .. . are
in general functions of the values of the constraints, the
Helmholtz free energy ¥ is a function of temperature
and the constraints and, therefore, a characteristic func-
tion. This means that in quantum statistical thermody-
namics the problem of cvaluating the properties of any
system with numbers of particles that are known without
uncertainty and in a stable equilibrium state reduces to
the problem of evaluating the energy ecigenvalues as
functions of the constraints. The evaluation. of the energy
eigenvalues is a difficuit mathematical task that has been
carried out for only a very few systems. The difficulty,
however, is in the calculation rather than in the concep-
tion of the evaluation.

The quantity ., called the canonical partition function,
is defined as the sum of exp(—E,/kT), exp(—E2/kT)
cxp(—EalkT) ete, It appears m the expressions for
many properties of systems in stable equilibrium states,
For example, because

Qc = 2 exp(—En/kT),

v = kTIn [Z exp(—
m

(114)

it follows that the probability x5 of observing an encrgy
eigenvalue E, is the quotient of exp(—Ex/kT) and Q.
that the Helmholtz free energy per mole is the product
of (kT) and the logarithm of Q., and that the entropy is
the sum of tbe product k In Q. of k and logarithm of Q.
and the quotient E/T of the expectatioo value of the en-
ergy and the temperature:

x9 =CXD(—Q_E:"//£); ¥ =kTIln Qc;and S = klIn Q; + —Ef

STATISTICS OF GRAND SYSTEMS

Stable equilibrium states. In many systems the oum-
bers of particles may be uncertain either because the
System is open to the transfer of rest mass or because
particles can be created and annihilated within the sys-
tem. The terminology of Gibbs suggests that such systems
be called grand systems.

By definition, uncertainty in the numbers of particles
means that measurements of these numbers for a grand
system ip a given state yield different particle-number
CchnVﬁ.lUCS This uncertainty is analogous to that associ-
ated in general with the energy. It follows that an expec-
tation value rather than a dlspersmn -free value (that is,
rather than & unique value that is observed as a result of
every measurerent) is assigned to the number of parti-
cles of each component of a state of a grand system.
Without discussion of the matrix formalism for grand
systems, some results applicable to stable equilibrivm
states will be given.

A stable equilibrium state of a grand systcm is fully de-

scribed by the set of eigenvalues x9, X 2‘ C e e )(m; N
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of the density matrix that maximizes the entropy of the
system at given expectation values of energy, numbers of
particles of the components, and constraints. The mth
eigenvalue x5 is equal to the probability that a suitable
meastrement will yield the mth energy eigenvalue En
and thc mth number-of-particle eigenvalues Mym, fam,
., nem for the set of k components of tbe system. It can
be expressed as a function of the cnergy eigenvalues E,,
P . of the Hami{tonian matnx of the system,
the exgenvalues Mygy Mygy + « <5 Mim, « - . Of the number of
particles of component number one, the eigenvalues n,;,
Nogs « '+ » Mam, » . . Of the number of particles of com-
ponent number two, . .., the total potential py, po, . . .,
u Of the & components I 2 .k, and the temperature T
of the stable equilibrium state in question. It is given by
the relation

o _ eXP(n1mut + Romps 4. . F Mempr — Em)/KT]

"'_f‘exp[(mmm - nomus oo F Nemutk — Eg)/kT] (115)

The sum in the denominator of (115) is called the grand
partition function Q,; i.e.,

Qy E’Eexpi(mmm + nomua+ .. Hpmpx — ER)/KT). (116)

It appears in many relations between properties for grand
systems in stable equilibrium states. Por example, for a
grand system with volume V as the only independent
constraint, tbe equation of state is given by the relation

pV/kT = 1a Q,. (117)

Bquation (117) applies to grand systems in gaseous, liq-
uid, or solid states.

The one-particle approximation for one-component sys-
tems. Because of mathematical difficulties, the energy
eigenvalues of most systems can be computed only ap-
proximately. A class of approximations that consists in
expressing each energy cigenvalue of the system as a sum
of energy cigenvalues of suitably defined subsystems,
each having one particle only, is called the one-particle
approximation. It is valid for some crystals and for dilute
gases at such Jow densities that short-range interparticle
forces (forces between two particles that act only when

the two particles are very near each other) can be ne--

glected, and long-range forces on each particle are inde-
pendent of the positions of other particles. Some results
of the analysis applicable to dilute gases will be given
below.

In the coptext of the one-particle approximation, each
of the energy eigenvalues E,, Es, . . ., En, ... of a dilute
gas baving one component only (namely, consisting
of a number of particles of a single type) is expressed as
a sum of terms soch that each term is a positive integer
multiplied by an energy eigenvalue of a system that has
one particle -only and for which the eigenvalues can be
evaluated, For example, if ¥y, ¥m2 +» « » ¥my, . . . devote
the positive integers that appear in the sum for the mth
eigenvalue E,, and 2, &, ..., &, . -. ., the energy eigen-
values of the system with the one particle, then En is
given by thé relation

Ep = vmieL +vmae2+ ... +vmgei+ .

= ?y,,,,-q for all values of m. (118)

Equation (118) is interpreted as meaning that of the 2im
particles associated with the energy eigenvalue Em, vm:
have energy e, vm2 have energy e, . . ., va; have energy
ej, . . . . From this interpretation it follows that the sum
of all the positive integers ¥my, Yma, - - » . must be
equal to na; le.,

)/m1+tl'm:+‘-.+vm;‘+..

y Pmis -«

.= ?ym‘ = Ny, (119)

The values that each integer vny can assume are re-
stricted by the nature of the particles in question. For cer-
tain particles, called fermions, each r»m; may be either
zero or unity for all values of the subseripts m and j; i.e.,
for any energy eigenvalue E, of the overall system and
any energy eigenvalue ¢; of the auxiliary one-particle sys-

Fermions
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bosons
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tem. Por example, because electrons are fermions a grand
system consisting of electrons has, for a state with an
energy cigenvalue E,, at most one ¢lectron of one-par-
ticle epergy eigenvalue ¢;. (This restriction is equivalent
to Pauli's exclusion principle of atomic physics.) On the
other band, for certain particles called bosons, each of
the integers v.; may have any positive integral value as
well as the value zero. In a grand system consisting of
photons—which are bosons—in a state with energy eigen-
value En, any number of photons from zero to n, may
have a particular energy s;.

When the allowed numerical values of the integers »am;
are considered, the properties of a ditute gas in a stable
equilibrium state can be expressed as functions of the
one-particle energy eigenvalues eq, ey, . . ., &y, . . . Father
. than the eigenvalues E;, Ey, . . . , Ea, .. . of the overall
system.

For example, the expectation or average value »; of the
number of particles that can be thought of as having one-
particle energy e,—namely, the expectation value »; of
the integers »iy, vas, » + « 5 ¥my, « . —1is defined as the sum
of terms each being an integer »», multiplied by the prob-
ability x5 that a suitable measurement will vield the
energy eigenvalue En.

It can be shown that, if x denotes tbe total potential
of the single component of the grand system, then v is
given by the relations

- 1 .
r = x° = f
v ’z;‘xm Vim XDl — O/ 1 for fermions (120)
and
vy = B X2 vjy, = L for bosons.  (121)
k3

exp ((¢j — w/kT] — 1
Relation (120) is called the Fermi-Dirac distribution,
and the corresponding djlute gas is said to obey Fermi—
Dirac statistics. Relation (121) is called the Bose—Ein-
stein distribution, and the corresponding dilute gas is said
to obey Bosc—Einstein statistics.

Again, for a system with volume V' as the only con-
straint, it can be shown that the equation of state, (117),
and the expectation valae » of the number of particles are
given by the relations

:—;; = ?ln 1+ expf(p — &)/kTT} £1 (122)

and

"= ? {lexple; — w)/kT] £ 1}-7, (123)
in which the plus sign in = applies to fermions and the
minus sign to bosons.

Fundamental equation for one-component simple sys-
tems. For a system for which both sets of eigenvalues
E,Es...,En,...and &, 85, ..., &5, ... are functions
of volume V only, equations (122) and (123) indicate
that p and » are functions of volume V, temperature T,
and potenlial x only, In principle, the p and n functions
can be combined so as to eliminate volume V and obtain
a fundamental equation that gives the total potential as
a function of », p, and T. But because equations (122)
and (123) are transcendental, the derivation of such a
fundamental equation js a difficult mathematical task.
Under certain conditions it can be done with the aid of
sopmie approximations that are addmonal to the one-
particle approximation.

For example, for a dilute gas in which the molecules
have three translational degrees of freedom and of which
the temperatore is sufficiently high and pressure suffi-
ciently low, it can be shown that the poteatial x can be
approximated by the expression
k(2mwmbk)S/?

3
in which m denotes the mass of each particle of the sys-
tem; #, an alternate form of Planck’s constant; and gq.,

the partition function associated with the energy eigen-
values ¢ for the internal structure of each molecule:

gs = ?exp( —E;/kT).

u=kTlnp — nglnT — kTIng, — kTIn , (124)

Such a gas is called 2 semiperfect gas, Congistent with the
relations found for a semiperfect gas above without refer-
ence to the detailed structure of the molecules of the
system, its fundamental equation is independent of n.
This result reflects conformity with the definition of a
simple system, which excludes capillarity. In contrast
with equation (68), equation (124) gives the chemical
potential per particle instead of per mole. It includes,
therefore, the Boltzmann constant &k, which is related to a
single molecule and which is equal to the unjversal gas
constant R divided by the number of molecules contained
in a mole.

As indicated earlier, the heat capacities of a semiperfect
gas are functions of temperature. From equation (124)
may be found the following expressions for specific heat
capacities per molecule:

2321nq,

—k+ 2kT ———=— 372

21n Z)
kT
oT +

and

_3 aln%r 23211140
,—2k+21cT + kT 72
in which 22 In q,/0T2 denotes the partial derivative of
2 In ¢,/0T with respect to 7. Because ¢, is a funclion of
T, both specific heat capacitics are functions of 7.

A particular semiperfect gas is one for which ¢, and ¢,
are independent of temperature. As stated above, such
a gas is called a perfect gas. A gas behaves as a perfect
gas éither when the molecules have no internal structure,
so that g, is unity, or when g, can be approximated by
the product g exp(—z,/kT), in which g and %; are con-
stants.

Electronegativity of atoms and molecules. An atom or
a molecule may be regarded as a grand system with elec-
trons as its only component particles because it can ex-
change energy and electrons while reacting chemically
with other atoms and molecules.

An atom A of atomic number z contains z units of
positive electric charge in addition to its electrons. It has
all the energy eigenvalues of the neutral atom and of each
of the multiply (positively) charged ionized atoms. Con-
sideration will be limited to atoms having energy eigen-
values corresponding to a singly charged negative ion;
i.e., an ion with z 4~ 1 electrons.

The eigenvalues n; of the number of electrons in atom
A are such that

m=i=012,...,z2, 24 1;

that is, the atom can be fully ionized (i = 0), partially
ionized (i<z), neutral ({ = z), or singly negatively
charged (i =z+1).

For each n: a number g;, of energy eigenvalues will
have the minimum numerical value E,, in which g,
may be one or greater than one. Each of the g identical
eigenvalues E;, represents the energy of the so-called
ground state of 4 with exactly n, electrons. Moreover, an
infinite number of energy eigenvalues E; (=1, 2,...),
each with a multiplicity or degeneracy g;, correspond
to the excited states for each n..

For a stable equilibrium state at temperature 7, the ex-
pectation value n of the number of electrons of the atom
is given in terms of the above notation by the relation

B mgi expl(nge — Ei)/kT]
- Z iy expllnan — E)/AT] "

(125)

in which the symbol Edenotes a double summation, one

over all values of [ from zero to z 4- 1 and the other over
all values of j from zera to infinity., The number n may
assume any value between 0 and z 4 1, although n. can
assume only integral values.

For given n and T values equation (125) can be salved
for the value of the potential . Althongh the solution is
numerically tedious, some general results are readily es-
tablished: (1) For a fully ionized state (that is, for the
minimum value n = 0) p is minus infinity, and for a
singly charged negative-ion state (that is, for the maxi-
mum value # = z 4+ 1) g is plus infinity, both for all
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values of T. Such extreme values of g are always ob-
tained when the value of the pumber of particles of the
grand system is either minimum or maximum, They are
consistent with the interpretation of the potential g as an
escaping tendency. (2) For values of n in the range be-
tween z and z 4 1, the potential p is positive. For all
other values the potential g is negative. (3) For a neu-
tral atom state (that is, for n = 2), in the limit as T
approaches zero, u is equal to one-balf the difference be-
tween the energy eigenvalues of the ground states of the
singly charged negative ion and the singly charged posi-
tive ion. It can also be written in the form

_ L+ 4

= -5
in which I; and A4, are, respectively, the first ionization
energy and the electron affinity of the atom. For exam-
ple, for the hydrogen atom the first (and only) ioniza-
tion energy js equal to 13.6, the electron affinity is 0.7,
and, therefore, the potential g is —7.15, all in ejectron-
voJt units.

Since x is a measure of the escaping tendency, —p is a
measure of a capturing tendency or power to attract.
The power of ap atom to attract clectrons is called the
electronegativity of the atom. The preceding analysis in-
dicates that electronegativity can be identified with the
potential —u of electrons in an atom, and its value can
be computed by means of statistical thermodynamics.
Similar results can be obtained for molecules and for
solid surfaces.

VIE. Concluding remarks

The concepts of a system and states of a system adopted
throughout this article are more general than are usually
adopted in the science of thermodynamics. In the first
part of the article, in which the microscopic structure of
the particles that constitute the. system is igoored, the
many relations for systems in stable equilibrium states
that are well-known to classical thermodynamics are
derived. The method, however, lends itself well to the
treatment of states other than stable equilibrium inas-
much as the values of entropy may be found for such
states. ~

In the second part, the microscopic structure js brought
into consideration but without loss of the concept of an
unambiguous stable equilibrium state, This result is
achieved through the quantum-mechapical interpretation
of measurement as an operation that yields definite eigen-
values with certain probabilities. The results are, first,
many relations familiar to statistical mechanics that per-
mit evaluation of properties of a system from the known
structure of the particles and, secondly, 2 means of apply-
ing the laws of thermodynamics to systems that are large
or small, simple or complex. The limitation of thermo-
dynamics, frequently applied in the past, to macroscopic
systems no longer applies. To illustrate this generality,
thermodynamic ideas are applied above to a single atom
in order to discover the meaning of the previously recog-
nized quantity electronegativity.
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Thermoelectric Devices

Thermoelectric devices are devices that either coovert
heat directly into electricity—in the case of thermoelec-
tric generators—or provide cooling by passing an electric
current through appropriate materials—in the case of
thermoelectric refrigerators. Both devices are based on
thermoclectric effects involving interactions between the
flow of heat and of electricity through solid bodies: Al-
though the effects thempelves were discovered in the first
half of the 19th century, it is only in recent years that
the devices based on thern have begun to compete with
conventional generators and refrigerators. The growing
knowledge of solid-state physics in general, and semicon-
ducting materials in particular, has made possible such
applications as a refrigerator the size of a thimble and a
nuclear-powered generator on the Moon to provide elec-
trical power for equipment that sends moonguake infor-
mation. back to the Barth.

The two most important thermoelectric effects are the
Seebeck effect and the Peltier effect. In the Seebeck effect,
an electrical current or voltage is produced in a circuit
made of two different conducting materials if the two
junctions (points of contact) are held at different temper-
atures. The flow of heat from the hot to the cold junction
gives rise to an electrical current; this effect is the basis
for thermoelectric generation of electricity from heat. In
the Peltier effect, when a direct electnic current flows
through a circuit made of two different conductors, one
junction between the two materials is cooled while the
other is heated, depending on the direction of current
flow. This effect, which may be considered the inverse of
the Seebeck effect, is the basis for thermoelectric refriger-
ation.

A major advantage of thermoelectric devices is that they
involve only the motion of heat and electricity, rather
than the motion of mechanical parts as in rotating ma-
chinery such as turbines, dynamos, motors, or compres-
sors used in more familiar generators and refrigerators.
The major disadvantages of thermoelectric devices are
that they are often less efficient to operate and more
expensive to produce than comventional machines and
so are usually used in specialized applications rather
than as replacements for large-scale power generating
plants or air-conditioning equipment.

HISTORY
Thomas Johann Seebeck, a German physicist, discov-
ered the effect which bears his name in 1821. He found
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