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The body of the paper is organized as follows:

Key Words - Time-dependent reliability and availability, Markov Section 3. Review of simulation of a system by a Markov
Systems, Mergeable Markov chains.

process.
Reader Aids- Section 4. Systematic ordering of states.

Purpose: Tutorial Section 5. Analytic formulation of specific repair policies.
Special math needed for explanations & results: Matrix algebra Section 6. Mergeabiity of Markov processes.
Results useful to: Reliability theoreticians and engineers Section 7. C ablcti of Me-dependen.tSection 7. Calculations of time-dependent unreliability

Abstract -This paper presents a methodology for calculating the and unavailability of a simple system.
timle-dependent reliability of a large system consisting of s-dependent Appendix. Description of computer code used in the calcu-
components. A Markov-chain model is used and the numerical diffi- lations.
culties associated with large transition-probability matrices are redliced
by a systematic ordering of the system states. A technique is also 2. NOTATION
presented for the systematic merging of processes corresponding to
systems exhibiting symmetries.

N number of components of the system
M nmaximum number of failed components

1. INTRODUCTION with which the system can still operate

kV number of states of component v
Thle purpose of this paper is to present two techniques for Z set of all system-states

reducing numiierical difficulties in calculating tiine-dependent z number of system-states, z = IIN1 kV
availability and reliability of a large systemn consisting of s- At constant time interval between successive
depen(len-it components. In reliability analyses of engineering time-points
systemiis, s-dependencies among either failures or repairs or n implies time-point n; n = 0, 1, 2,
bothl mllust be considered. Suclh s-dependencies are introduced s(n) state of system at time-point n, s = 1, 2, .. ., z
bothi by commnion-cause failures, and by maintenance pro- i, I indices for system-state; both go from 1 to z
cedures that are contingent on the state of the components, h, ;rg(nls(n) = i) transition rate of component v from com-
on the state of the system, and on the test imethod [1-31. ponent-state r to component-state g at time-
Many aspects of s-dependence can be analyzed more easily if point n, given 's(n) = it
the probabilistic behavior of the system can be simulated by a pij(n) transition probability from system-state i to
Markov process [4-101. For large systems with nmany states, system-state j
hlowever, existing methods are not practical because of numer-
ical difficulties. Of course methods for analyzing large systems 0 < pij(n) < 1, -p-(n) =
consisting of s-in-dependent comupon-ents are available, e.g.
[111. X subset of operating system-states

After describing Maarkov-process simulation, we present two Y subset of failed systemii-states
techniclues each of which reduces the numerical complexity of B, B' general subsets; either can be X or Y
thie method. The techniques are: B(K) subset of B which contains system-states

with K failed components
I.) Systemnatic orderinig of operating and failed states. 7ri(n, B) system-state probability at time-point n for

ZeleIntsov [11] h-as used a similar technique to calculate the i E B; see note 1 below.
mlean time-to-fail-ure of a large nonrepairable system consisting
o:f2-state components. Here, we use the ordering technique to 0 . Tri(n) . 1, L i= ri(n) = 1
calculate the time-dependent availability and reliability of a
large repairable system consisting of components each of E (n, B) row vector with elements gir(n, B); see note 1
whichl can be in m-ore than two states. below

2) Mergeability of a Markov process. Several authors have Tr(n, B) system-state probability at time-point n for
discussed the criterion for a M1arkov process to be mergeable i E B(K)
[7, 13 - 151. Here, we present a systematic procedure for 7TK(n, B) row vector with elements ir/K(n, B)
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P(n, B, B') matrices with elements pij(n) from system- for calculating reliability and availability. Eq. (1) can be
states of set B to system-states of set B'; see rewritten as
note I below

pKL submatrix with elements pij(n) from system- [Tr(n + 1, X), 7r(n + 1, Y)]
states of subset B(K) to system-states of sub-
set B'(L). The B, B' dependence will be P(n, X, X) P(n, X, y)
evident from the context. = [,r(n, AX), ir(n Y)] - Y

Ps; Ij((n) transition probability from superstate I to L ''Y)j
superstate J at time-point n.

ar, m number of components of class r in The probability that the system will be operating at n is th-ie
component-state m probability that the system will occupy any of the operating

A(n) availability: probability that the system will states at n. Thus the availability is
be operating at time-point n.

R (n) reliability: probability that the system will A (n) = E i(n, X). (4)
be operating continuously from time-point i e x
0 to n inclusive

Note 1. When B or B' is not specified, the entire set The probability that 'the system will not leave the subset of
Z is implied, operating states Xduring the time period fronm 0 to n inclusive'

is the probability that 'the system will be in X at n, given that
3. MARKOV CHAIN MODEL transitions from Y back to X are not possible'. Thus the

reliability is
Assumptions *

R(n) = L i(n,X) (5)
1) The state of the system is determined by the states of i&X

the N components where now iT *(n, X) is the solution of (3) with P(n, Y, X) = 0.
2) The system changes its state according to a discrete-

state, discrete-timrie Markov process; therefore, ir (n) obeys the 4. ORDERING OF STATES
relation [4-7]

Solving (3) requires the aid of a computer. Whien the numn-
ber of possible systenm-states is large, however, the necessary
computer storage and computer time are prohibitive because

3) The size of the time-step A\t is such that transition pro-
cmue trg n optrtneaepoibtv eas
of the large size of the transition probability atrix. The coin-

babilities among system-states differing in the states of more putational effort can be reduced by orderincg the systein-statesthan one component can be neglected. Thu'sthan one component canbenegand using Assumption 3. System-states are ordered by parti-
tioning X and Y into subsets X(K), for K = 0, 1, 2 ...,,l, and

if i +1/ and if system-states Y(K'), for K' = 1, 2, . . N, respectively. X aind Y are repre-
i, j differ only in the sented by the unions

h ;rg(nlIs(n) =i)* At
component-state of com- X = X(0) u X(l). u X(, (6a)
ponent v.

(2) Y = Y(l) u Y(2) . u Y(M) .. . i Y(N) (6b)if i #j and if system-states
i, j differ in the component-

pi (n) Similarly, we can order 7r(n, X) and ir (n, Y) inlto subvectors,
pj1(n) = 0 and P(n, X, x), P(n, x, Y) P(n, Y, X), and P(n, Y, Y) into

states of more than one submatrices corresponding to the various X(K) and Y(K).
cornponent. Thus (3) becomes

m- IiPiml) ifi=. [ir0(n + 1, X), 7r N(n + , Y)]
ni :f i

The transition rate of each component at time n depends [NPM]IxxlP ]x j
on the state of the system, namely on the states of other Corn1- =[ii0(n X) .. N(n, Y')J1 7
ponents, so common-cause failures are allowed. For example, K J
the commlon-cause failure of two components can be modeled [LtP ] W1X[P ] yJ
by assuming a certain failure rate when both components are
operating and a properly higher failure rate when only one whlere I, J= 0, 1, 2, . .., M, and K, L =1, 2 .i.. V.
componlent is operating (see also Sec. 7). Moreover, by virtue of (2) it followvs that P(nl) in (7) h1as the

Reliability and Availability. ir(n) contains the information form [101
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poo Po ... o . 0 c . 0 . C) Selective repair: In general, if a system is failed, the first
llo pil P12 ... component to be repaired can be any of the failed components.

IplO plI p-2 K -.pl2 0 o 0 Under a selective repair policy, however, it is possible to repair
-\ .\ \ . that particular component wlhich brings the system back into

\\ \pM. :(MPM +i\I operation. When a selective repair policy is possible, then we
have in (8):

P(n) P 0 ...o 1 11 PI,0 o.0 0 (8)

o p20 .21p 22p23...0 inP(n, y Y)pK+1,K = 0 for K < M +1. (11)
I "K--(\-\;-\,

\.. d) Components with one operating state: If a system con-
|z pM+I 1E 0 \ pM`t+ I'sM+ ... 0 sists of components that cannot transit between failed states

and have only one operating state, then submatrices PI, of
pM+l4I\pM+IM+ P(n, X, X) and pKK of P(n, Y, Y) are diagonal because a sys-

O ,,, O 0) as \ pN,N' tem transition from a given state to anothier with the same

number of failed components requires at least the simulta-
neous repair and failure of two different componenits:

where I, J = 0, 1, ..., M, and K, L 1, 2, ...,N, and, for
convenience the time andsubset dependence of the submatrices in P(n, X, X), P" [6 ipij(n)]i for I = 0, 1, 2, ,M
of matrices P(n, X, X) etc. have been omitted from both (7) (12)
and (8). in P(n, Y, Y), pKK = [6ijpij(n)]KK forK = 1, 2....... N

We see from (7) and (8) that the ordering of states reduces
the numerical complexity of the problem in a systematic where 6i, is the Kronecker delta (6ij = 1 i =.il,l 1j =0 other-
manner. For example, the structure of submatrix P(n, X, Y) wise).
in (8) indicates that transitions from an operating state with I
failed components to a failed state with L failed components 6. MERGEABLE MARKOV PROCESS
is not possible if:

The computational effort involved in evaluating reliability
1) iI - L > 1, namely if more than one component-state and availability can be substantially reduced if values of partial

transitions must occur; sums of 7ri(n, X)'s rather than individual values of 7ri(n, X)'s
2) I = L + 1, namely if a failed component is reparied, since can be obtained. Such partial sums can be calculated for

such a repair in an operating state cannot bring the sys- systems for which the Markov process is mergeable [8, 10, 1.3,
tem into a failed state. 15] . A Markov process is mergeable if:

Again, (8) indicates that only 5M + 3N + I submatrices of the 1) its states can be divided into groups each of which forms
ordered P(n) need be stored instead of the (M + N + 1)2 sub- a superstate;
matrices of the unordered P(n). Moreover, the ordering results 2) its transition probabilities are sufficient to express the
in computing-time savings because solving (3) is much faster transition probabilities aiimong superstates.
when P(n) is ordered than when it is not.

Because the number of superstates of a mergeable Markov pro-
5. REPAIR POLICIES AND SPECIAL SYSTEMS cess is much smaller than the number of states, the dimensions

of the probability vector and the transition probability matrix
For certain repair policies and certain special systems some of the superstates are much smaller than those of the states,

of the submatrices pKL in (8) are zero. Four exam-riples are arid therefore the computational effort is reduced.
given below. A Markov process is mergeable if, for all superstates I and J

consisting of r states indexed i = 1, 2, . . ., r and in states
a) No-online repair: If online repair is not possible, tlhen indexed/ = 1, 2, . . ,in, respectively, we h-iave

submatrices PIJ of the lower diagornal stripe of P(n, X, X) in
(8), are zero: ps;ij(n) - pij(n) for all values of i. (13)
inP(n, X, X'), pI1 = 0 for 0 < I . 111 - 1. (9)

In general, the grouping of states into superstates, and the
b) "C'old"standby operation: If stanldby operation of a verification of (13) is a prohibitively time consuming proce-

system is assumed cold (no comiponlents can fail while the sys- dure [7, 1 5]. For systems exhibiting symmetries, however, the
tem is not operating), thenl suhm-atnicesPKL of the upper procedure is expedited as described immediately below.
diagonal stripe of P(n, Y, Y) in (8) are zero: We consider systems consisting of components that can be

grouped in-to classes so that the functions, number of states,
in P(n, Y, y), pK-1.K 0 for 2 6 K S N. (10) conditional failure rates, and conditional repair rates of each
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component in a class are the same as those of any other com- that
ponent in the class. E Pk (n) = L Pki(n) =

To simplify the notation and without loss of generality, we
i

l
will discuss a system consisting of components that can be E I>(K) E E(K)
grouped into two classes, 1 and 2, and that can be found in (al,2 + I)hl ;2, [niS(n) = I (K + 1)] At (17a)
either of two states, operating state 1 and failed state 2. For (
this system, all states that have ar,m components of class r in P,i(n) p,(n)
state m, and K components in failed states (K = al 2 + a2,2) i EIV(K) i E I (K)
are labeled by TJ(K) given by the one-dimensional array v

T(K) = {a11, a1,2, a21, a2,2} for v = 19 2,... , v(K) (14) (a2,2 + I)h2;2i [nlS(n) = J,j(K+ 1)]At (17b)

where v(K) is the number of possible labels for each value of Eqs. (16) and (17) are formal statements that (13) is satisfied,
and therefore that the process is mergeable.K. Thus, we can assign a TJ(K) to each state of the system for an alogous g

K = 0, 1, 2,. . , N and v = 1, 2, .. , v(K). Moreover, for An analogous systematic labeling and grouping of states can

K r r a g
X be used for the merging of the Markov process of a systemgivnvluso Kandvnd,threfre fo a g ve T XK) consisting of components that can be grouped in more than

we can group states labeled TJ(K) into a superstate. Now, we tocsses and that can befoun d in more than
will show that these superstates, for K = 0, 1, 2, . . ., N and the fral pofhoerwlnbe give her [1 6].
v = 1, 2, . . . v(K), satisfy (I13). The formal proof, however, will not be given here [I16] .=1,2,

'...,(),stif (3 . If the functions of all the components in a class are not the
1) Because only one component-transition per time step is

possible, the only superstates that can be reached from a same, then states T'(K + 1) that can be reached from states

superstate Iv(K), labeled Tv(K), via failure of a component are TJ(K) are not all operating or failed. Here, a number of super-

superstates Ip(K + 1) and J,(K + 1), labeled Tp(K + 1) and states formed by means of the systematic procedure just cited
Ts(K + 1), whereK do not satisfy (13). To proceed with the merging, we mustT,H(K+ 1), where, consider a nurnber of superstates larger than that implied by

the labeling Tv(K). This is accomnplished on the computer by
Tp(K + 1) = {al,, - 1, al,2 + 1, a2 1, a2,2} (ISa) means of a code that generates superstates labeled T,(K) and

that proceeds with alternate groupings until (13) is satisfied.

TMA(K + 1) = {ai,,, al,2, a2,1 - 1, a2,2 + 1} (1Sb) In general, with a reasonable definition of classes of compon-
ents, a few trials suffice to merge the process.

2) Because all components in class 1 perform the same
function, states labeled Tp(K + 1) will be either all operating 7. AN APPLICATION
or all failed, and the same will be true for states labeled
TgK+1.Asmn htsae aee'K+1 n To illustrate the methodology developed in Sections 3 to 6,TM(K + P)Aropaing an failed,r petvl we cnd we have calculated the time-dependent unavailability and un-Tml(K + 1) are operating and failed, respectively, we conclude

reiblt ofth.ytmsoni iue1 h olwnreliability of the system shown in Figure 1. The followingthat from any state of operating superstate lJ(K) the system
can transit to al1 states of operating superstate Ip(K + 1), anda
to a2,1 states of failed superstate J,1(K + 1).

3) Because all components in a class have the same transi-
tion rates, the transition probabilities from all states i and i' VA I PA VA2
of superstates I(K) satisfy the relations

BI PBVB

L pi,(n) = E Pi (n) =FLUID IN SYST>
JClp(K+I) jEp(K+I) .FLUID

a,, hl;l2[nIS(n)= Iv(K)] A' (l6b) 1) Tsa

VB PB V1B2

Each pump can supply the required flow rate, but when both
4) Reasoning as in steps 2 and 3 immediately above, we are operating each is operating at half capacity. The pumps

also conclude that from any state of superstate Ip~(K + 1) the can be in two states: operating and failed. Two valves are
system can transit to a1 ,2 + 1 states of superstate I>(K), and associated with each pump. The function of the valves is to
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isolate the corresponding pump when it fails. Each valve can 0 -1

be in three states: operating, failed in the open position, and
failed in the closed position.

2) The mission of the system is to supply point B with
water at a certain flow rate, for a certain period of time T, and
under a known environment.

3) The failure and repair rates are listed in Table I. They .
do not correspond to real data but have been selected solely
for illustration. The following s-dependencies due to different
operating conditions, repair capabilities, and possible common _ / -
cause failures, have been assumed: 14 0a-3 -

a) The failure rate of each pump is k YXp(i = 0, 1), where i > _ /
is the number of failed pumps and kpo = 1. Similarly, the
failure rate of each valve is kviXvj (i = 0, 1, 2, 3 andj= , 2), <f
where i denotes the number of failed valves, j the failure mode <
(open or closed position), and kvo = 1; > 104

b) Every repair is perfect, viz. restores the component to Z
like-new and affects nothing else. The repair rate of each
pump is dpirp(i = 1, 2, and d = 1), where i denotes the num- 2
ber of failed pumps. The repair rate of each valve is dvirvi
(i = -1, 2, 3, 4;j = 1, 2; and dv I = l). Fir

A computer code, described briefly in the Appendix and _ - - ON LINE REPAIR, DEPENDENCIES
given in full in the Supplement [17], calculates according to ON LINE REPAIR, NO DEPENDENCIE'
the methlodology developed in Sections 4 and 5. The results j - NO ON LINE REPAIR,DEPENDENCIES
are summarized in Figures 2 and 3. In Figure 2, curves 1 and 2
represent the unavailability of the system as a function of time
with or without s-dependencies among the failures and repairs, 200 400 600 800 1000 1200
respectively, and curve 3 represents the unavailability of the T (hrs)
system if on-line repair is not possible. Figure 3 presents
analogous results for the unreliability of the system. Fig. 2.

Because the system consists of components that can be
divided into two classes, one containing the two pumps and
the other the four valves, and because the components of each 61'
class have similar functions, can be in the same number of
states, and have the same conditional failure and repair rates,
the Markov process that describes the system is mergeable . 3
(Sec. 6). The savings in computer storage and computer time -
resulting from the merging are listed in Table II. I 2 7I

/

TABLE I I1r
Conditional failure and repair rates of the > /

components of system in Figure 1 /
-i 3 *// --- ON LINE REPAIR, DEPENDENCIES--3

Conditional failure Conditional repair m 0 ON LINE REPAIR, NO DEPENDENCIES-
rates (per 106 hours) rates (per 106 hours) / NO ON LINE REPAIR, DEPENDENCIES:

Li

Pumps z

Two Up 30 -4 /
One Up 3000 10000 0
None Up 5000 -

to the to the from the from the_'open 'closed 'open 'closed_
Valves position' position' position' position' S

FoureUp 1 1 1000 1000OO 200 400 600 800 1000 1200

Two Up 10 10 300 300 T (hrs)
Onle Up 100 100 300 300
None Up 100 100 Fig. 3.
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TABLE II REFERENCES
Comparison of the computer storage and computer time required

for solving the original and merged Markov processes [1] C.P. Neuman, N.M. Bonhomme, "Evaluation of maintenance
for system in Figure 1 policies using Markov chains and fault tree analysis", IEF,E

Time Trans. Reliability, vol R-24, 1975 Apr, pp 37-44.
Number of Required [2] W.G. Gangloff, "Common mode failure analysis", IEEE Trans.

Number Elements Time for Solu- PAS., vol PAS-94, 1975 Jan/Feb, pp 27-30.
of of P Required tion of (7) Total [3] B.J. Flehinger, "A Markovian model for the analysis of the

Number Elements that need for gener- for 300 time effects of marginal testing on system reliability", An. Math.
of ofP be stored ation of P time steps (sec) Stat., vol 33, 1962 June, pp 754-766.

States (a) (a) (sec) (b) (sec) (b) (b) [4] R. Billinton, R.J. Ringlee, A.J. Wood, Power-system ReliabilityStates(a) (a) _(sec) (b) (sec) (b) (b)

Calculation, MIT Press (1.973).
Original [5] R. Barlow, F. Proschan, Mathematical Theory ofReliability,
Process 287 82 369 17 676 1.0 13.0 14.0 John Wiley & Sons, 1965.
Merged [61 M.L. Shooman, Probabilistic reliability; an engineering ap-
Process 67 4 489 967 1.7 0.8 2.5 proach, McGraw-flill, Inc. 1968.

[7] R.A. Howard, Dynamic Probabilistic Systems, vol 1, John Wiley
a) With zero standby failure rates (Sections Sb-Sd). & Sons 1971.
b) CDC, CYBER 70/ MODEL 76 Computer System (7600). [81 J.A. Buzacott, "Markov approach to finding failure times of

repairable systems", IEEE Trans. Reliability, vol 19, 1970 Nov,
pp 128-134.

APPENDIX [91 G.T.H. Lee, "Mean-times of interest in Markovian systerns",
IEEE Trans. ReliabilitY, vol R-20, 1971 Feb, pp 16-21.

A brief description of the code is presented here. For fur- [10] I.A. Papazoglou, "Markovian analysis of reliability of nuclear
reactor systems", SM thesis, M.I.T., Nucl. Eng. Dept., 1974

ther details, please refer to the Supplement [17]. May.
[11] P.M. Lin, et al., "A new algorithm for symbolic system reliability

1. The input consists of the number of components, the analysis", IEEE Trans. Reliability, vol R-25, 1976 Apr, pp 2-14.
number of states of each component, the transition rates, and [12] B.P. Zelentsov, "Reliability analysis of large nonrepairable sys-
a test subroutine (see step 3). tems", IEEE Tranis. Reliabilitv, vol R-19, 1970 Nov, pp 132-

2. All possible states of the system are generated as a 2- 136.[13] G.C. Bacon, "The decoimiposition of stochastic automats",
dimensional array, each row represents a system-state and each Inform. & Contr., vol 7, 1964 Sept, pp 320-339.
element in the row a component-state. [141 G. Singh, R. Billinton, "Frequency and duration concepts in

3. With the aid of a 'test subroutine', the set of possible system reliability evaluation", IEEE Trans. Reliability, vol R-24,
system-states is partitioned into subsets X and Y. The sub- 1975 Apr, pp 31-36.

[15] J.G. Kemeny, J.L. Snell, FinitelMarkov chain1s, D. Van Nostrandroutine can be a fault tree or an event tree for the system co. 1960.
under analysis and is part of the input. [16] I.A. Papazoglou, "Markovian reliability analysis under uncer-

4. X and Y are partitioned into subsets X(K) and Y(K) for tainty", ScD thesis, M.I.T., Nucl. Eng. Dept., 1977 Sep.
all K. [17] Supplement: NAPS document Nos. 02972 & 02973; 136 pages

5. P is generated taking into account any repair policy or total in these Supplements. For current ordering information
any special feature of the system (Sec. 5). The p.j's are calcu- see inside rear cover of a current issue. ASIS-NAPS; Microfichelatednby compfeatureiofnthestateste c

j
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