
E. P. Gyftopoulos 

M. I. Flik 

Mechanical Engineering Department, 
Massachusetts Institute of Technology, 

Cambridge, MA 02139 

G. P. Beretta 
Universita di Brescia, 

Brescia, Italy 

What is Diffusion? 
In earlier publications, heat Q" is defined as an interaction that is entirely distin­
guishable from work W. The energy exchanged Q~ is TQ times the entropy ex­
changed ST, where TQ is the almost common temperature of the interacting systems. 
Here, we define diffusion as another interaction that is entirely distinguishable from 
both work and heat, and that involves exchanges of energy, entropy, and amount 
of a constituent. It is an interaction between two systems A and B that pass through 
stable equilibrium states while their respective parameters remain fixed, and that 
have almost equal temperatures TA « TB » TD and almost equal total potentials 
ixh « /iB « fiD of the diffusing constituent. The exchanges of entropy S~, energy 
E~, and amount of constituent n~ out of one system satisfy the relation S~ = (E~~ 
— /zDn~)/TD. In the limit ofrC = 0, a diffusion interaction becomes heat. 

1 Introduction 
In some expositions of thermodynamics, the concept of dif­

fusion is assumed self-evident and not defined explicitly 
(Katchalsky and Curran, 1967; and Chartier et al., 1975). In 
other expositions, diffusion in the widest sense is "the ma-
croscopically perceptible relative motion of individual parti­
cles" (Chapman and Cowling, 1964; and Haase, 1969a), or 
"the transport of matter caused by concentration gradients" 
(Haase, 1969b). From these definitions, it is not clear whether 
diffusion should be viewed as an interaction at a boundary of 
a system or as a property of a system. 

Consistent with our earlier discussions of work, heat, and 
bulk-flow interactions (Gyftopoulos and Beretta, 1991a), in 
this paper we define diffusion as an interaction occurring at 
a boundary of a system that is entirely distinguishable from 
work, and that involves exchanges of energy, entropy, and 
amounts of constituents between which exists a specified re­
lation. 

The paper is organized as follows: nonwork interactions 
are discussed in Section 2, diffusion is defined in Section 3, 
and conclusions are presented in Section 4. 

2 A Nonwork Interaction 
An interaction that cannot be classified as work is called 

nonwork (Gyftopoulos and Beretta, 1991b). An example of a 
nonwork interaction is heat (Gyftopoulos and Beretta, 1991c; 
and Beretta and Gyftopoulos, 1990). Another is the interaction 
between two systems A and B that experience a process under 
the following specifications (Fig. 1). Each system consists of 
at least one common constituent and, initially, is in a stable 
equilibrium state, but not in mutual stable equilibrium with 
the other because the initial temperature 7/f at state A \ differs 
from the initial temperature j f at state Bt, and for the common 
constituent the initial total potential /if differs from the initial 
total potential /if. At the end of the process, the states A2 and 
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B2 are not necessarily stable equilibrium, the energy and amount 
of constituent of system A are changed, the changes in energy 
and amount of constituent of system B are, respectively, equal 
and opposite to those of A, no net effects are left on the 
parameters and other constituents of either A or B, and no 
net effects are left on any system in the environment of the 
composite of systems A and B. Under these specifications, the 
interaction between A and B is nonwork because it involves 
exchanges of both energy and amount of the common con­
stituent. In general, however, this interaction can be regarded 
as partly nonwork and partly work. To see this clearly, we 
reproduce the process just cited in two steps. 

In the first step, we interpose between A and B a cyclic 
engine X\ that produces shaft work without any entropy gen­
eration by irreversibility (Fig. 2(a)). The cyclic engine can do 
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work because the composite of systems A and B is not in a 
stable equilibrium state (7? ^ 7f and jxf ^ /if), and, there­
fore, its adiabatic availability is different from zero. The 
changes involved in the first step are as follows: 

(a) Transfers of energy, amount of the common constit­
uent, and perhaps entropy out of system A and into the cyclic 
engine Xx equal to the respective transfers experienced in the 
course of the original nonwork interaction. As a result of these 
transfers and possibly internal effects, system^ changes from 
state Ai to its final state A2, the state reached in the original 
nonwork process. 

(b) Transfer of some of the energy received by X\ to a 
weight—shaft work done to raise the weight. 

(c) Transfer of the remaining energy received by X\, and 
transfers of all the amount of constituent and entropy received 
by Xt to system B, As a result of these transfers only, system 
B reaches an intermediate state 5 3 different from the final state 
B2 reached in the course of the original process because less 
energy is exchanged between X\ and B than between A and B. 
Moreover, here the interaction between X\ and B must be 
viewed as nonwork because it involves both energy and an 
amount of the constituent. 

In the second step, we disconnect systems A and Xu and 
connect the raised weight to a cyclic engine X2 that can do 
work on system B while the weight is lowered to its initial 
elevation (Fig. 2(b)), and do so without generating any entropy 
by irreversibility. As a result of the shaft work done on B and 
possibly internal effects, system B is carried from state 5 3 to 
the final state B2 reached by system B in the course of the 
original nonwork process. 

At the completion of the two steps, 1) both cyclic engines 
Xt and X2, and the weight are restored to their respective initial 
states; 2) systems A and B experience the same changes of 
states—exchange the same amounts of energy, constituent, and 
perhaps entropy as in the original process, and generate the 
same amounts of entropy; and 3) we conclude that the in-
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teraction between the two systems initially at different tem­
peratures and different total potentials can be regarded partly 
as nonwork (step 1), and partly as work (step 2). The question 
now arises "Is this conclusion always valid?" We examine the 
answer to this question in the next section. 

3 Diffusion 

Here we discuss a special nonwork interaction that involves 
at least exchanges of both energy and amount of a constituent, 
and yet is entirely distinguishable from work in that no fraction 
of any such interaction can be regarded as work. To proceed, 
we first evaluate the work done by the cyclic engine X\ and 
the systems in Fig. 2(a) in a reversible weight process for the 
composite of systems A, B, and cyclic engine X\. In this proc­
ess, the initial states A i and B\ are stable equilibrium, the final 
states A2 and 5 3 are not necessarily stable equilibrium, and 
there are no net changes in parameters and other constituents 
of either system A or system B. 

Under these conditions, and for given changes DEA, DSA, 
and DnA, respectively, in the energy, entropy, and amount of 
constituent of system A, or flows E4", SA~, and nA~ out of 
system A, the corresponding energies EA and EB, entropies SA 

and SB, and amounts of constituents nA and nf of states A2 

and 5 3 , respectively, and the energies EA and EB, entropies SA 

and SB, and amounts of constituents nA and nB of the initial 
states A\ and B\, respectively, satisfy the relations 

EA=EA+DEA=EA-EA- EB = Ef + DEB = Ef + EB~ (1) 

SA = Sf +DSA = SA-SA~ SB = Sf + DSB = SB + SB- (2) 

nA = nf+DnA = nA-nA~ nB = nB + DnB = nB + nB~ (3) 

where, in writing the second of Eqs. (3), we use the fact that 
no amount of constituent flows to the weight, DEB and DSB 

are, respectively, the changes in energy and entropy between 
states B} and Bu and a superscript with an arrow pointing to 
the right indicates positive flow out of the system. If the arrow 
points to the left, then positive flow is into the system. 

By virtue of the highest-entropy principle (Gyftopoulos and 
Beretta, 1991d), the entropy SA cannot be larger than the en­
tropy of the stable equilibrium state corresponding to the same 
values of energy and amount of the common constituent as 
those of state A2. Similarly, SB cannot be larger than the en­
tropy of the stable equilibrium state corresponding to the same 
values of energy and amount of the common constituent as 
those of state B3. Moreover, by virtue of the state principle 
(Gyftopoulos and Beretta, 1991e), the two highest entropies 
are functions of the forms SA(EA, nA) and SB(EB, nB), re­
spectively, where we omit the dependences on parameters and 
other constituents because here the values of the parameters 
and the amounts of the other constituents experience no 
changes. So, we have the relations 

SA<SA(EA, nA) and SB<SB(£f, n?) (4) 

where the equal sign of the first or second relation holds only 
if the final state A2 or 5 3 is stable equilibrium, respectively. 

To find the work, in addition to relations (1) to (4), we 
consider the energy and entropy balances for the reversible 
process of the composite of systems A, B, and X\\ that is, 

DEA+DEB = EA-EA + £ f - £ ? = - W~ (5) 

DSA + DSB = Si-SA + S f - S f = 0 (6)' 

where W" is the work done on the weight. 
The value of the work depends on the types of the final 

states A2 and 2J3. Indeed, upon combining relations (4) and 
Eq. (6), we find 

S? + SB = SA + SB<SA + SB(EB, n$) 

<SA{EA,nA)+SB(EB,nB) (7) 

where the first inequality becomes an equality only if state JB3 

is stable equilibrium, and the second only if state A2 is stable 
equilibrium. From relations (7), we conclude further that 

SA + SB-SA(EA,nA)<SA + SB-SA<SB(EB, /if) (8) 

where the first inequality becomes an equality only if state A2 

is stable equilibrium, and the second only if state 5 3 is stable 
equilibrium. Moreover, using Eqs. (1) and (5) in relations (8), 
we find 

Sf + SB-SA(Ef +DEA, nA+DnA)<SA + SB-SA 

<SB(EB-DEA-W~, nB-DnA) (9) 

For given initial states Ax and Bu and given changes in energy, 
DEA, and in amount of constituent, DnA, we observe that the 
left-hand side of relations (9) has a fixed value. This is the 
smallest value that can be achieved by Sf + SB - S2, and can 
be assumed by SB(EB - DEA - W~, nB - DnA) only if both 
states A2 and B} are stable equilibrium. Next, we recall that 
the fundamental relation SB(EB, nB) is monotonically increas­
ing with EB. It follows that SB(Ef - DEA - W*, n? - DnA) 
is monotonically decreasing with W, and, therefore, that W~ 
is the largest only if SB(Ef - DEA - W~, nB - DnA) is the 
smallest; that is, only if both states A2 and B3 are stable equi­
librium. 

For infinitesimal changes in energy, dEA, and amount of 
constituent, dnA, we can find an explicit expression for the 
largest work (W~)imgesi. Indeed, upon expanding S4 in the first 
relation (9) into a Taylor series around EA and nA, and upon 
expanding SB in the second relation (9) into a Taylor series 
around £? and nB, and retaining only first-order terms in these 
expansions, we find 

SA(EA + dEA,nA + dnA)=SA + ^dEA-^dnA (10) 

and 

SB(Ef-dEA-W~,nB-dnA) 

= SB + ^s(-dEA-W-)+J±dnA (11) 
i I 11 

where l/T = dS/dE, and ix/T = -dS/dn. Upon substituting 
Eqs. (10) and (11) into relations (9), and rearranging terms, 
we find 

^ ^ J , - £ ) (-<*•) • ( # - # ) * ' 02, 
Clearly, the largest work is done only if the equal sign applies, 
that is, only if the final states A2 and fi3 are stable equilibrium, 
so that 

^ ( ^ W s , = (^s-j^jE^- ( f l - ^ ) " " - (13) 

where in writing the right-hand side of Eq. (13), we use the 
notation introduced in Eqs. (1) to (3). 

Equation (13) indicates that if the initial temperature TA 

and the initial ratio ixA/TA of system A differ from the initial 
temperature 7f and the initial ratio nf/Tf of system B, re­
spectively, a fraction of the energy EA~ plus an energy-equiv­
alent fraction of the amount of constituent nA~ transferred 
out of system A can always be transferred to a weight, while 
the remainders of these fractions are transferred to system B. 
The energy stored in the weight can always be returned to B 
by means of a weight process. Thus, system B appears to 
experience an interaction which is partly nonwork and partly 
work. 

But if the two initial temperatures are almost equal, and the 
two initial total potentials are almost equal, (W~)iargest ap­
proaches zero faster than both EA" and nA~, and the inter­
action between A and B is entirely distinguishable from work 
in that no fraction of such an interaction can be regarded as 
work, even if we interpose a cyclic engine between the two 
interacting systems. 
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Table 1 Exchanges in four different interactions 

Exchange 

Energy 

Entropy 

Constituent 

Work 

W~ 

0 

0 

Heat 

Q~ 

QT 

0 

Interaction 

Bulk flow'*1 

(h + t+gz)n-
\ * 1 

sn 

n~~ 

Diffusion 

E^ 

E~ -p,Dn~ 

TD 

n 

"'The specific enthalpy h and specific entropy s refer to the stable 
equilibrium state part of the bulk flow state (Gyftopoulos and Ber-
etta, 1991a). The speed £, and elevation z in the gravity field g refer 
to the mechanical features of the bulk flow state. Flow of the 
constituent is into the system if n is positive. 

In this limit, Eqs. (10) and (11) yield 
SA~ = S? - SA (EA + dEA, nA + dnA) 

dEA-liDdnA_EA~-^DnA~ 
TD TD ' 

SB- = SB(E?-dEA, nf-dnA)-Sf 

= _dEA-,DdnA
 = ^ ( i 5 ) 

TD 
where TD is the almost common value of the initial tempera­
tures TA and TB, and jiD the almost common value of the initial 
total potentials i4 and /if of the interacting systems A and B. 

An interaction resulting in net exchanges of entropy, energy, 
and amount of a constituent between two systems A and B 
that are in stable equilibrium states at almost equal temper­
atures, and almost equal total potentials, and such that the 
flows of entropy SA~, energy EA~~, and amount of constituent 
nA~ out of system A are related by the last of Eqs. (14); that 
is, 

^ = E -;°n (i6) 

is what we call diffusion. Thus, diffusion is not a property of 
a system, nor is it contained in a system. It is an interaction 
that involves transfers of energy, entropy, and amount of a 
constituent that are related by Eq. (16). Such an interaction 
is entirely distinguishable from work. 

For comparison, the exchanges of energy, entropy, and 
amount of constituent in work, heat, bulk flow, and diffusion 
interactions are listed in Table 1. 

In the limit of n~ = 0, a diffusion interaction becomes a 
heat interaction. 

A diffusion interaction can be generalized to more than one 
constituent. If two systems A and B, each consisting of r 
constituents denoted by subscripts 1,2 r, are in stable 
equilibrium states at almost the same temperature TD, and at 
almost the same total potentials H\D, M2ZJ> • • •. Ato. and such 

that the flows of entropy SA~, energy EA~, and amounts of 
constituents nA~, nA~, . . . , nA" out of system A satisfy the 
relation 

&-=E*~-V-iHErt- ( , 7 ) 

TD 

then the interaction is called multiconstituent diffusion or, 
simply, diffusion. 

It can be readily shown that two or more diffusion inter­
actions are very useful in discussions of heat conduction, flow 
of neutral particles through a medium, such as neutrons in 
nuclear reactors, flow of electrons in an electric circuit, and 
thermoelectricity, that is, in discussions of transport phenom­
ena. For example, by considering a cubical piece of material 
in a steady state resulting from six diffusion interactions, one 
at each of the six interfaces, we can combine the amount of 
constituent (mass), the energy, and the entropy balances and 
express the entropy generation in the material in terms of fluxes 
and forces defined by the characteristics of the diffusion in­
teractions. 

4 Conclusions 
Diffusion is another ingenious thermodynamic concept that 

allows the quantitative distinction between entropy generated 
by irreversibility and entropy exchanged via interactions. By 
itself or combined with work, heat, and bulk-flow interactions 
in writing the energy, entropy, and mass balances, diffusion 
provides us with practical means for identifying opportunities 
to reduce the entropy generated by irreversibility and, hence, 
to improve the performance of a system. These opportunities 
could be missed if the definition of diffusion were ambiguous. 

The proposed definition is consistent with the requirements 
of the phenomenological equations discussed under the head­
ings of either irreversible thermodynamics or transport phe­
nomena. 
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