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Thermodynamic Definition and 
Quantum-Theoretic Pictorial 
Illustration of Entropy 
Camot analyzed an engine operating between two reservoirs. Through a peculiar mode 
of reasoning, he found the correct optimum shaft work done during a cyclic change 
of state of the engine. Clausius justified Camot's result by enunciating two laws of 
thermodynamics, and introducing the concept of entropy as a ratio of heat and tempera
ture of a thermodynamic equilibrium state. In this paper, we accomplish five purposes: 
(i) We consider a Camot engine. By appropriate algebraic manipulations we express 
Camot's optimum shaft work in terms of available energies or exergies of the end states 
of one reservoir with respect to the other, and Clausius' entropy S in terms of the 
energies and available energies of the same end states, (ii) We consider the optimum 
shaft work done during a cyclic change of state of an engine operating between a 
reservoir, and a system with fixed amounts of constituents and fixed volume, but variable 
temperature. We express the optimum shaft work in terms of the available energies of 
the end states of the system, and Clausius' entropy in terms of the energies and available 
energies of the same end states. Formally, the entropy expression is identical to that 
found for the Camot engine, except that here the change of state of the system is not 
isothermal, (iii) We consider the optimum shaft work done during a cyclic change of 
state of a general engine operating between a reservoir R and system A which initially 
is in any state Ai, stable or thermodynamic equilibrium or not stable equilibrium. In 
state A,, the values of the amounts of constituents are n;, and the value of the volume 
is V; whereas, in the final state Ao, ih * ri; and Vo'^ Vi. Using the laws of thermodynam
ics presented by Gyftopoulos and Beretta, we prove that such an optimum exists, call 
it generalized available energy with respect to R, and use it together with the energy 
to define a new property "L,. We note that the expression for S is formally identical to 
and satisfies the same criteria as Clausius' entropy S. The only difference is that Z 
applies to all states, whereas Clausius' S applies only to stable equilibrium states. So 
we call Z entropy and denote it by S. (iv) We use the unified quantum theory of 
mechanics and thermodynamics developed by Hatsopoulos and Gyftopoulos, and find 
a quantum theoretic expression for S in terms of the density operator p that yields all 
the probabilities associated with measurement results, (v) We note that the quantum-
theoretic expression for S can be interpreted as a measure of the shape of an atom, 
molecule, or other system because p can be thought of as such a shape, and provide 
pictorial illustrations of this interpretation. For given values of energy E, amounts of 
constituents n, and volume V, the value of the measure is zero for all shapes that 
correspond to projectors (wave functions), positive for density operators that are not 
projectors, and the largest for the p that corresponds to the unique stable equilibrium 
state determined by the given E, n, and V. Accordingly, spontaneous entropy generation 
occurs as a system adapts its shape to conform to the internal and external forces. 
Beginning with an arbitrary initial p, this adaptation continues only until no further 
spontaneous change of shape can occur, that is, only until a stable equilibrium state is 
reached. 

Introduction 
Over the past few decades, we have adopted the viewpoint 

that the laws of thermodynamics are neither statistical nor re
stricted to macroscopic systems in stable or thermodynamic 
equilibrium states. In support of this viewpoint, we have pre
sented both the quantum-theoretic foundations (Hatsopoulos 
and Gyftopoulos, 1976a, b; Beretta et al., 1984, 1985), and a 
nonquantal exposition of foundations and applications (Gyfto
poulos and Beretta, 1991a). 

Among the many novel results of the new viewpoint is the 
recognition that entropy is a nonstatistical property of a system, 
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in the same sense that inertial mass, energy, and momentum 
are nonstatistical properties of a system, and that it is well 
defined for all systems, large and small, and all states, thermody
namic and nonthermodynamic equilibrium (^ubuk9U and Gyf
topoulos, 1994; Gyftopoulos and ^ubukgu, 1997). 

Most physicists and engineers find the new viewpoint, in 
general, and the extension of the concept of entropy to states 
that are not thermodynamic equilibrium, in particular, unaccept
able and oppose them vehemently. To the best of our knowl
edge, their opposition is based solely and exclusively on the 
argument that the new ideas differ from the accepted dogma, 
and not on any experimental results or on any reasoned argu
ments either against our statements of the laws of thermodynam
ics and quantum theory, or against the faultlessly, noncircularly, 
and completely proven theorems, such as the theorems that 
result in the definition of entropy. 
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Continuing our efforts to elucidate the new point of view, in 
this paper we present the general thermodynamic definition of 
entropy, S, as an outgrowth of the seminal ideas of Clausius; use 
the unified quantum theory of mechanics and thermodynamics 
developed by Hatsopoulos and Gyftopoulos and find a quantum-
theoretic analytical expression for S; interpret the analytical 
expression as a measure of the shape of an atom, molecule, 
or other system as the case may warrant; provide a pictorial 
illustration of this interpretation; and relate shape changes to 
the principle of spontaneous entropy generation. 

The paper is organized as follows. The Clausius definition 
of entropy of a reservoir is discussed in the second section; the 
extension of this definition to a system with variable tempera
ture in the third section; the definition of entropy S of any 
system in any state in the fourth section; the quantum-theoretic 
analytical expression for S in the fifth section; the interpretations 
of a density operator as a shape of an atom, molecule, or other 
system, of 5 as a measure of such a shape, and the relation of 
shape changes to spontaneous entropy generation in the sixth 
section; and conclusions in the seventh section. 

Carnot Engine 

Camot (1824) analyzed an engine X which interacts with 
two reservoirs A and B, and through a peculiar mode of reason
ing found the correct optimum shaft work done in the course 
of a cyclic change of state of the engine (Fig. 1). 

Using Clausius' pathfinding ideas about energy and entropy 
(1867), denoting energy by E, Clausius' entropy by 5, tempera
ture by T, volume by V, amounts of constituents by n, the 
values of these quantities for each reservoir at the beginning 
and the end of the cyclic change of state of the engine by the 
symbols Hsted on Figs. 2(a) and (b), respectively, we can 
reproduce Carnot's seminal result by beginning with the energy 
and entropy balances of the composite system AXB. 

Energy balance 

Ei Ef 

RESERVOIR 
A 

& 
"W" 

RESERVOIR 
B 

Fig. 1 Schematic of a Carnot engine 

Entropy balance 

5f + Si J 1 — Oir (2) 

(1) 

where W'S'" is the shaft work (energy transfer only) in the 
time interval required by the cyclic change of state of the engine, 
and 5irr the amount of entropy generated spontaneously during 
the same time interval. The value of W ^f" is positive if work 
is done by the engine, and negative if work is done on the 
engine. 

For each of the reservoirs A and B, the changes of energy 
and Clausius entropy are proportional to each other so that 

5^ - 5? = {Ei - Et)/n (3) 

5 ! - 5? = (£? - £?)/rB (4) 

So, using Eqs. (2) to (4) , we can eliminate the energy of 
reservoir B from Eq. (1) and find 

Wtr=-(E^~E^)(\-^)-T^S„ (5) 

Because the optimum is the reversible process, and then Si„ = 
0, Eq. (5) yields 

N o m e n c l a t u r e 

A^ 
B •• 

C R •• 

E 
E ' •• 

EJ-
fi-

l-
L-
m : 

n •-

n • 

s 
S' : 
sf-

system 
system 
positive constant of reservoir R 
energy 
energy of system Y 
energy of system Y in state Y, 
Planck's constant divided by 27r 
angular momentum quantum no. 
total angular momentum 
z-component of angular momen
tum quantum no. 
energy eigenvalue quantum no. 
vector of types and amounts of 
constituents 
vector of types and amounts of 
constituents of system Y 
vector of types and amounts of 
constituents of system Y in state F, 
Clausius entropy 
Clausius entropy of system Y 
Clausius entropy of system Y in 
state Y, 
entropy generated spontaneously 
temperature 

T, = temperature of system A in 
state A, 

Ty = temperature of system Y 
Tr = indicates trace (sum of ei

genvalues ) of operator that 
follows 

V = volume 
Vlf = volume of system Y in state 

W^^^ = shaft work done by compos
ite system YZ 

W y^^ = shaft work done by compos
ite system YZ as its state 
changes from state (YZ), to 
state (YZ)j 

(W y^")rev = shaft work done by compos
ite system YZ as its state 
changes reversibly from 
state (YZ)i to state (YZ)j 

X = engine 
e„ = «th energy eigenvalue of 

electron in hydrogen atom 
K = Boltzmann's constant 
p = density operator that yields 

all probabilities associated 
with measurement results 

Pi = density operator correspond
ing to ith projector or wave 
function (//i 

I,^ = entropy like property of any 
system Y in any state 

E i*̂  = entropylike property of any 
system Y in any state Y, 

i/'i = (th wave function 
fJ^ = available energy or exergy of 

system with respect to reser
voir Y 

ft^ = available energy or exergy of 
system A in state A, with re
spect to reservoir Y; also gen
eralized available energy of 
system A in state A, with val
ues n,^ and V f with respect to 
reservoir Y and final state of A 
with values no and Vo and 
such that A and Kare in mutual 
stable equilibrium 
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(a) (b) 

Fig. 2 Schematic of a cyclic chiange of state of a Carnot engine: (a) initial states of the reservoirs; and 
(b) final states of the reservoirs 

(Wfr\c. = - ( £ ^ - £ f ) 1 
TE 

(6) 

that is, Carnot's seminal result in terms of absolute tempera
tures, where (W t?'^)^^ denotes the shaft work if the process of 
the composite system AXB is reversible. 

For the purposes of this paper, we rewrite Eq. (6) in several 
equivalent forms, such as 

Et)/n 

Et) + T^(S^ - 5 ^ 

Ef) + iW^r\e.]/Tn 
Ef) - (n? - n?)]/rB 

(7) 

(8) 

where in writing the second of Eqs. (7), we use Eq. (3) , the 
first of Eqs. (8) is a rearrangement of the second Eq. (6); and 
the second Eq. (8) results from the definition of fjf as the 
available energy or exergy of an amount of energy Ef of system 
A in state A-, at fixed temperature Tf, with respect to reservoir 
B at temperature TB , that is 

n? 1 
TA 

(9) 

As is very well known, the available energy or exergy n f is 
a property of both system A and reservoir B. It is noteworthy, 
however, that both the entropy 5f and the energy Ef" are inde
pendent of reservoir B. We can express this important result in 
another way. We consider the same changes of energy and 
entropy of system A from state Ai to state Aj, but in a process 
of a composite system AXR consisting of system A, engine X, 
and reservoir R at temperature TR. In the course of a cycle of 
X, we can readily verify that 

5^ - 5 t = [(£^ - £ f ) - ( n ? - n?)] /rR (lO) 

where ftf is the available energy or exergy of Ef^ at fixed 
temperature 7^ with respect to a reservoir at temperature 7^, 
that is 

Of = £^ 1 
TR 

(11) 

Though n " and TR depend on the reservoir, we see from Eq. 
(10) that neither E^ nor 5"̂  has this dependence. 

Engine Operating Between a System That Can As
sume Different Temperatures and a Reservoir 

Next, we consider a cyclic change of state of an engine X 
while it interacts with system A and reservoir R so that the 
values of £ , r , V, n, and Clausius' entropy S of the end states 
of A and R are as listed on Figs. 3(a) and (b). In contrast to 
the process depicted in Fig. 2, here the initial temperature of A 
is Ti, and the final temperature To = TR, that is, at the end of 
the process, system A is in mutual stable equilibrium with reser
voir R. 

If the process of the composite system AXR is reversible, 
the energy transferred through the shaft (Wfo'^)„~, is optimum, 
the energy and Clausius' entropy that flow out of system A are 
Eo - E^ and So - Sf, respectively, and transfer of the entropy 
So - Sf into reservoir R at the end of the cyclic change of 
state of X requires the concurrent transfer of energy TRCSQ — 
5f) (Eq. (4)) . So the energy balance for the composite system 
AXR yields 

(WtDr.. = -KE^ - Ef) - T^(S^ - Sf)] (12) 

or, equivalently. 

Sf - S^ = [(Ef 

= [(Et 
£o) - (wfr)r..yTR 
E^) - Qf]/T^ (13) 

where flf = (W fo),„- It is clear that fi? is a property of both 
system A and reservoir R, and represents the largest work that 
can be done by the composite system AXR as A starts from an 
initial stable or thermodynamic equilibrium state Ai and ends 
in a stable or thermodynamic equilibrium state Ao such that A 
and R are in mutual stable equilibrium, and X undergoes a 
cyclic change of state. By definition, this work is the available 
energy or exergy of state Ai with respect to reservoir R. 

If during the cyclic change of state of X, the reversible pro
cess of the composite system AXR starts with system A in 
stable equilibrium state Ai and ends with A in stable equilibrium 
state A2 different from AQ, then repeated application of Eq. 
(13) yields 

sf - sf = [{Ef - Ef) - m - n^)]/n (14) 
Though in Eqs. (13) and (14), both Cl" and TR depend on 

R, it is noteworthy that neither energy E'^ nor Clausius entropy 
S'" exhibit such dependence. 

The Clausius entropy appearing in Eqs. (10) and (14) can 
be shown to satisfy the following conditions (Callen, 1985): 
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Fig. 3 Schematic of a cyclic change of state of an engine: (a) initial state of A at temperature T,; and {b) 
final state of A at temperature To = T„ 

1 It applies to stable or thermodynamic equilibrium states 
only. 

2 It is independent of the reservoir. 
3 It is nondecreasing in adiabatic processes. 
4 It is additive. 
5 It can be assigned non-negative values only. 
6 For given values of energy, volume, and amounts of con

stituents, it assumes a maximum. 
7 For given values of volume and amounts of constituents, 

the graph of S versus E is concave. 
8 For mutual stable equilibrium between two systems, it 

yields the conditions of temperature equality, total poten
tial equalities, and pressure equality. 

In addition to these conditions, a scarcely appreciated fact is 
that the Clausius entropy applies to all systems, large and small, 
and is not statistical because neither Clausius nor other scientists 
that worked on the foundations and theorems of the theory 
of classical thermodynamics made any restrictive assumptions 
either about the size of the system or about the phenomena 
explained by this theory being statistical, or both. Beginning 
with Maxwell and Boltzmann, restrictive assumptions are intro
duced only by scientists who wish to explain thermodynamic 
phenomena by means of statistical mechanical theories, either 
classical or quantum. 

A General Engine 
Next, we consider an engine X that interacts with system A 

and reservoir R, and does shaft work under the conditions listed 
on Fig. 4. Initially, A is in state Ai, which is not necessarily 
thermodynamic equilibrium. In this state, the values of the 
amounts of constituents are n^, and the value of the volume 
is y f (Fig. 4 (a ) ) . At the end of the interactions, engine X has 
undergone a cyclic change of state and has done shaft work 
W K? ,̂ and the state of A has changed from Aj to a thermody
namic equilibrium state AQ. The latter state corresponds to pre-
specifled values V^ of the volume and n^ of the constituents, 
and is such that A and R are in (partial) mutual stable equilib
rium (Fig. 4(^1)). 

Using their statements of the laws of thermodynamics' (see 
Appendix), Gyftopoulos and Beretta (1991b) prove that if the 
process of AXR just cited is reversible, then the engine shaft 

work is optimum—the largest if done by the cyclic engine or 
the smallest if done on the cyclic engine. They call this optimum 
shaft work generalized available energy of state Ai with respect 
to reservoir R and the values n^ and Vo and, for the sake of 
simplicity of nomenclature, denote it by the same symbol f̂ f 
as that for available energy. It is noteworthy that, under the 
proper conditions, generalized available energy reduces to the 
available energy or exergy concept represented by either Eq. 
(11) or the definition in Eq. (13). 

Next, Gyftopoulos and Beretta establish several characteristic 
features of generalized available energy with respect to a fixed 
reservoir R. For example, they consider two arbitrary states Ai 
and A2 of system A, and a state AQ with prespecifled values 
no and V 0 and such that A and R are in (partial) mutual stable 
equilibrium. For an adiabatic process from Ai to A2 of system 
A only, they show that the energy difference E^ — £2 of A 
and the generalized available energy difference fif - U\ of 
the composite of A and R satisfy the following relations: 

If the adiabatic process of A is reversible 

E\ — E2 — i t l ~ ^^2 

If the adiabatic process of A is irreversible 

Ef - E^<Qf- n ? 

(15) 

(16) 

It is noteworthy that energy and generalized available energy 
are defined for any state of any system, regardless of whether 
the state is steady, unsteady, equilibrium, nonequilibrium, or 
stable equilibrium, and regardless of whether the system has 
many degrees of freedom or one degree of freedom,^ or whether 
the size of the system is large or small. 

Next, we define the following linear combination of energy 
and generalized available energy: 

S^ - Zf = [(£^ - £ f ) - ( n ^ - fi?)]/cR (17) 

where CR is a positive constant which can be chosen so as to 
make E independent of R. The proof that such a choice of CR 
is possible is given by Gyftopoulos and Beretta (1991c). It 
turns out that the value of CR is also equal to the temperature 
TR of the reservoir. 

' All correct statements of the laws of thermodynamics that appear in the 
literature are proven to be special cases of the statements given by Gyftopoulos 
and Beretta (1991a). 

^ For a molecule, the degrees of freedom refer to the independent variations 
that can be made in the spatial coordinates which specify the position and configu
ration of the molecule. They are classified as translational, rotational, vibrational, 
and electronic. 
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Fig. 4 Schematic of a cyciic change of state of an engine: (a) initial state of A is not thermodynamic 
equilibrium; and (b) final state of A is thermodynamic equilibrium so that A and R are in (partial) mutual 
stable equilibrium 

Based on the proven characteristic features of £ and fl"*, we 
find that S satisfies the following conditions: 

1 For the specifications of either the Camot engine or the 
engine operating between a system that can assume differ
ent temperatures and a reservoir, £ satisfies either Eq. 
(10) or (14), respectively. 

2 It is well defined for all systems and all states. 
3 It is independent of R. 
4 It is nondecreasing in adiabatic processes (see Eqs. (15) 

and (16)). 
5 It is additive because both E and Q"* are proven to be 

additive (Gyftopoulos and Beretta, 1991d). 
6 It can be assigned non-negative values (Gyftopoulos and 

Beretta, 1991e). 
7 Among all the states of a system having given values of 

energy, volume, and amounts of constituents, there exists 
only one which has the largest L (see second law state
ment in Appendix). 

8 For given values of volume and amounts of constituents, 
the graph of E versus E of the stable or thermodynamic 
equilibrium states (largest-Z states) is concave (Gyfto
poulos and Beretta, 1991f). 

9 For mutual stable equilibrium between two systems, S 
yields the conditions of temperature equality, total poten
tial equalities, and pressure equality (Gyftopoulos and 
Beretta, 1991g). 

Comparison of this list with the list of characteristic features 
of Clausius' entropy for stable or thermodynamic equilibrium 
states indicates that E behaves exactly like the Clausius entropy, 
maintains these characteristics for states that are not thermody
namic equilibrium, and is nonstatistical. 

It is alleged that the late Cardinal Gushing of Boston said 
' 'When I see a bird that walks like a duck, swims like a duck, 
and quacks like a duck, I call that bird a duck." Though a non-
Catholic, but a Bostonian over the past 44 years, I believe 
that the comparison of the characteristic features of Clausius' 
entropy and those of S allows us to paraphrase the late 
Cardinal's alleged statement and aver with a very high degree 
of certainty that both states which are not thermodynamic equi
librium, and states which are thermodynamic equilibrium can 
be assigned entropy, and that this entropy is defined by Eq. 
(17) for S ' ' = 5^. 

Quantum Theoretic Expression of Entropy 
Ever since the enunciation of the first and second laws of 

thermodynamics by Clausius more than 130 years ago, all ex

pressions for entropy that are not based on temperature and heat 
involve probabilities. Invariably, the probabilities are statistical 
(as opposed to inherent to the nature of physical reality), and 
are introduced as a means to partially overcome the enormous 
computational and informational difficulties resulting from the 
complexity of the "actual state" (classical or quantum) of a 
large system. Thus each expression of entropy is usually con
strued as a subjective measure of information rather than an 
analytical description of an objective property of a system. 

Over the past three decades, a different point of view has 
emerged consistent with the idea that entropy is a property of 
a system. Hatsopoulos and Gyftopoulos (1976b) observed that 
the von Neumann concept of an unambiguous or homogeneous 
ensemble of identical systems that represents a density operator 
equal to a projector (every member of the ensemble is assigned 
the same projector, pi = pf, or the same wave function ij/-, as 
any other member) can be readily extended to density operators 
that are not projectors. Thus, every member of the ensemble is 
assigned the same density operator, p > p^, as any other mem
ber; that is, the ensemble is not a statistical mixture of projec
tors. This extension is accomplished without any radical 
changes of the quantum-theoretic postulates about observables, 
measurement results, and values of observables. An identical 
conclusion is reached by other scientists (Jauch, 1973). 

As is very well known, at an instant in time, a specific projec
tor pi or, equivalently, wave function i/̂ i, is the seat only of all 
quantum probabilities of measurement results. The measure
ments are performed on a homogeneous ensemble of identical 
systems, identically prepared for the instant in time under con
sideration. 

Similarly, at an instant in time, a specific density operator p 
(p > p^) is the seat only of all quantum probabilities of mea
surement results of measurements performed on an unambigu
ous or homogeneous ensemble of identical systems, identically 
prepared for the instant in time under consideration. The relation 
between the density operator and the probability of a measure
ment result is discussed in every good textbook on quantum 
theory. 

In sharp contrast to statistical quantum mechanics, it is note
worthy that density operators used in our work represent only 
quantum probabilities inherent to the nature of physical reality, 
and not mixtures of statistical probabilities accounting for our 
ignorance and inability to perform complicated calculations, 
and quantum probabilities represented by projectors and ac
counting for phenomena inherent to the nature of physical real
ity. 
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One benefit of the recognition that density operators p > 
p^ are encompassed by the quantum-theoretic postulates is the 
elimination of the monstrosity of the concept of mixed state 
that concerned Schroedinger (1936) and Park (1968, 1988). 
Another even more important benefit is that the recognition 
results in a unified quantum theory which encompasses within 
a single structure of concepts and mathematical representatives 
both mechanics and thermodynamics without any need for sta
tistical (subjective or informational) probabilities (Hatsopoulos 
and Gyftopoulos, 1976a). 

Combining the laws of thermodynamics given by Gyfto
poulos and Beretta (see Appendix), and the postulates of the 
unified quantum theory of mechanics and thermodynamics de
veloped by Hatsopoulos and Gyftopoulos (1976a, b) , Gyfto
poulos and fubukgu (1997) show that the only known quantum 
expression that complies with all the conditions that must be 
satisfied by the entropy of thermodynamics is 

S = -K Tr /9 In p (18) 

that is, the product of Boltzmann's constant k and the trace (Tr) 
of the operator p In p, and of course only if p corresponds to 
a homogeneous ensemble and not to a statistical mixture of 
either projectors or other nonprojector density operators {pk * 
p) because only p's that correspond to homogeneous ensembles 
are subject to the laws of physics. 

Pictorial Illustration of Entropy 

In conventional quantum mechanics in which all probabilities 
associated with measurement results are represented by projec
tors or, equivalently, by wave functions, we interpret the proba
bility density function in the spatial language as the shape of an 
atom, molecule, or other system as the case warrants (Leighton, 
1959; Slater, 1963; and Brandt and Dahmen, 1995), and use 
the shape to visualize charge distributions, to calculate atomic 
and molecular radii, and to explain the formation of polyatomic 
molecules. 

A few pictures of surfaces of constant probability density of 
energy eigenfunctions (energy eigenprojectors) of the electron 
in a hydrogen atom calculated by Brandt and Dahmen (1995) 
are shown in Figs. 5 and 6. In the notation p,rf„, of each shape, 
subscript n denotes the energy quantum number and appears in 
the energy eigenvalue relation 

-\3.6l/n^(eV) (19) 

subscript 1 denotes the angular momentum quantum number (0 
< 1 < n — 1) and appears in the square of the total angular 
momentum eigenvalue relation 

L ' = i^i'l(l + 1) (20) 

where L^ is the square of the total angular momentum, and h 
Planck's constant divided by 2n, and subscript m denotes the 
z-component of the angular momentum quantum number ( - € 
s m s 1) and appears in eigenvalue relation 

L. = mft (21) 

where Lj is the z-component of the angular momentum. 
The energy eigenfunctions of a given system form a complete 

orthonormal set. They can be superimposed—be combined in 
a series—to represent any wave function t//, and therefore, all 
the probability distributions of measurement results contem
plated in conventional quantum mechanics. In the sense illus
trated in Figs. 5 and 6, each of these distributions has its own 
shape. 

To each wave function there corresponds a projector or den
sity operator pi = pf. The discussion of the relation between a 
wave function and its projector is beyond the scope of this 
paper. It is presented in many textbooks (Louisell, 1973; 
Kroemer, 1994). 

S322 

Fig. 5 Surfaces of constant probability density pitm = 0.0002 In full x, 
y, z-space of the electron in a hydrogen atom (from Brandt and Dahmen, 
1995) 

For our purposes, it suffices to state that a set of orthonormal 
wave functions can be transformed into a complete set of projec
tors, and that an appropriate complete set of projectors can be 
superimposed—be combined in a series—to represent a density 
operator p > p^. Thus, the probability distributions contem
plated in the unified quantum theory of mechanics and thermo
dynamics can be fully covered. And again in the sense of Figs. 
5 and 6, each of the probability distributions arising from a 
given p > p^ has its own shape. 

As a result of the interpretation of any density operator as 
representing the shape of an atom, molecule, or other system, 
we can consider the quantum expression of entropy (Eq. 18) 
as a special measure of the shape of an atom, molecule, or other 
system as the case requires. For given values of the energy E, 
volume V, and amounts of constituents n, the values of the 
special measure S range from zero to a maximum. For all density 
operators that are projectors, pi = p?, the value of 5 = 0. For 
all other density operators, p > p^, S > 0 and reaches the 
largest value for the density operator p° that corresponds to the 
unique stable equilibrium state dictated by the second law of 
thermodynamics for the given values E, V, n. 

With this interpretation in mind, we can think of the spontane
ous increase of entropy in the course of irreversible processes 
as a natural tendency of an atom, molecule, or other system to 
adapt the shape of its state to the nest of internal and external 
forces of the system until no further reshaping is possible, that 
is, until the largest value of S for given values of E, V, and n 
is achieved. The adaptation to the internal and external forces 
is beautifully visualized by considering the spontaneous expan
sion of an amount of colored gas squirted in a corner of a 
transparent glass container. 
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Fig. 6 Surfaces of constant probability density ptcm = 0.00002 in full x, 
y, z-space of the electron in a hydrogen atom (from Brandt and Dahmen, 
1995) 

If it occurs, the spontaneous increase of S is detrimental 
because, as a nondestructible and nonstatistical property of a 
system, entropy cannot be returned to some small initial value 
without compensation, that is, without transfer of entropy to the 
environment. 

Conclusions 
By using only the concepts of space, time, and inertial mass 

or force, and the laws of thermodynamics (see Appendix), 
Gyftopoulos and Beretta (1991a) disclosed the existence of 
entropy as a nonstatistical property of any system in any state. 
By combining the laws of thermodynamics with the postulates 
of quantum theory, Gyftopoulos and ^ubukgu (1997) proved 
that the only known expression that represents entropy is 5* = 
—feTrp In p. By associating p with the shape of an atom, mole
cule, or other system, entropy is interpreted as a nondestructible 
measure of that shape, and spontaneous generation of entropy 
as the increase of the measure as the spatial shape of the system 
tumbles to adapt itself to the internal and external forces. 
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A P P E N D I X 
The Laws of Thermodynamics 

Gyftopoulos and Beretta state the laws of thermodynamics 
as follows: 

First Law: Any two states of a system may always be the 
end states of a weight process, that is, the initial and final states 
of a change of state that involves no net effects external to the 
system except the change in elevation between zi and Z2 of a 
weight. Moreover, for a given weight, the value of the quantity 
Mg {z\ - Z2) is fixed by the end states of the system, and 
independent of the details of the weight process, where M is 
the mass of the weight and g the gravitational acceleration. 

Second Law (simplified version): Among all the states of a 
system with a given value of the energy, and given values of 
the amounts of constituents and volume, there exists one and 
only one stable equilibrium state. 

Third Law (simplified version): For each given set of values 
of the amounts of constituents and the volume of a system, 
there exists one stable equilibrium state with zero temperature. 
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