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Pictorial visualization of the entropy of thermodynamics 
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Abstract - -  The thermodynamic definition of entropy of a system and its quantum-theoretic expression are reviewed. The 
expression is interpreted as a measure of the spatial shape of the constituents of the system, and pictorial visualizations of the 
shapes associated with various states are presented. The generation of entropy (irreversibility) is attributed to the spontaneous 
change of the spatial shape of constituents as they try to conform to the external and internal forces of the system. The 
spontaneous change occurs until the entropy assumes its largest value, and the spatial shape of constituents yields zero values 
in any direction of both the translational momentum and the internal structure angular momentum of each constituent. © 1999 
[~ditions scientifiques et m~dicales Elsevier SAS. 
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i - th  state of system A 
positive constant equal to temperature  of reser- 
voir R 
energy of the electron in a hydrogen atom 
energy of state Ai 
degeneracy of n - t h  energy eigenstate of the 
electron in a hydrogen atom 
Planck's constant divided by 2g 
Hamiltonian operator of the electron in a 
hydrogen atom 
Boltzmann's  constant 
quantum number  of square of angular momentmn 
of the electron in a hydrogen atom 
quantum number  of z-component of angular 
momentum of the electron in a hydrogen atom 
quantum number  of n - t h  energy eigenstate of the 
electron in a hydrogen atom 
vector of amounts of consti tuents 
reservoir 
entropy 
entropy of state Ai 
trace of operator tha t  follows 
Cartesian coordinate in one dimension 
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x Cartesian coordinates of all constituents of a 
system 

a~ statistical probability assigned to actual state 
e,~ n - th  energy eigenvalue of the electron in a 

hydrogen atom 
p density operator 
pe01ectron density operator of the electron in a hydrogen 

atom and in a stable equilibrium state 
pi projector associated wave function ~p~; in Dirae 

notat ion p~ = I~pi> <~il 
I~pi) ket, Dirae notat ion 
(~P~I bra, Dirac notat ion 
~p(x), ~p(x) wave functions ~p(x) = (xl~p } and ~p(x) = {xl~p ) 

respectively 
~2 a generalized available energy of system A with 

respect to reservoir R 
~/a generalized available energy of state A~ with 

respect to reservoir R 

1. INTRODUCTORY REMARKS 

The term entropy was coined by Clausius [1]. He 
said: "I have felt it more suitable to take the names 
of impor tant  scientific quanti t ies from the ancient 
l anguages  in o rde r  t h a t  t h e y  m a y  a p p e a r  u n c h a n g e d  
in all c o n t e m p o r a r y  languages .  Hence  I p ropose  t h a t  we 
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call S tile entropy of the body  after tile Greek word 
wporo), meaning transfornlat ion.  I have intentionally 
formed the word entropy to be as sinlilar as possible 
to the word energy since the two quanti t ies tha t  are 
given these names are so closely related in their  physical 
significance tha t  a certain likeness in their  nanles has 
seemed appropr ia te ."  

Ill the scientific l i terature,  Clausius '  perceptive and 
impor tan t  observation tha t  tile energy and entropy 
of thermodynamics  are closely related has not always 
been heeded. Since its inception, the concept of 
energy has been accorded a universal nleaning tha t  
underlies our unders tanding of all physical phenolnena. 
In contrast ,  the ternl entropy has been associated 
with nlany s tat is t ical  concepts and mathemat ica l  
expressions. Because these concepts and expressions 
differ fl'om each other, the conmlon nalne is a source 
of confllsion [2, 3] and has conibunded unders tanding 
of many issues slot only about  tile relations ainong 
various entropies but,  more important ly,  about  both  
tile physicM meaning of the entropy of thernlodynalnics  
and the idea of transformatioiL 

Ill addi t ion to the issues raised by tile association 
of tile term entropy with different concepts, many 
scientists and engineers have expressed concerns about  
the eoInpleteness and clari ty of the usual exposit ions 
of thermodynanfics.  For example,  Obert  [4] writes: 
"Most teachers will agree tha t  tile subject  of engineering 
thermodynamics  is confusing to the s tudent  despite the 
simplici ty of tile usual undergraduate  presentation." 

Intr igued and challenged by the issues and concerns 
jus t  cited, over the past  few decades we have made an 
a t te tnpt  to clarify both  the ttmoretical tbundations of 
thernlodynalnics  and the exper imental  evidence in sup- 
por t  of these foundations, and have reached conehlsions 
tha t  differ fronl the in terpreta t ions  presented in the 
scientific l i terature.  We have discussed the new view- 
point  first as a unified quantum theory of mechanics 
and thermodynamics  in Refs. [5 10], and then as a non- 
quantal  exposit ion of the foundations and applicat ions 
of thernlodynanfics  in [11]. 

Ill this paper ,  we recapi tu la te  our findings about  
bo th  the  thernlodynalnic  defiifition of entropy, and its 
quantum-theoret ic  expression. Then, we provide a pic- 
tor ial  visualization of entropy in terms of tile quantum- 
theoret ic  probabi l i ty  densi ty function in ordinary space, 
tha t  is, in terms of tile shape of the const i tuents  of 
a system. Moreover, we show that  the generation of 
entropy (irreversibility) is due to spontaneous changes 
or t ransformat ions  of the shape of const i tuents  a~s they 
t ry  to conform to the external  and internal forces of 
tile system. The spontaneous changes can occur until 
the entropy assumes its largest value. At  tha t  condition, 
tile spat ia l  shape of the const i tuents  yields zero values 
in any direction of boti l  the t ransla t ional  monlentunl  
and the internal s t ructure  angular  momentum of each 
atoln, or molecule, or other particle.  Ill other words, in 
the rmodynamic  equilibrium, all motions cease to exist 

everything is at  rest. 
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Many scientists and engineers interested in appli- 
cations may feel tha t  a general, rigorous, noneircular, 
and complete description of thennodynanfics ,  and a 
quantum-theoret ic  explanat ion of tile foundations of 
the subject  are not impor tant  in solving practical  prob- 
lems. This view is only par t ia l ly  correct, and if insisted 
upon Inay depriw'  us of opportuni t ies  to make new 
discoveries and inajor pract ical  contributions. Some of 
tile reasons for the preceding coininent are as follows: 
(i) The entropy of thermodynamics  is a cornerstone of 
the profession of mechanical engineers a~s well as of all 
other engineering and scientific disciplines. For example, 
if it were not for the possible spontaneous increase of en- 
tropy, hunmnity wouM have no problenls of exhaust ion 
of natura l  resources of both  energy and raw materials,  
no problelns of pollution, and no need for so many pro- 
fessiolmls preoccupying themselves with such problelns; 
(ii) The popular  meaning of the word energy does not 
represent the concept of energy of thernlodynanfics but  
the concept of awdlable energy or exergy, and avail- 
able energy is decisively controlled by entropy rather  
than  the energy defined in thermodynamics.  So, un- 
derstanding entropy is of paramount  inlportance to all 
concerned about  energy systems and processes; (iii) In 
our works we have expressed the laws of thermodynanl-  
ics in terms of the concepts of space, tinle, and force or 
inertial  nlass only, and have proven ninny theorems of 
these laws without  inconsistencies, incompleteness, cir- 
cular arguments,  and alnbiguities. As a result,  we have 
discovered tha t  thermodynanfics  and quantum theory 
are facets of a new unified paradigm of physics, and 
tha t  conventional quantum inechanics (the quantuln 
mechanics taught  to undergraduate  students)  is a spe- 
cial case of tile unified theory (zero entropy physics); 
(iv) The rigorous exposit ion of thermodynamics  helped 
us to discover tha t  entropy is a nonstat is t ical  proper ty  
of the consti tuents of any system in any state. Moreover, 
tile unified quantum theoEy of nlechanics and thermo- 
dynamics helped us to deternfine the quantum- theo- 
retic analyt ical  expression for this impor tant  property;  
(v) As a result of the quantum-theoret ic  considerations, 
we have obtained both a pictorial  visualization of tile 
mathemat ica l  expression of entropy as a measure of the 
shape of tile const i tuents  of a system, attd a correla- 
t ion between spontaneous shape changes and entropy 
generation (irreversibility). Hopefully, the visualization 
and the correlation will s t imulate interest in bet ter  un- 
derstanding of the foundations of thernlodynamics  both 
without  and with quantuln theory; and (vi) Educators,  
practi t ioners,  and students  have a scientific and pro- 
fessional responsibil i ty to pay more at tent ion to tile 
rigorous, noncircular, and noncolffusing understanding 
and practice of thermodynamics  of all systems and all 
states. Such unders tanding and practice are lacking 
now. A wider and more frequent appreciat ion of both  
the beauty, generality, and power of thermodynamics,  
and the correct use of its fundanlental  principles is not 
a ma t te r  of presenting a new theory. It is an imperat ive 
tha t  will help us address and solve inany problems of 
great  importance to hulnalfity and its planet  Earth.  
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2. THE ENTROPY OF T H E R M O D Y N A M I C S  

Among the many novel results of the nonquantal  
exposit ion [11] is the recognition tha t  the entropy 
of thermodynamics  is a nonstat is t ical  proper ty  of a 
system, in the same sense tha t  inertial  mass, or energy, 
or momentum is a nonstat is t ical  p roper ty  of a system, 
and tha t  this entropy is well-defined for all systems, 
both  macroscopic and nficroscopie, and all states,  both  
thermodynamic  equil ibrium and not thermodynanfic  
equilibrium. 

Because the nonquantal  exposit ion is not widely 
known yet, a brief summary  of the laws of thermo- 
dynamics  and sonic of their  theorems is presented in 
Appendix  A, including the definition of entropy by the 
relation 

- = ± - - - 91 )] 
CR 

where S.i and E.i are the entropy and energy of s ta te  A.,: 
of system A, respectively, g2 a is the generalized available 
energy of s ta te  Ai with respect to reservoir R, and ca a 
well-defined positive constant .  

Based on the characterist ic  features of E~ and 
Y2~ listed in Appendix  A, we find tha t  the entropy 
of thermodynamics  must conform to the following 
criteria: (i) be well-defined for every system (both 
macroscopic and microscopic), and every s ta te  (both 
stable equilibrium and not stable equilibrium); (ii) be 
independent  of the reservoir R; (iii) be invariant in 
all reversible adiabat ic  processes, and increasing in all 
irreversible adiabat ic  processes; (iv) be additive; (v) be 
nonnegative,  and vanish for all the s tates  encountered 
in mechanics; (vi) for given values of energy, amounts  
of consti tuents,  and (external) parameters ,  admit  
one and only one s ta te  tha t  corresponds to the 
largest value of entropy; (vii) for given values of 
amounts  of consti tuents,  and parameters ,  the graph 
of entropy versus energy of stable equil ibrium states  
be concave and smooth; (viii) for a composite C of 
two subsystems A and B, must  be such tha t  the 
constrained maximizat ion procedure for C (criterion vi) 
yields identical thermodynamic  potentials  (for example,  
temperature ,  total  potentials ,  and pressure) for all three 
systems A, B, and 6'; (ix) for stable equilibrium states,  
must  reduce to relat ions tha t  have been established 
exper imental ly  and tha t  express the entropy in terms of 
energy, amounts  of consti tuents,  and parameters ,  such 
as the relations for ideal gases. 

In due course, we prove tha t  the preceding reasonable 
and relatively simple cri teria reject all but  one of the 
analyt ical  expressions for entropy tha t  have appeared  in 
the scientific l i terature.  In fact, even the one and only 
acceptable expression requires a profound and radical 
re interpreta t ion of its independent  variables. 

3. UNIF IED Q U A N T U M  T H E O R Y  
OF MECHANICS 
A N D  T H E R M O D Y N A M I C S  

In many textbooks  on quantum mechanics, proba- 
bilities associated with measurement  results are derived 
fi'om a normalized wave function ¢(x)  or, equivalently, 
from either a Dirac ket [¢} or a projector  I~)(¢1, where 
x are the spat ial  coordinates of the const i tuents  of a 
system, and (~l is the bra  of ket 1¢) [12]. For example,  
for a system with one degree of spat ial  freedom x, the 
probabi l i ty  densi ty flmction of mea~surement results of 
x is given by I~(x)] 2 = ( ~ l x ) ( x l ¢ )  = I(xl¢)l  2. 

In s ta t is t ical  quantum mechanics, probabil i t ies  as- 
sociated with measurenmnt results are derived from a 
density opera tor  p = ~ c~i ,oi which represents a mix- 

ture of quantal  probabil i t ies  derived from projectors  
p~ = I C d ( ~ l  for i = 1 ,2 , . . ,  and s tat is t ical  (informa- 
tional) probabil i t ies  a~ which reflect the lack of infor- 
mat ion at)out some or all aspects of the s ta te  of a 
system. 

In general, the foundations and theorems of the 
unified quantmn theory of mechanics and thermody-  
namics differ from those of the ordinary  exposit ions of 
quantum mechanics and s tat is t ical  quantum mechan- 
ics. Among the many novel concepts and results, two 
deserve special emphasis  at  this point. (i) In contrast  
to s ta t is t ical  quantum mechanics, a novel concept of 
the unified quantum theory is tha t  its postulates  .... 
quantum-theoret ic  and thermodynamic  - -  do not apply  
to densi ty operators  tha t  represent mixtures of quantal  
probabil i t ies  derived from projectors  p~ = I~d(~, : l ,  and 
stat is t ical  ( informational)  probabil i t ies  c~ tha t  reflect 
the lack of information about  some or all aspects  of the 
s ta te  of a system. Instead,  the unified theory avers tha t  
the laws of physics apply  only to densi ty operators  each 
of which is construed as the seat of exclusively quantal  
probabili t ies,  tha t  is, only to a p tha t  can be repre- 
sented by a homogeneous ensemble of identical systems, 
identically prepared.  Homogeneous is an ensemble in 
which the probabil i t ies  of results of measurements  on 
any meml)er are represented by the same density op- 
erator  p as those on any other member.  Accordingly, 
experimental ly  (in contrast  to algebraically) the en- 
semble cannot be decomposed into s ta t is t ical  mixtures 
of projectors  or other non-projector  densi ty operators.  
The concept of homogeneous ensemble was introduced 
by von Neumann [13]. But he assumed tha t  it applies 
only to projectors  (p~ = p~), whereas here the concept is 
extended to all self-adjoint, nonnegative definite, linear, 
unit trace density operators.  Each such opera tor  sat- 
isfies the relation p ~> p~. (ii) As a l ready indicated,  in 
contrast  to the ple thora  of expressions for entropy tha t  
have been proposed in the scientific l i terature  over the 
past  fourteen decades, we find tha t  only one satisfies the 
cri teria listed in the preceding section. Because the uni- 
fied quantum theory of mechanics and thermodynamics  
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is not widely known yet, a brief summary  of both  the 
quantum-theore t ic  postula tes  and some of their  theo- 
rems is presented ill Appendix  B, including a discussion 
of the fact that ,  of the known expressions for entropy S, 
the only acceptable is 

S = - k  ~" [p In p] (2) 

where k is Bol tzmann 's  constant ,  Tr s tands for the 
trace of the opera tor  tha t  follows, and p is a 
densi ty opera tor  which can be represented solely by 
a homogeneous ensemble. I t  is noteworthy that ,  if p 
cannot be represented by a homogeneous ensemble, 
then - k T r [ p l n p ]  does not represent the entropy of 
thermodynamics .  

For given valnes of energy, parameters ,  and amounts 
of consti tuents,  if p is a projector  (wave function) then 
S -- 0, if p is not a projector  but  corresponds to a s ta te  
which is not s table equil ibrium (not thermodynamic  
equilibrium) then S has a positive value smaller than  
the largest possible for the given specifications, and if p 
corresponds to the unique stable equil ibrium state,  then 
S has the  largest value of all the entropies of the system 
which share the given values of energy, parameters ,  and 
amounts  of constituents.  

4 .  P I C T O R I A L  V I S U A L I Z A T I O N  

O F  E N T R O P Y  

In many textbooks,  the probabi l i ty  densi ty function 
associated with measurement  results of the spat ial  
coordinates  of the const i tuents  of a system is interpreted 
as the spat ia l  shape of the const i tuents  of the system 
[14,15], and the shape is used to calculate atomic, 
molecular,  and ionic radii  [16], and to explain the 
formation of various compounds.  Tile probabi l i ty  
densi ty function of the spat ial  coordinates  enters also 
in the evaluation of the entropy S (equation (2)) and, 
therefore, we can th ink of entropy as a measure of the 
spat ia l  shape of the const i tuents  of a system, and thus 
achieve a pictorial  visualization of a concept tha t  has 
been puzzling scientists and engineers over more than  a 
century. 

A few graphs of surfaces of constant  probabi l i ty  
densi ty are shown in figures 1 to 3. They are derived 
from probabi l i ty  densi ty functions which represent 
energy eigenfunctions (energy eigenprojectors) of the 
electron in a hydrogen atom. They have been calculated 
by Brandt  and Dahmen [15]. In the nota t ion p~,em of 
each shape, p denotes the probabi l i ty  densi ty flmction 
as a function of the  Car tes ian coordinates  x , y , z  of 
the electron, subscript  n denotes the energy quantum 
number and appears  in the energy eigenvalue relation 

c,~ = - 1 3 . 6 1 / n  2 (eV) (3) 
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Figure I.  Surfaces of constant probability density Ps~m 
= 0.02 in full x,y,z-space of the electron in a hydrogen 
atom [15]. 
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Figure 2. Surfaces of constant probability density P3~m 
= 0 .0002 in full x,y,z-space of the electron in a hydrogen 
atom [15].  
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Figure 3. Surfaces of constant probability density P4gm 
= 0 .00002  in full x,y,z-space of the electron in a hydrogen 
atom [1 5]. 

subscript g denotes the angular momentum quan tum 
number (0 ~< g ~< n -  1) and appears in the square of the 
total angular momentum eigenvalue relation 

L 2 = h  2 g ( g + l ) ,  (4) 

L 2 is the square of the total  angular momentum, and 
h Planck's constant divided by 2n, and subscript m 
denotes the z-component of the angular momentmn 
quan tum number  ( - f  ~< m ~< g) and appears in tile 
eigenvalue relation 

Lz = m h (5) 

where L~ is the z-component of the angular momentmn.  
The probability density function equals the square of the 
absolute magnitude of the electron energy eigenfunction 
as a function of x, y, z. 

If the normalized wave fimction ~b(x ,y ,z )  of the 
electron is not an energy eigenfunction, and has 
energy E~l~¢t,.on = ( ~ l H e l e c t r o n [ ~ / ) } ,  then tile probability 
distr ibution fimction in x , y ,  z-space is again given by 
I¢l 2, and a graph of the electron shape can be made 
in a manner  analogous to that  described for energy 
eigenfunctions. 

Regardless of whether a wave function is an 
eigenfunction of a Hamil tonian operator H, or another 
operator that  represents an observable, or not an 
eigenfimction of any operator, tile probability density 
function can be visualized as a shape in Cartesian space, 
and the value of the entropy S of any such shape equals 
ZerO. 

For a nonzero value of S, we must consider a density 
operator which does not correspond to a projector I@)(@1 
or wave fimction ~b. Tile choices are infinite. For our 
purposes, we have selected 0 /)electron which corresponds to 
the stable equilil)rium state of the electron of a hydrogen 
atom, at electron energy Eelectron [17]. Because the 
energy eigenstates of the electron in a hydrogen atom 
are degenerate, the probability density function pe01ect .... 
of the electron in a stable equilibrium state of energy 
Ed~ctro, is given by the relation (see Appendix B) 

0 E 0 P e l e c t  . . . .  = finn pn (6) 
n 

where 

o = g .  
Pnn ~ gn exp(--~ an) (7) 

~t 

g r n  
p .  - ( 8 )  

gn 

gn = n 2 and is the degeneracy of the energy eigenvalue 
~n, /3 is determined by the energy by means of the 
relation 

E ° Eelectron = ,Onn s~ (9) 
n 

and p,~e,~ is the probability density of the energy 
eigenstate with quan tum numbers n,g,m (0 <~ g 4 n - 1 
and - g  4 rn ~< g). As shown in Appendix B, ¢~ = 1 / k T ,  
where T is the temperature of the electron. Because 
/3 is determined by Edict . . . .  it follows that  T is also 
determined solely by Edict ..... 

Using graphs such as in f igures 2 and 3, we find 

1 
9a = 9 ; p3 = ~ (pa00 + pat0 + pa20) 

2 
+ g (p311 + p3=1 + p3~) (10) 

g4 = 16; 
1 

P 4 = ~ (P 400-Fp410-~f14204-p430) 

2 +~ (P411 4-p421 ~-p422 ~-p431 ~-p432~-P433) 

(11) 

For the purposes of this paper, Dahmen and Stroh 
[18] graphed pa, p4 and pn for any value of n. As 
any quantum-thermodynamicis t  might have expected, 
pn is spherically symmetric for n = 1,2,... (figure 4) 
and, therefore, tile probability density function p01ectro n 
or the corresponding electron shape around the proton 
is spherically symmetric. The spherical shape ha~s at 
least two i lnportant  implications. First, tile angular 
momentum of the electron in any direction equals zero. 
Zero angular momentum means that  the electron is not 

745 



E.P. Gyftopoulos 

Figure 4. Surface of constant probability density Pn in full 
x,y,z-space of the electron in a hydrogen atom, arbitrary units 
for any value of n [18l. 

moving around the proton nucleus of the hydrogen 
atom, as the term stable equil ibrium suggests and 
electromagnetic  theory requires for equil ibrium to be 
achieved. I t  is noteworthy tha t  there exists an infinite 
number  of spherical shapes of the electron around the 
proton which correspond to the same value Ee lec t ron  
of the energy but  an upper  linfit of n in equation (6) 
smaller than  infinity. Each such shape is an unstable 
equil ibrium probabi l i ty  d is t r ibut ion function, and upon 
a minute  pe r tu rba t ion  tends spontaneously to the shape 
p01ectron. 

The second impor tant  implicat ion is tha t  the value 
of the entropy tha t  corresponds to the shape p01ectro n 
is larger than  tha t  determined by any other densi ty 
opera tor  p ¢: p01ectro n and such tha t  T r f l H e l e c t  . . . .  = 

o H (see, however, Ref. 17). Tr Pelectron electron 

If the change of shape from p t o  p01ect ..... Occurs, the 
entropy change from a low value S(p) to the largest 
value 0 S(Pelectron ) is spontaneous,  and the process is 
irreversible. There are, however, spontaneous shape 
changes such as ei ther from one wave fimction to 
another,  or from pl to p2 ¢ p~ but  at  constant  values 
of energy (Trpl  H~l~ct .... = Trp2 H~l~t~on), alnounts of 
consti tuents,  and parameters ,  for which S(p2) = S(pl)  
and, then, the process is reversible. 

Complet ion of the discussion of a hydrogen a tom 
in a finite-size box requires also the consideration of 
the shapes arising from the t rans la t ional  degrees of 
freedoin of the proton nucleus. The energy eigenvalues, 
eigenfunctions, and shapes of a structureless proton in a 
box, and the procedure for combining the t ranslat ional  
shapes with the electron shapes are discussed in many 
texts,  including Hatsopoulos and Gyftopoulos [19]. For 

the sake of brevity, we will not repeat  this discussion 
here except for only one comment. If the probabi l i ty  
density tunction of the proton is derived front an energy 
cigcnflmction, the value of the speed of the proton in 
any direction is zero (see Appendix  B). So, in a stable 
equilibrium state,  both  the electron velocities and the 
proton velocities are all zero nothing moves, tha t  is, 
the concept of stable equilibrium in the unified theory 
is the same as the concept of stable equilibrium in 
classical mechanics. However, there exists an impor tant  
difference between the two theories. Whereas in classical 
mechanics the stable equilibrium state  of a system 
corresponds to the lowest energy of the system, in the 
unified theory there exists one stable equilibrium state 
for each set of values of energy, amounts of constituents,  
and parameters  (see Appendix  A). 

5. CONCLUDING REMARKS 

In closing, we wish to rei terate  that  the entropy 
of thermodynamics  is: (i) a nonstat is t ical  proper ty  of 
the consti tuents of a system, in the same sense tha t  
inertial mass is such a property;  (ii) valid for any 
system, both macroscopic and nficroscopic, including 
a system with only one particle; (iii) valid for any 
state,  thermodynamic  equilibrium or not; and (iv) a 
ineasure of the geometric shape of the const i tuents  
of the system, even if the system consists of only 
one particle. Moreover, irrcvcrsibili ty is due to the 
spontaneous change of the shape of the consti tuents as 
they t ry  to conform to the external  and internal forces 
of the system. 
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A P P E N D I X  A 

T h e r m o d y n a m i c s  

A . 1 .  G e n e r a l  r e m a r k s  

Gyftopoulos and Bcre t ta  [11] have composed a novel 
exposit ion in which all basic concepts of t tmrmody- 
nanfics are defined completely and without  circular 
arguments  in terms of the mechanical concepts of space, 
t ime, and force or inertial  mass. Many of these def- 
initions are new. Tile order of introduct ion of con- 
cepts and postulates  is: system (types and amounts of 
constituents,  fbrces betwccn constituents,  and external  
forces or parameters) ;  properties; states; the first law; 
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energy (without work and heat); energy balance; clas- 
sification of s tates  in terlns of t ime evolutions; stable 
equilibrium states; second law (without temperature ,  
heat, and entropy);  generalized available energy; en- 
t ropy of any state,  s table equilibrium or not, in terms 
of energy and generalized available energy and not in 
terms of t empera tu re  and heat; entropy balance; fun- 
damenta l  relat ion for stable equil ibrium states  only; 
temperature ,  to ta l  potentials ,  and pressure in terms of 
energy, entropy, amounts  of const i tuents  and parameters  
for stahle equil ibrium states  only; the th i rd  law; work in 
terms of energy; and heat  in terms of energy, entropy, 
and temperature .  All concepts and postulates  are valid 
for all systems (both macroscopic and microscopic), all 
s tates  (both stable equil ibrium and not s table equilib- 
rium), and require no s tat is t ical  probabili t ies.  

A.! .1. Definition 

We define general thermodynamics  or s imply ther- 
modynamics  a~s tile s tudy of motions of physical  con- 
s t i tuents  (particles and radiat ions)  resulting from ex- 
ternal ly  appl ied forces, and from internal forces (the 
actions and reactions between consti tuents).  This def- 
inition is identical to tha t  given by Timoshenko and 
Young about  mechanical  dynamics  [20]. However, be- 
cause of the second law, the definition encompasses a 
much broader  spect rum of phenomena than  mechanical 
dynamics.  

A.1.2. Kinematics: conditions at an instant 
in time 

In kinematics we give verbal  definitions of the terms 
system, property,  and s tate  so tha t  each definition 
is valid without  change in any physical theory, and 
involves no stat is t ics  a t t r ibu tab le  to lack of information. 
The definitions include innovations. To the best  of 
our knowledge, they contradict  neither any theoret ical  
principle nor any exper imental  result. 

A system is defined as a collection of constituents 
confined by a nest of internal intermoleeular forces and 
external forces or parameters. Without  modification, 
this definition applies to all paradigms of physics. The 
term parad igm is used in the sense of Kuhn [21]. 

Everything tha t  is not included in the system is the 
environment. 

For a system with r consti tuents,  we denote their  
amounts  by the vector n = {nl,n2,.. .  ,n~}. For a system 
with external  forces described by s parameters  we 
denote the parameters  by the vector/3 = {31,¢~2,... , ~  }. 
One paramete r  may be volume, 31 = V. 

At  any instant  in time, the amount  of each 
consti tuent ,  and tile parameters  of each external  force 
have specific values. We denote these values by n and ¢/ 
with or without  addi t ional  subscripts.  

By themselves, the values of the amounts  of 
const i tuents  and of the parameters  at an instant  in t ime 

do not suffice to characterize completely the condit ion 
of the system at tha t  time. We also need the values 
of a set of independent  propert ies  at the same instant  
in time. The value of an independent  proper ty  can be 
varied without  affecting the values of other  properties.  
Each property is an a t t r ibu te  tha t  can be evaluated at  
any given instant in t ime (not as an average over time) 
by means of a set of measurements  and operat ions 
tha t  are performed on the system and result in a 
nmnerical value - the value of the property. This value 
is independent  of the measuring devices, other  systems 
in tile environment,  and other  instants in time. 

For a given system, the values of the amounts  of 
the consti tuents,  the values of tile parameters ,  and 
the values of a complete set of independent  propert ies  
encompass all tha t  can be said about  both  the system at 
an instant  in time, and the results of any measurements  
tha t  may be per ibrmed on the system at tha t  same 
instant  in time. We call this complete character izat ion 
of the system at an instant  in t ime the state of the 
system. This definition of s ta te  is novel and, without  
change, applies to any branch and any paradigm of 
physics. 

A.2. Dynamics:  changes  of  state in t ime  

The s tate  of a system may change in t ime either 
spontaneously due to the internal  and external  forces, 
or as a result of interactions with other systems, or 
both.  The relation tha t  describes the evolution of the 
s ta te  of an isolated system spontaneous changes of 
state as a function of t ime is the equation of motion. 
Certain t ime evolutions obey Newton's equation which 
relates the to ta l  force F on each system part icle to its 
inertial  mass m and acceleration a so tha t  F = ma. 
Other  evolutions obey the time-dependent Schroedinger 
equation, tha t  is, the quantum-mechanical  equivalent of 
Newton's  equation. Other  exper imental ly  observed t ime 
evolutions, however, do not obey either of these two 
equations. So tile equations of motion tha t  we have are 
incomplete. The discovery of the complete equation of 
motion tha t  describes all physical phenomena remains a 
subject  of research at the frontier of science - -  one of the 
most intriguing and challenging problems in physics [2, 
5, 8-10, 22-24]. Many features of the equation of motion 
have al ready been discovered. These features provide not 
only guidance for tile discovery of the complete equation 
but  also a powerful al ternat ive procedure for analyses of 
many t ime-dependent ,  pract ical  problems. Two of the 
most general and well-established features are captured 
by the consequences of the first and second laws of 
thermodynamics  discussed later. 

A.3. Energy and e n e r g y  ba lance 

Energy is a concept tha t  underlies our unders tanding 
of all physical phenomena,  yet its meaning is subtle 
and difficult to grasp. I t  emerges from a fundamental  
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principle known as the first law of thermodynamics.  The 
f i r s t  law asserts that  any two states of a system may 
always be the initial and final states of a change (weight 
process) that  involves no net effects external to the 
system except the change in elevation between Zl and 
z2 of a weight, that  is, a mechanical effect. Moreover, for 
a given weight, the value of the expression M g ( z l  - z2) 
is fixed only by the end states of the system, where 
M is the mass of the weight, and g tile gravitational 
acceleration. 

The main consequence of this law is that  every system 
A in any state A, has a property called energy ,  with 
a value denoted by the symbol E1 (Ref. [11], Sec. 3.4, 
pp. 32 33). Tile energy E1 can be evaluated by means of 
a weight process that  connects A~ and a reference state 
A0 to which is assigned an arbitrary reference value E0 
so that  

E~ -- Eo - M 9 (z l  - zo) (A-l) 

Energy is shown to be an additive property (Ref. [11], 
See. 3.6, pp. 34 35), that  is, the energy of a composite 
system is the sum of the energies of its subsystems. 
Moreover, it is also shown that  energy has the same 
value at the final time as at the initial time if the 
system experiences a zero-net-effect weight process, or 
remains invariant in time if tile process is spontaneous 
(Ref. [11], See. 3.7, pp. 35 37). In either of the last 
two processes, z2 = Zl and E ( t 2 )  = E ( t l )  for time 
t2 greater than tl ,  that  is, energy is conserved .  Energy 
conservation is a t ime-dependent result. In Rcf. [11], this 
result is obtained without use of the general equation of 
motion. 

Energy can be exchanged between systems by means 
of interactions. Denoting by E a ~  the amount of energy 
exchanged between the environment and system A in a 
process that  changes the state of A from A1 to A2, we 
can derive the energy  balance.  This derivation is based 
on the additivity of energy and energy conservation 
(Ref. [ii], See. 3.8, pp. 37-38), and reads 

( E 2  - -  E l ) s y s t e m  A = E A ~  (A-2) 

In words, the energy change of a system must be 
accounted for by the energy transferred across the 
boundary  of the system. The energy E A ~  crossing 
the boundary  of A is positive if energy flows from the 
environment  to system A. 

A.4. Types of states 

Because the number  of independent properties of a 
system is infinite even for a system consisting of a single 
particle with a single translat ional  degree of freedom 

a single variable that  fixes the configuration of the 
system in space and because most properties can vary 
over a range of values, the number  of possible states 
of a system is infinite. The discussion of these states is 
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facilitated if they arc classified into different categories 
according to time evolutions. This classification brings 
forth many important  aspects of physics, and provides a 
readily understandable motivation for the introduction 
of tile second law of thermodynamics. 

Tile classification consists of: unsteady states; steady 
states; noncquilibrium states; and equilibrium states 
(Ref. [11], Sec. 4.1, pp. 53 58). An equi l ibr ium s ta te  
is one that  does not change as a function of time 
while the system is isolated a state that  does not 
change spontaneously. An uns table  equi l ibr ium s ta te  is 
an equilibrium state that  may be caused to proceed 
spontaneously to a sequence of entirely different states 
by means of a nfinute and short-lived interaction that 
has only an infinitesimal effect on the state of the 
enviromnent.  A stable equ i l ibr ium s ta te  is an equilibrimn 
state that  can be altered to a different state only by 
interactions that  leave net effects in tile eilviromnent 
of the system. These definitions are identical to the 
corresponding definitions in mechanics but include a 
nmch broader spectrum of states than those encountered 
in mechanics. The broader spectrmn is due to the second 
law discussed later. 

Starting either froni a nonequilibrimn state or fronl 
an equilibrium state that  is not stable, energy can be 
extracted from a systeni and affect a mechanical effect 
without leaving any other net changes in the state of 
the environment. In contrast, experience shows that,  
start ing from a stable equilibriuni state, no energy can 
be extracted front the system that  would result in 
the mechanical effect just  cited. This impossibility is 
one of the nlost striking consequences of the first and 
second laws of thermodyimnfics. It is consistent with 
innumerable experiences. 

A.5. Generalized available energy 

The existence of stable equilibrium states is not self- 
evident. It was first recognized by Hatsopoulos and 
Keenan [25] as the essence of all correct statements 
of tile second law. Gyftopoulos and Beretta (Ref. [11], 
Ch. 4, pp. 53 66) concur with this recognition, and state 
tile second law as follows (simplified version): Among 
all the states of a system with a given value of energy, 
and given values of the amounts of constituents and 
the parameters, there exists one and only one stable 
equilibrium state. 

The existence of stable equilibrium states for the 
conditions specified attd, therefore, the second law 
cannot be derived from the laws of mechanics. Within 
mechanics, the stability attalysis yields that  among all 
the allowed states of a system with fixed values of 
amounts of constituents attd parameters, the only stable 
equilibrium state is that  of lowest energy. In contrast the 
second law avers the existettce of a stable equilibrium 
state for each value of the energy. As a result, for every 
system the second law implies the existence of a broad 
class of states in addition to the states contemplated by 
mechanics. 



Pictorial visualization of the entropy of thermodynamics 

The existence of stable equil ibrium states  for various 
condit ions of a system has many theoret ical  and prac- 
tical consequences. One consequence is that ,  s tar t ing 
from a s table equil ibrium s ta te  of any system, no energy 
is available to affect a mechanical effect while the values 
of both  the amounts  of const i tuents  and the parame- 
ters of tile system experience no net changes (Ref. [11], 
Sec. 4.5, pp. 64 65). This consequence is often referred 
to as the impossibi l i ty of a perpe tua l  motion machine of 
the second kind (PMM2). In some exposit ions of ther- 
modynamics,  it is taken as the s ta tement  of the second 
law. In the new exposit ion,  it is only one aspect  of both  
the first and the second laws. 

At  fixed values of both  the amounts  of const i tuents  
and the parameters ,  another  consequence is tha t  not 
all s tates  of a system can be changed to the s ta te  
of miniature energy by means of solely a mechanical 
effect. This is a generalization of the impossibil i ty of a 
PMM2, and is represented by a proper ty  called adiabatic 
availability, and denoted by g' (Ref. [11], Sees. 5.2 to 
5.4, pp. 73-76). The concept of adiabat ic  availabili ty can 
be generalized to the concept of generalized adiabatic 
availability (Ref. [11], Sees. 5.5 and 5.6, pp. 77 80). The 
la t ter  represents the op t imum amount of energy tha t  can 
be exchanged between a system and a weight in a weight 
process in which the respective initial  and final values 
of tile amounts  of const i tuents  and /o r  the parameters  
differ. Generalized adiabat ic  availabili ty differs from 
energy. Like energy, this proper ty  is well defined for any 
system in any state.  Unlike energy, it is not addit ive 
(Ref. [11], See. 5.3.8, p. 75). 

In striving to define an addit ive proper ty  tha t  
captures  the impor tan t  features of generalized adiabat ic  
availability, Gyftopoulos and Bere t ta  introduce a special 
reference system, called a reservoir, and discuss the 
possible weight processes tha t  the composite of a system 
and the reservoir may experience. Thus, they disclose 
a th i rd  consequence of the first and second laws, tha t  
is, a l imit on the op t imum amount of energy tha t  can 
be exchanged between a weight and a composite of a 
system and a reservoir R the op t imum mechanical 
effect. They call the op t imum value generalized availabh'. 
energy (Ref. [11], See. 6.8, pp. 95-97), denote it by £2 R, 
and show tha t  it is addit ive (Ref. [11], Sec. 6.9.6, 
pp. 98-99). It is a generalizat ion of the concept of 
motive power of fire first introduced by Carnot .  I t  
is a generalization because he assumed tha t  both  
systems of the composite  acted as reservoirs with fixed 
values of their  respective amounts  of const i tuents  and 
parameters ,  whereas Gyftopoulos and Bere t ta  do not 
use this assumption.  The definition of a reservoir is 
given in Ref. [11], See. 6.3, pp. 87 88. 

If the  net exchanges between a system and its envi- 
ronment involve only energy, the process experienced by 
the system is called adiabatic. For an adiabat ic  process 
of system A only, it  is shown tha t  the energy change 
E1 -- E2 of A and the generalized available energy change 
g21 a - g?2 a of the composite  of A and reservoir R satisfy" 
the relations (Ref. [11], Sec. 6.9, pp. 97-99): 

if the adiabat ic  process of A is reversible: 

(A-3) 

if the adiabat ic  process of A is irreversible: 

E 1  - -  E 2  < ~'~1R - ~ 2  R (A-4) 

A process is reversible if both  tile system and its 
environment can be restored to their  respective initial 
states. A process is irreversible if the  restorat ion jus t  
cited is impossible. 

It is noteworthy tha t  energy and generalized available 
energy are defined for any s tate  of any system, regardless 
of whether tile s ta te  is steady, unsteady, equilibrium, 
nonequilibrium, or stable equilibrium, and regardless of 
whether  the system has many degrees of freedom or one 
degree of freedom, or whether  the size of the system is 
large or small. 

A.6. Entropy and e n t r o p y  balance 

A system A in any s tate  A1 has many properties.  
Two of these propert ies  are: energy El ,  and generalized 
available energy f2 R with respect to a given auxil iary 
reservoir R. These two propert ies  determine a th i rd  
proper ty  called entropy, and denoted by the symbol S. 
I t  is a proper ty  in the same sense tha t  inertial  mass is 
a property,  or energy is a property,  or momentum is a 
property.  For a s ta te  A1, S1 can be evaluated by means 
of an auxil iary reservoir R, a reference s tate  A0, with 
energy Eo and generalized available energy f20 R, to which 
is assigned a reference value So, and the expression 

Sl = So + ± [(El - Eo) - ( ~  - ~2) ]  (A-5) 
CR 

where eR is a well-defined positive constant  tha t  depends 
on the auxil iary reservoir R only. Ent ropy S is shown 
to be independent  of the reservoir (Ref. [11], Sec. 7.4, 
pp. 108-112), tha t  is, S is a proper ty  of system A and 
the reservoir is auxil iary and is used only because it 
facilitates the definition of S. It is also shown tha t  S can 
be assigned absolute values tha t  are nonnegative, and 
tha t  vanish for all tile s tates  encountered in mechanics 
(Ref. [11], Sec. 9.8, pp. 137-138). 

Because energy and generalized available energy 
satisfy relations (A-3) and (A-4), the entropy defined 
by equation (A-5) remains invariant in any reversible 
adiabat ic  process of A, and increases in any irreversible 
adiabat ic  process of A. These conclusions are valid 
also for spontaneous processes and for zero-net-effect 
interactions. The la t ter  features are known as the 
principle of nondecrease of entropy. Both a spontaneous 
process and a zero-net-effect interact ion are special cases 
of an adiabat ic  process of system A. 

The entropy created during an irreversible process as 
a s ta te  changes in t ime is called entropy generated by 
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irreversibility. It  is positive. The entropy nondecrease 
is a t ime-dependent  result. In tile exposit ion of 
thermodynamics  in Ref. [11], this result is obtained 
without  use of the general equation of motion. Because 
both  energy and generalized available energy are 
addit ive,  equation (A-5) implies tha t  entropy is also 
addit ive (Ref. [11], See. 7.2.2, pp. 103 104). 

Like energy, entropy can be exchanged between 
systems by means of interactions.  Denoting by S A~ the 
amount  of entropy exchanged t)etween the environment 
and system A in the course of a process tha t  changes the 
s ta te  of A from A~ to 12, we derive a very impor tant  
analyt ical  tool, the entropy balance (Ref. [11], Sec. 7.3, 
pp. 106 108), tha t  is, 

(S2 - S1)systemA S A -  + Sirr (1-6) 

where Si,- is positive or at  least zero and represents 
the entropy generated spontaneously within system A 
during the t ime interval fi'om t~ to t2 required to affect 
the change from state  A~ to s ta te  A2. Spontaneous 
entropy generation within a system occurs if the 
system is in a s ta te  tha t  is not stable and the system 
forces precipi ta te  the na tura l  tendency towards stable 
equilibrium. The entropy S A~ crossing the boundary  
of A is positive if entropy flows from the environment 
to system A. The dimensions of S depend on the 
dimensions of both  energy and eR. It  turns  out tha t  
the dimensions of Ca are independent  of mechanical 
dimensions, and are the same as those of temperature .  
Tempera ture  is defined later.  

A.7. Stable equil ibrium states 

It  is shown tha t  among the many states  of a system 
tha t  have given values of the energy E, the amounts  
of const i tuents  n, and tile parameters /3 ,  the entropy of 
the  unique stable equil ibrium s ta te  tha t  corresponds to 
these values is larger than  tha t  of any other s ta te  with 
the  same values E, n,/3 (Ref. [11], See. 8.2, pp. 119 120). 
Moreover, the entropy of a s table equilibrium state  must 
be a function solely of E, n,/~, tha t  is, 

S = S(E, n, ~) (1-7) 

Equat ion (A-7) is called the fundamental relation 
(Ref. [11], Sec. 8.3, pp. 120 124). For s tates  tha t  are not 
stable equilibrium, S depends on more variables than  
E,n,~,  tha t  is, equation (A-7) is not valid. 

The f lmdamental  relat ion is concave with respect to 
energy (Ref. [11], Sec. 9.4, pp. 131 132), tha t  is, 

( 0 2 S ) < ~ 0  (A-8) 

~,~ 

and analyt ic  in each of its variables E,n,/3 (Ref. [11], 
Sec. 8.3, pp. 120-124). 
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Moreover, the fundamental  relation is used to define 
other propert ies  of stable equilibrium states, such as 
temperature T (Ref. [11], Ch. 9), 

OS 
1T = ( O - E ) ~ ,  (1-9) 

total pol, entials #~ for i = 1 ,2 , . .  ,r (Ref. [11], Ch. 10, 
pp. 147 151) 

( OS ) f o r / =  1,2,... ,r (A-10) 

and pressure p (Ref. [11], Ch. 11, pp. 157 162) 

( OS ) for/~1 ~r volunle.  p = T  ~ E,,~,~ (A-11) 

Detailed discussion of propert ies  of stable equilibrium 
states  are given in Ref. [11], Chapters  8 11. 

A.8. Comment 

The concept of entropy introduced here differs from 
and is more general than that  in all textbooks except 
Ref. [11]. I t  does not involve the concepts of t empera ture  
and heat; it is not restr icted to large systems; it applies 
to both macroscopic and microscopic systems, including 
a system with one spin, or a system with one particle 
with only one ( translat ional)  degree of freedom; it is 
not restr icted to stable ( thermodynamic)  equilibrium 
states; it is defined for both stable equilibrium and not 
stable equilibrium states  because energy and generalized 
available energy are defined for all states; and most 
certainly, it is not s tat is t ical  it is a proper ty  of 
mat te r  and not a measure of tile lack of information of 
an observer. 

A.9. Interactions 

Work, heat, bulk flow, and diffusion interactions, 
and their  use in the balance equations are discussed in 
Refs. [11] and [26] and will not be repeated in this brief 
review. 

APPENDIX B 

Unified quantum theory of mechanics 
and thermodynamics 

B.1. Statistical descriptions 

Ever since the enunciation of the first and second laws 
of classical thermodynamics  by Clausius more than 130 
years ago, the question of the relation between classical 
thermodynamics  and mechanics has been the subject  
of intense investigations and controversy. Invariably, 
Maxwell 's  seminal ideas prevail [27], that  is, "... the 
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molecules in a vessel full of air at uniform tempera ture  
are moving with velocities by no means uniform . . . " ,  
and "In dealing with masses of mat ter ,  while we do not 
perceive the individual  molecules, we are compelled to 
adopt  what  I have described as tile s ta t is t ical  method 
of calculation, . . . " .  Though deeply rooted in cla~ssieal 
mechanics, these ideas play a major  role in conventional 
quantal  explanat ions as well. 

Specifically, in s ta t is t ical  quantum mechanics, the 
dominant  view current ly  held about  t i le physical 
significance of classical thermodynamics  is based on 
the in terpre ta t ion of a " thermodynamic  equilibrium 
state" as a composite tha t  best  describes the knowledge 
of an observer possessing only par t ia l  information 
about  the "actual  state" of a macroscopic system. The 
"ith actual  state" at  any instant  in t ime is defined 
as the set of quantM probabil i t ies  derivable from an 
energy eigenprojector  p~ = I ci>(e~l, or from an energy 
eigenfunction e~, where led is an energy eigenket of 
conventional quantum mechanics. Because observers 
are uncertain about  the actual  state,  they consider 
all possible "actual  states" and assign to each of 
them a s tat is t ical  probabi l i ty  a~. The assignment is 
achieved by using a hypothesis  in addi t ion to tile laws 
of conventional quantum mechanics. The combinat ion of 
the two types  of probabil i t ies  is a nfixture characterized 
by an overall densi ty opera tor  p = ~ a i p i ,  where 

~ a ~  = 1, and p > p2. The theories tha t  have evolved 
i 

pursuant  to the view jus t  cited are called informational,  
though the general idea is the foundation of each 
s tat is t ical  in terpre ta t ion  of thermodynamics  proposed 
to date. 

If at an instant  in time, p~ for i = 1,2, . . . ,  and 
p are represented by ensembles of identical systems, 
yon Neumann has shown tha t  the ensemble for each 
p~ is and must  be homogeneous [13], tha t  is, each 
member  of the ensemble is assigned the same p,. 
as any other member,  whereas tile ensemble for p 
is heterogeneous, tha t  is, only a fraction a~ of the 
members  of the p ensemble is assigned the projector  pi 
(figure B-l). In addi t ion to representing the fractions of 
the pi's in p, the s ta t is t ical  probabil i t ies  a~ enter in the 
evaluation of an intbrmational  measure of uncertainty,  
a subject ive entropy, such as S = - k ~  ai  ln c~i, where 

i 
k is Bol tzmann 's  constant .  

C o m m e n t s  

Stat is t ical  theories of thermodynamics  yield many 
correct and pract ical  results. For example,  they yield the 
canonical,  grand-canonical ,  Boltzmann,  Bose-Einstein, 
and Fermi- Dirac distr ibutions,  and predict  the equali ty 
of t empera tures  of systems in mutual  stable equilibrium, 
the Maxwell relations, and the Gibbs equation [28, 
29]. Mutual  stable equilibrium is defined in Ref. [11], 
See. 6.2, pp. 86 87. Despite these successes, the 
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Figure B-1. Representation of a heterogeneous ensemble. 

premise tha t  entropy is a subjective characteris t ic  
of the knowledge of a par t ia l ly  informed observer 
ra ther  than  a proper ty  of a system leaves much to 
be desired in the light of many accurate,  reproducible 
and nonstat is t ieal  experiences, such as the mixing of hot 
and cold substances,  the characterist ics of an internally 
discharging electricity storage bat tery,  the Pelt ier  effect, 
and chemical reactions. In all these experiences, entropy 
plays a dominant  and decisive role which is entirely 
independent  of whether  an observer is informed or 
misinformed. As pointed out by Sehroedinger and 
others [30 32], the conceptual  foundations of s ta t is t ical  
interpretat ions of thermodynamics  are not on solid 
ground. For example, they seem to require abandonment  
of the concept of s ta te  of a system, a cornerstone 
of t radi t ional  physical thought.  Again, they foreclose 
opportuni t ies  for the development of a sound theory 
of nonequilibrium. The reason for the foreclosure is 
tha t  each s tat is t ical  theory considers either Newton's  
equation or Schroedinger 's equation as the relat ion 
tha t  specifies the evolution of the "actual  state" in 
time, but  faces insurmountable  conceptual  difficulties 
to propose determinist ic  equations for the evolutions 
of the a i ' s  in time. In fact, any argument  tha t  
considers the (~i's as indices of ignorance but  proposes 
a determinist ic  evolution of this ignorance in t ime 
is an oxymoron. Though the successes of mechanics, 
equilibrium thermodynamics ,  and the mathematical 
formalism of s ta t is t ical  mechanics leave no doubt  about  
the validi ty of the numerical results, the need for 
a coherent physical theory capable of encompassing 
these same results within a sound unified conceptual  
framework continues to be an interesting challenge. 

B . 2 .  T h e  u n i f i e d  t h e o r y  

Intr igued by the experiences, ideas, and concerns just  
cited, Hatsopoulos and Gyftopoulos [5 8] have proposed 
a resolution of the di lemmas and paradoxes tha t  have 
preoccupied generations of physicists over more than a 

751 



E.P. Gyftopoulos 

century in their  a t t empt s  to rat ionalize the relation be- 
tween mechanics and t lmrmodynamics.  Tile resolution 
differs from all s ta t is t ical  in terpreta t ions  of thermody-  
namics, in general, and from Maxwell 's  explanation,  in 
part icular .  This resolution eliminates tlle need for the 
s ta t is t ical  es t imates  c~,, and is the quantum-theoret ic  
underpinning of the exposi t ion of thermodynamics  sum- 
marized in Appendix  A, tha t  is, the exposit ion which 
asserts tha t  thermodynanf ics  is a general, nonstat is t ical  
or noninformatioiml theory of all physical phenomena. 
The basis of the resolution is a ratified quantum tlle- 
ory of mechanics and thermodynanfics  which without  
modification encompasses all systems (both microscopic 
and macroscopic),  and all s tates  (both thermodynamic  
equil ibrium and not thermodynanfic  equilibrimn).  The 
key for t i le el imination of tlle s ta t is t ical  probabil i t ies  
c~ is tile recognition tha t  the only density operators  
P > p2 tha t  are subject  to the laws of physics (quantum 
theoret ic  and thermodynainic)  are those tha t  can be 
represented by a homogeneous ensemble. In such an 
ensemble, every member  is assigned the same p as any 
other  member  (figure B-2) and exper imental ly  (in con- 
t ras t  to algebraically) p cannot be decomposed into a 
s ta t is t ical  mixture  of either projectors  or density opera- 
tors different from p. The impossibil i ty of decomposit ion 
is analogous to von Neumann 's  conclusion tha t  a pro- 
jector  cannot  be decomposed into a s ta t is t ical  mixture 
of s ta tes  of classical mechanics. Moreover, and perhaps 
more important ly ,  the extension of the concept of ho- 
mogeneity to densi ty operators  p > p2 is accomplished 
without  radical  modifications of the quantum-theoret ic  
postula tes  and theorems about  observables, measure- 
ment  results, values of observables, and densities or 
probabil i t ies  of measurement  results. Key concepts 
definitions, postulates,  and theorems of the unified 
theory are discussed briefly below. They are included 
here because of the emphasis  tha t  must  be given to the 
concept of homogeneous or unambiguous ensemble. 

B.3. K i n e m a t i c s  

The te rm kinematics refers to tile definitions of tile 
terins system, property,  and state,  all at an instant  in 
time. 

B.3.1. System 

The meaning of the term system is discussed in 
Appendix  A. Tile quantum-theoret ic  representat ion of 
a system is as follows. 

B.3.2. System postulate 

To every system there corresponds a complex, 
separable,  complete,  inner product  space, a Hilbert  
space ~ .  The Hilbert  space of a composite system of 
two dist inguishable subsystems 1 and 2, with associated 
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Figure B-2. Representation of a homogeneous ensemble. 

Hilbert  spaces ,]_~1 and /_/2, respectively, is tile direct 
product  space .]_~1 @ .]_~2 [33]. 

B.3.3. Homogeneous or unambiguous 
ensemble 

At an instant in time, an ensemble of identical 
systems is called homogeneous or unambiguous [8] only if 
upon subdivision into subensembles in any conceivable 
way short  of measurements,  each subensemble yields 
in every respect measurement results spectra  of 
values and frequency of occurrence of each value within 
a spect rum identical to the corresponding results 
obta ined from the ensemble. For example, the spectrum 
of energy nmasurement results and the frequency of 
occurrence of each energy measurement  result obtained 
from any subensemblc are identical to the spect rum 
of energy measurement  results and tile frequency of 
occurrence of each energy measurement  result obtained 
from an independent  ensemble tha t  includes all the 
subensembles. 

B.3.4. Preparation 

A preparation is a reproducible scheme used to 
generate one or more homogeneous ensembles for study. 

B.3.5. Property 

Tile meaning of the term property is discussed ill 
Appendix  A. It refers to any a t t r ibu te  of a system that  
can be quant i ta t ively  evaluated at an instant  in t ime by 
means of measurements  and specified procedures. All 
measurement  results and procedures are assumed to be 
precise. 

Wi thou t  any modifications the meanings of the 
concepts of homogeneous ensemble, preparat ion,  and 
proper ty  are valid in all paradigms of physics. 

B.3.6. Observable 

From the definition just  cited, it follows that  
each proper ty  can be observed, tha t  is, evaluated. 
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Traditionally,  however, in quantum theory, a proper ty  is 
called an observable only if it conforms to the following 
mathemat ica l  representation.  

B.3.7. Correspondence postulate 

Some linear Herini t ian operators  A,B, . . .  on Hilbert  
space 7-/, which have complete orthonorInal  sets of 
eigenvectors, correspond to observables of a system 
[33]. 

As explained by Park and Margenau,  the content 
of this postula te  is slightly different from tha t  of its 
analogues in typical  axiomatics inspired by the work of 
von Neumann. In its original form, tile correspondence 
pos tu la te  inchlded both of tile following statements:  
(i) every Hermit ian opera tor  corresponds to a physical 
observable; and (ii) every observable has a Hermit ian 
opera tor  representative.  Superselection rules introduced 
by Wick et al. [34] exclude certain Hermit ian operators  
from being observable. By replacing the word every in 
s ta tement  (i) by the word some, superselection rules are 
satisfied. Compat ib i l i ty  of sinmltaneous measurements  
introduced by Park  and Margenau [33] excludes certain 
observables from corresponding to Hermit ian operators.  
In addit ion,  in a unified theory of mechanics and tiler- 
modynanfics other propert ies  are observable, such as 
temperature ,  but  correspond to no Hermit ian opera- 
tors. By replacing the word every in s ta tement  (ii) by 
tile word some the asymmet ry  between observables and 
operators  is embraced. I t  is clear tha t  the correspon- 
dence pos tu la te  as s ta ted  earlier accommodates  both  
the asymmet ry  between operators  and observables and 
the asymmet ry  between observables and operators.  

B.3.8. Measurement act 

A measurement act is a reproducible scheme of 
measurements  and operat ions on a member  of an 
ensemble. The result of such an act is a precise 
error free number  associated with an observable. 

If a measurement  act is applied to each and every 
member  of a homogeneous ensemble, the results conform 
to tile following mathemat ica l  representation.  

B.3.9. Mean-value postulate 

If a measurement  act of all observable represented 
by Hermit ian  opera tor  A is applied to each and every 
member of a homogeneous ensemble, there exists a 
linear functional rn(A) of A such tha t  the value of 
re(A) equals the ar i thmet ic  mean of the  ensemble of A 
measurements,  tha t  is, 

rn(A) = (A} = ~ a ~ / X  for X -~ ~ (Bq)  
i 

where a~ is the error-free measurement  result of the 
measurement  act applied to the i th member  of the 
ensemble, and (A} another  nota t ion for rn(A) [33]. 

B.3.10. Mean-value theorem 

For each of tile mean-value functionals re(A) of a 
system at an instant in time, there exists tile santo 
Hermit ian opera tor  p such tha t  [33] 

re(A) = (A} = Tr [p A] (B-2) 

The operator  p is known as the density operator or 
the density of measurement results of observables. Tile 
concept of the densi ty opera tor  was introduced by von 
Neunmnn [35] as a s ta t is t ical  average of projectors.  In 
contrast ,  here p is restr icted to homogeneous ensembles 
and, therefore, it is exclusively quantum-theoret ic .  The 
opera tor  p is proven to be Hermitian,  nonnegative- 
definite, unit trace and, in general, not a projector  [8, 
22, 361, tha t  is, 

p > 0 ;  T r p = l ;  P/>P2 (B-3) 

B.3.1 1. Probability theorem 

If a measurement  act of an observable represented 
by opera tor  A is applied to each and every member  
of a homogeneous ensemble characterized by p, the 
probabi l i ty  or frequency W(an) tha t  the results will 
yield eigenvalue an is given by the relation 

W(a, 0 -- Tr [p A~] (B-4) 

where A~ is the project ion onto the subspace belonging 
t o  an~ 

A[an) = anlct,~} for n = 1 , 2 , . . . .  (B-5) 

and [c~,~} the n th  eigenket of opera tor  A. 

B.3.1 2. Measurement result theorem 

The only possible result of a measurement  act of the 
observable represented by A is one of the eigenvalues of 
A (equation B-5). 

Though the s ta tements  of tile mean-value postulate,  
and the probabi l i ty  and measurement  result theorems 
are pract ical ly the same as those given by Park and 
Margenau [33], here the contents of the s ta tements  
differ from those of Park and Margenau because of 
the restr ict ion of p to a holnogeneous ensemble. The 
importance and necessity of this restr ict ion in the unified 
theory cannot be overemphasized. 

B.4. C o m m e n t  on the pictorial  represen-  
ta t ion  of  a h o m o g e n e o u s  e n s e m b l e  

Because no conceivable decomposi t ion of a homoge- 
neous ensemble short  of measurements  can yield compo- 
nent subensembles with different measurement  results 

spect ra  of values and frequency of occurrence of 
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each value - the densi ty opera tor  p can be assigned to 
each memt)er of the homogeneous ensemble a.s shown it:  
figure B-2. This assignment introduces no ambiguities,  
tha t  is, a homogeneous ensemble can be safely thought  
of as consisting of identical systems each of which has 
tile same operators  A,B,. . .  tha t  represent observables, 
tile same values {A},{B),... of observables, and the same 
density opera tor  p. It: fact, this unambiguous character-  
ization of a member  at an instant  in t ime is all tha t  can 
be said at tha t  t ime. 

B.4.1. State 

The meaning of tile term state  is discussed it:  
Appendix  A. In essence, it is all tha t  call be said 
about  a system at an instant  in time. In view 
of tile discussion of the meaning of figure B-2, the 
mathemat ica l  representat ion of s ta te  in the unified 
theory consists of a set of Hermit ian operators  A,B,.. .  
tha t  correspond to a coinplete set of independent  
observables the value of an independent  observable 
can be varied without  affecting the values of other 
observables and the relat ions 

{A} = Tr[pA] = ~ a ~ / N  
i 

{B) = Tr[pB]  = ~ b ~ / N  B-6) 
i 

In these relations, either the densi ty opera tor  p is 
specified a priori and the values of the observables 
are calculated,  or the values of all the independent  
observables ~ a ~ / N ,  y~b~/N .... are measured, and 

i i 

a unique density opera tor  is calculated. The density 
opera tor  is unique because equations (B-6) are linear in 
p. 

Because tile idea is sometimes overlooked, it is very 
impor tan t  to emphasize tha t  the quantum-theoret ic  
value of an observable is always determined by the 
corresponding equation in set (B-6) and not by any 
par t icular  measurement  result. A measurement  act 
yields an eigenvalue. But no correct quantum postula te  
or theorem asserts tha t  this  eigenvalue was necessarily 
the value of the observable prior to measurement.  An 
ensemble of measurenmnt results of an observable is 
needed in order to ascertain its value. 

B.4.2. Dynamics 

Under tile heading of dynamics  there is only one 
concept,  the equation of motion. As discussed in Refs. 
[5, 11], the equation of motion of conventional quantum 
mechanics in the Schroedinger picture is incomplete 
because it prescribes only a un i ta ry  evolution in tittle of 
a projec tor  p~ = p~ for i = 1, 2, . . . ,  and such an evolution 
corresponds to a reversible adiabat ic  process only. In a 

unified theory, the equation of motion must account for 
uni ta ry  changes in t ime of density operators  tha t  are not 
projectors  (p > p2), for reversible adiabat ic  processes 
tha t  are not un i ta ry  and, of course, for irreversible 
processes. Until  a complete equation of motion is 
universally accepted by tile scientific conmnmity, three 
postulates  provide a par t ia l  subst i tu te  for the purposes 
of the unified theory equation (B-7) and tile first 
and second laws of thermodynanfics.  The subst i tute  is 
par t ia l  because it covers only soine of tile requirements 
of tile unified theory. 

B.4.3. Limited dynamical postulate 

Hatsopoulos and Gyftopoulos [5] postula te  that  
uni tary  t ransformations of p in t ime obey the relation 

d p _  i 
de ~ [H p - p H] (B-7) 

where H is the Hanfil tonian opera tor  of thc system. The 
uni ta ry  t ransformation of p satisfies tile equation 

p(t) = U(t,to) p(to) U+(t,to) (B-8) 

where U + is the Hermit ian conjugate of U and, if H is 
independent  of t, 

U(t,to) = exp[-(i/h) (t to) HI (B-9) 

and, if H is explicit ly dependent  on t, 

dU(t,to) 
- (i/h) H(t) U(t,to) (B-10) 

dt 

Though equation (B-7) is well known in the 
l i terature as the von Neumann equation, here it must  
be pos tu la ted  for the following reason. In s ta t is t ical  
quantum mechanics [37], the equation is derived as a 
s tat is t ical  average of Schroedinger equations, each of 
which describes the evolution in t ime of a projector  
p~ in the s ta t is t ical  mixture represented by p, and 
each of which is mult ipl ied by a t ime independent 
s tat is t ical  probabi l i ty  a~. In tile unified theory, p is not 
a mixture  of projectors  and, therefore, cannot be derived 
as a s ta t is t ical  average of projectors.  It is noteworthy 
tha t  the dynamical  postulate  is l imited or incomplete 
because all uni ta ry  evolutions of p in t ime correspond 
to reversible adiabat ic  processes. But not all reversible 
adiabat ic  processes correspond to uni tary  evolutions of 
p in t ime [7], and not all processes are reversible. 

B.4.4. The first and second laws 
of thermodynamics 

A par t ia l  relief to tile l imitat ions of tile incomplete 
dynamical  pos tu la te  jus t  cited is provided by adding 
to equation (B-7) two more s tatements ,  tile first 
law and the second law of thermodynamics.  These 
s ta tements  are given in Appendix  A. Tile quantum- 
theoretic postulates  and theorems, and the two laws 
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of thermodynamics  provide the conceptual  framework 
for the exposit ion of the unified quantum theory 
of mechanics and thermodynamics ,  a theory tha t  
applies to all systems and all states. Moreover, the 
quantum-theoret ic  concepts lurk behind every aspect  
of the exposit ion of thermodynamics  summarized in 
Appendix  A. 

It  is noteworthy tha t  the th i rd  law of thermodynam-  
ics is not needed because it is inherent in the quantum 
theoret ic  foundations. 

B.4.5. Entropy 

On the basis of the new exposit ion of ther lnodynam- 
ics presented in Ref. [11] and summarized in Appendix  
A, and the unified theory presented in Refs. [5-8], and 
summarized in this appendix,  in Ref. [38] we prove tha t  
of all the expressions for entropy S tha t  have been pro- 
posed in the l i terature  the only one tha t  satisfies all the 
necessary cri teria is given by the relation 

S = - k  Tr [p In p] (B-11) 

provided tha t  p is exclusively represented by a homoge- 
neous ensemble. If p is represented by a heterogeneous 
ensemble, then equation (B-11) does not represent the 
entropy of thermodynamics .  

For given values of energy, amounts  of consti tuents,  
and parameters ,  if p is a projector  then S = 0, and 
if p corresponds to the unique stable equil ibrium state  
required by the second law then S has the largest value 
of all the entropies of s ta tes  tha t  share the given values 
of energy, amounts  of consti tuents,  and parameters .  If, 
as it is usually done for projectors,  we interpret  a densi ty 
opera tor  p as the shape of const i tuents  of a system, then 
the entropy of the system is a special measure of the 
shape with values ranging from zero to a maximum for 
each set of values of energy, amounts  of consti tuents,  
and parameters .  

If we adopt  the  measure of shape in terpre ta t ion 
for entropy, an interesting concomitant  ensues. Let 
us assume tha t  the parad igm of the unified quantum 
theory was conceived prior to tha t  of classical mechanics, 
and tha t  a physicist wished to approximate  quantum 
theoretic results by classical concepts. We can safely 
predict  tha t  he would have done an excellent job  
because for macroscopic systems with highly degenerate 
eigenkets, densities of measurement  results of pract ical ly  
all observables can be approximated  by the Dirae 
del ta  function 6(q - q0) 6(p - p0) of space coordinates  
q and momenta  p. Though highly accurate,  such an 
approximat ion would be inadequate  because it does 
not include the concept of shape of the const i tuents  
of the system and, therefore, provides neither the 
mathemat ica l  representat ion for the concept of entropy 
as a proper ty  of the consti tuents,  nor the possibil i ty of 
change of this mathemat ica l  representat ion over a range 
of values. This is another  aspect  of the inadequacy of 
classical mechanics to accommodate  the concepts of 
thermodynamics .  

B.4.6. Density operator of a stable 
equilibrium state 

We can find the densi ty opera tor  p0 of a thermody-  
namic or stable equil ibrium state  A0 of system A by 
maximizing the entropy S subject  to the constraints  

Tr p = 1 and (H) = Tr [p H] = given value E . 
(B-12) 

For simplicity, we assume tha t  the system has only 
volume as a parameter ,  and only one const i tuent  with an 
amount  n equal to an eigenvalue of the number  opera tor  
of the constituent.  Moreover, we use a different subscript  
i even for or thonormal  projectors  tha t  correspond to the 
same eigenvalue. 

The constrained maximizat ion solution is proven to 
be [39] 

0 __ e x p ( - f l H )  o 
P Trexp(-f lH) - ~ p" I~d<~l (B-13) 

i 

where 

Hled  = ~,l~d ; p? = e x p ( - f l s i ) / Z  e x p ( - / 3  ~ i )  

i 

and /3 is determined by the value of the energy E 
because 

(H) = E = Tr[p°H] = Z p O e, 
i 

We can show tha t  

/3 = [(OS/OE)e,n]o ilk (B-14) 

where the subscript  "s" s tands for fixed values of all the 
energy eigenvalues el ,e2, . . . ,  and the subscript  "0" for 
s ta te  Ao, tha t  is, the par t ia l  derivative is taken along 
the stable equilibrium s ta te  locus for fixed values of 
parameters  (fixed e) and fixed amount  of the const i tuent  
n at  s ta te  Ao. But for stable equil ibrium states,  the 
par t ia l  derivative [(OS/OE)~,n]o is defined as the inverse 
t empera ture  of Ao. Accordingly 

/3 = 1/kTo (B-15) 

B.4.7. Translational velocity of a molecule 

We consider a system A in a s table equilibrium 
state  A0 with energy E, number of molecules n /> 1, 
and volume V. For such a state,  the value {pk) of the 
momentum of a single molecule in the spat ial  direction 
xk is given by the relation 

= T r  0 Ip = Z o p.~ (~ l~ ,d(~nlpklc .d  
rr~ n 

: Z E  0 Pnn 6rim (enlpklem) 
m n 

Z 0 (B-16) 
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where the third of these equations results from the 
fact that  the energy eigenkets are orthonormal and, 
therefore, 

((mlCn) = 5nm = Kronecker delta (B-17) 

and the last equation from the relation 

@mlpklem} = 0 for all k and m (B-18) 

The proof of equation (B-18) is straightforward. 
First,  we observe that  the Hamiltonian operator  H 
of the system and the momentum operator  pk of a 
particular molecule satisfy the commutat ion relation 

[xk,H] = i h p k / M  (B-19) 

where M is the mass of the molecule. Next, upon 
defining for all k and m 

( A x k ) ~  = 2 <~.~lxkl~.~> - <~ml~l~m> 2 ( B - 2 0 )  

( A H ) ~  = 2 (B-21) (emlH [em) - (emlH[em) 2 

we can readily prove tha t  [40] 

(Axk)~ (AH)m ~> ~l(Cr~lpkl~,~)l/2M (B-22) 

But for a system with a finite extension Lx along the 
coordinate axis of xk, and an energy eigenket leml, we 
h ave 

0 < (Axk)m < Lk and (AH)m = 0 (B-23) 

and so equality (B-18) is proved. 
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