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Pictorial visualization of the entropy of thermodynamics
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Abstract — The thermodynamic definition of entropy of a system and its quantum-theoretic expression are reviewed. The
expression is interpreted as a measure of the spatial shape of the constituents of the system, and pictorial visualizations of the
shapes associated with various states are presented. The generation of entropy (irreversibility) is attributed to the spontaneous
change of the spatial shape of constituents as they try to conform to the external and internal forces of the system. The
spontaneous change occurs until the entropy assumes its largest value, and the spatial shape of constituents yields zero values
in any direction of both the translational momentum and the internal structure angular momentum of each constituent. © 1999
Editions scientifiques et médicales Elsevier SAS.
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respectively
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1. INTRODUCTORY REMARKS

The term entropy was coined by Clausius [1]. He
said: “I have felt it more suitable to take the names
of important scientific quantities from the ancient
languages in order that they may appear unchanged
in all contemporary languages. Hence I propose that we
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call S the entropy of the body after the Greek word
TpoTy, meaning transformation. I have intentionally
formed the word entropy to be as similar as possible
to the word energy since the two quantities that arc
given these names are so closely related in their physical
significance that a certain likeness in their names has
seemed appropriate.”

In the scientific literature, Clausius’ perceptive and
important observation that the energy and entropy
of thermodynamics are closely related has not always
been heeded. Since its inception, the concept of
energy has been accorded a universal meaning that
underlies our understanding of all physical phenomena.
In contrast, the term entropy has been associated
with many statistical concepts and mathematical
expressions. Because these concepts and expressions
differ from each other, the common name is a source
of confusion [2, 3] and has confounded understanding
of many issues not only about the relations among
various entropies but, more importantly, about both
the physical meaning of the entropy of thermodynamics
and the idea of transformation.

In addition to the issues raised by the association
of the term entropy with different concepts, many
scientists and engineers have expressed concerns about
the completeness and clarity of the usual expositions
of thermodynamics. For example, Obert [4] writes:
“Most teachers will agree that the subject of engineering
thermodynamics is confusing to the student despite the
simplicity of the usual undergraduate presentation.”

Intrigued and challenged by the issues and concerns
just cited, over the past few decades we have made an
attempt to clarify both the theoretical foundations of
thermodynamics and the experimental evidence in sup-
port of these foundations, and have reached conclusions
that differ from the interpretations presented in the
scientific literature. We have discussed the new view-
point first as a unified quantum theory of mechanics
and thermodynamics in Refs. [5-10], and then as a non-
quantal exposition of the foundations and applications
of thermodynamics in [11].

In this paper, we recapitulate our findings about
both the thermodynamic definition of entropy, and its
quantum-theoretic expression. Then, we provide a pic-
torial visualization of entropy in terms of the quantum-
theoretic probability density function in ordinary space,
that is, in terms of the shape of the constituents of
a system. Moreover, we show that the generation of
entropy (irreversibility) is due to spontaneous changes
or transformations of the shape of constituents as they
try to conform to the external and internal forces of
the system. The spontaneous changes can occur until
the entropy assumes its largest value. At that condition,
the spatial shape of the constituents yields zero values
in any direction of both the translational momentum
and the internal structure angular momentum of cach
atom, or molecule, or other particle. In other words, in
thermodynamic equilibrium, all motions cease to exist

everything is at rest.
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Many scientists and engineers interested in appli-
cations may feel that a general, rigorous, noncircular,
and complete description of thermodynamics, and a
quantum-theorctic explanation of the foundations of
the subject are not important in solving practical prob-
lems. This view is only partially correct, and if insisted
upon may deprive us of opportunities to make new
discoveries and major practical contributions. Some of
the reasons for the preceding comment are as follows:
(i) The entropy of thermodynamics is a cornerstone of
the profession of mechanical engineers as well as of all
other engineering and scientific disciplines. For example,
if it were not for the possible spontancous increase of en-
tropy, humanity would have no problems of cxhaustion
of natural resources of both energy and raw materials,
no problems of pollution, and no need for so many pro-
fessionals preoccupying themselves with such problems;
(i1) The popular meaning of the word energy does not
represent the concept of energy of thermodynamics but
the concept of available cnergy or exergy, and avail-
able encrgy is decisively controlled by entropy rather
than the encrgy defined in thermodynamics. So, un-
derstanding entropy is of paramount importance to all
concerned about energy systems and processes; (iii) In
our works we have expressed the laws of thermodynam-
ics in terms of the concepts of space, time, and force or
inertial mass only, and have proven many theorems of
these laws without inconsistencies. incompleteness, cir-
cular arguments, and ambiguities. As a result, we have
discovered that thermodynamics and quantum theory
are facets of a new unified paradigm of physics, and
that conventional quantum mechanics (the quantum
mechanics taught to undergraduate students) is a spe-
cial case of the unified theory (zero entropy physics);
(iv) The rigorous exposition of thermodynamics helped
us to discover that entropy is a nonstatistical property
of the constituents of any system in any state. Moreover,
the unified quantum theory of mechanics and thermo-
dynamics helped us to determine the quantum- theo-
retic analytical expression for this important property;
(v) Asaresult of the quantum-theoretic considerations,
we have obtained both a pictorial visualization of the
mathematical expression of entropy as a measure of the
shape of the constituents of a system, and a correla-
tion between spontaneous shape changes and entropy
generation (irreversibility). Hopefully, the visualization
and the correlation will stimulate interest in better un-
derstanding of the foundations of thermodynamics both
without and with quantum theory; and (vi) Educators,
practitioners, and students have a scientific and pro-
fessional responsibility to pay more attention to the
rigorous, noncircular, and nonconfusing understanding
and practice of thermodynamics of all systems and all
states. Such understanding and practice are lacking
now. A wider and more frequent appreciation of both
the beauty, generality, and power of thermodynamics,
and the correct usc of its fundamental principles is not
a matter of presenting a new theory. It is an imperative
that will help us address and solve many problems of
great importance to humanity and its planet Earth.
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2. THE ENTROPY OF THERMODYNAMICS

Among the many novel results of the nonquantal
exposition [11] is the recognition that the entropy
of thermodynamics is a nonstatistical property of a
system, in the same sense that inertial mass, or energy,
or momentum is a nonstatistical property of a system,
and that this entropy is well-defined for all systems,
both macroscopic and microscopic, and all states, both
thermodynamic equilibrium and not thermodynamic
equilibrium.

Because the nonquantal exposition is not widely
known yet, a brief summary of the laws of thermo-
dynamics and some of their theorems is presented in
Appendix A, including the definition of entropy by the
relation

Sp— S =— [(B2— E1) — (25 — 021)] 1)

1
CR
where S; and E; are the entropy and energy of state A;
of system A, respectively, £28 is the generalized available

energy of state A; with respect to reservoir R, and cgr a
well-defined positive constant.

Based on the characteristic features of E; and
0F listed in Appendix A, we find that the entropy
of thermodynamics must conform to the following
criteria: (i) be well-defined for every system (both
macroscopic and microscopic), and every state (both
stable equilibrium and not stable equilibrium); (ii) be
independent of the reservoir R; (iii) be invariant in
all reversible adiabatic processes, and increasing in all
irreversible adiabatic processes; (iv) be additive; (v) be
nonnegative, and vanish for all the states encountered
in mechanics; (vi) for given values of energy, amounts
of constituents, and (external) parameters, admit
one and only one state that corresponds to the
largest value of entropy; (vii) for given values of
amounts of constituents, and parameters, the graph
of entropy versus energy of stable equilibrium states
be concave and smooth; (viil) for a composite C' of
two subsystems A and B, must be such that the
constrained maximization procedure for C (criterion vi)
yields identical thermodynamic potentials (for example,
temperature, total potentials, and pressure) for all three
systems A, B, and C; (ix) for stable equilibrium states,
must reduce to relations that have been established
experimentally and that express the entropy in terms of
energy, amounts of constituents, and parameters, such
as the relations for ideal gases.

In due course, we prove that the preceding reasonable
and relatively simple criteria reject all but one of the
analytical expressions for entropy that have appeared in
the scientific literature. In fact, even the one and only
acceptable expression requires a profound and radical
reinterpretation of its independent variables.

3. UNIFIED QUANTUM THEORY
OF MECHANICS
AND THERMODYNAMICS

In many textbooks on quantum mechanics, proba-
bilities associated with measurement results are derived
from a normalized wave function ¥(x) or, equivalently,
from either a Dirac ket |9) or a projector |){(i|, where
x are the spatial coordinates of the constituents of a
system, and (y| is the bra of ket |¢) [12]. For example,
for a system with one degree of spatial freedom z, the
probability density function of measurement results of
z is given by [(e)|2 = (¥lz) (alw) = |(zl)]>.

In statistical quantum mechanics, probabilities as-
sociated with measurement results are derived from a
density operator p = 3 a; p; which represents a mix-

ture of quantal probabilities derived from projectors
pi = |Yay(ys| for ¢ = 1,2,..., and statistical (informa-
tional) probabilities «; which reflect the lack of infor-
mation about some or all aspects of the state of a
systerm.

In general, the foundations and theorems of the
unified quantum theory of mechanics and thermody-
namics differ from those of the ordinary expositions of
quantum mechanics and statistical quantum mechan-
ics. Among the many novel concepts and results, two
deserve special emphasis at this point. (i) In contrast
to statistical quantum mechanics, a novel concept of
the unified quantum theory is that its postulates -—
quantum-theoretic and thermodynamic — do not apply
to density operators that represent mixtures of quantal
probabilities derived from projectors p; = |¢:){y;|, and
statistical (informational) probabilities a; that reflect
the lack of information about some or all aspects of the
state of a system. Instead, the unified theory avers that
the laws of physics apply only to density operators each
of which is construed as the seat of exclusively quantal
probabilities, that is, only to a p that can be repre-
sented by a homogeneous ensemble of identical systems,
identically prepared. Homogeneous is an ensemble in
which the probabilities of results of measurements on
any member are represented by the same density op-
erator p as those on any other member. Accordingly,
experimentally (in contrast to algebraically) the en-
semble cannot be decomposed into statistical mixtures
of projectors or other non-projector density operators.
The concept of homogeneous ensemble was introduced
by von Neumann [13]. But he assumed that it applies
only to projectors (p; = p2), whereas here the concept is
extended to all self-adjoint, nonnegative definite, linear,
unit trace density operators. Each such operator sat-
isfies the relation p > p2. (ii) As already indicated, in
contrast to the plethora of expressions for entropy that
have been proposed in the scientific literature over the
past fourteen decades, we find that only one satisfies the
criteria listed in the preceding section. Because the uni-
fied quantum theory of mechanics and thermodynamics
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is not widely known yet, a brief summary of both the
quantum-theoretic postulates and some of their theo-
rems is presented in Appendix B, including a discussion
of the fact that, of the known expressions for entropy S,
the only acceptable is

S=—kTrlpln g (2)

where k is Boltzmann’s constant, Tr stands for the
trace of the operator that follows, and p is a
density operator which can be represented solely by
a homogeneous ensemble. It is noteworthy that, if p
cannot be represented by a homogeneous ensemble,
then —kTr[plnp] does not represent the entropy of
thermodynamics.

For given values of energy, parameters, and amounts
of constituents, if p is a projector (wave function) then
S =0, if p is not a projector but corresponds to a state
which is not stable equilibrium (not thermodynamic
equilibrium) then S has a positive value smaller than
the largest possible for the given specifications, and if p
corresponds to the unique stable equilibrium state, then
S has the largest value of all the entropies of the system
which share the given values of energy, parameters, and
amounts of constituents.

4. PICTORIAL VISUALIZATION
OF ENTROPY

In many textbooks, the probability density function
associated with measurement results of the spatial
coordinates of the constituents of a system is interpreted
as the spatial shape of the constituents of the system
[14,15], and the shape is used to calculate atomic,
molecular, and ionic radii [16], and to explain the
formation of various compounds. The probability
density function of the spatial coordinates enters also
in the evaluation of the entropy S (equation (2}) and,
therefore, we can think of entropy as a measure of the
spatial shape of the constituents of a system, and thus
achieve a pictorial visualization of a concept that has
been puzzling scientists and engineers over more than a
century.

A few graphs of surfaces of constant probability
density are shown in figures 1 to 8. They are derived
from probability density functions which represent
energy eigenfunctions (energy eigenprojectors) of the
electron in a hydrogen atom. They have been calculated
by Brandt and Dahmen [15]. In the notation pne., of
each shape, p denotes the probability density function
as a function of the Cartesian coordinates x,y,z of
the electron, subscript n denotes the energy quantum
number and appears in the energy eigenvalue relation

en = —13.61/n% (eV) (3)

744

Q200 ¢ Q200 4

T
o AN
LTI

@210 B210

Q214 4 Ray 4

Figure 1. Surfaces of constant probability density poem
= 0.02 in full z,y,z-space of the electron in a hydrogen
atom [15].
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Figure 2. Surfaces of constant probability density paem
= 0.0002 in full z,y,z-space of the electron in a hydrogen
atom [15].
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Figure 3. Surfaces of constant probability density paem,
= 0.00002 in full z,y,z-space of the electron in a hydrogen
atom [15].

subscript £ denotes the angular momentum quantum
number (0 € £ < n— 1) and appears in the square of the
total angular momentum eigenvalue relation

LP=re(+1), (4)

L? is the square of the total angular momentum, and
h Planck’s constant divided by 2w, and subscript m
denotes the z-component of the angular momentum
quantum number (—¢ < m < £) and appears in the
eigenvalue relation

L,=mh (5)

where L, is the z-component of the angular momentum.
The probability density function equals the square of the
absolute magnitude of the electron energy eigenfunction
as a function of z,y, 2.

If the normalized wave function ¥(z,y,z) of the
electron is not an energy eigenfunction, and has
energy Felectron = (|Helectron|®), then the probability
distribution function in z,y, z-space is again given by
||, and a graph of the electron shape can be made
in a manner analogous to that described for energy
eigenfunctions.

Regardless of whether a wave function is an
eigenfunction of a Hamiltonian operator H, or another
operator that represents an observable, or not an
eigenfunction of any operator, the probability density
function can be visualized as a shape in Cartesian space,
and the value of the entropy S of any such shape equals
Zero.

For a nonzero value of S, we must consider a density
operator which does not correspond to a projector |¢) (/|
or wave function 1. The choices are infinite. For our
purposes, we have selected plj...ron Which corresponds to
the stable equilibrium state of the electron of a hydrogen
atom, at electron energy Felectron [17]. Because the
energy eigenstates of the electron in a hydrogen atom
are degenerate, the probability density function p%eciron
of the electron in a stable equilibrium state of energy
Eclectron 18 given by the relation (see Appendix B)

pglectron - Z p?ln Pn (6)
n

where

gn exp(=Ben)
> gnexp(—Ben) @)
; E Pném

pn =~ —— (8)

o _
Pnn =

gn = n? and is the degeneracy of the energy eigenvalue
€n, B is determined by the energy by means of the
relation

Eelectron = Z pgn En (9)

and pnem is the probability density of the energy
eigenstate with quantum numbers nf,;m (0 << n—1
and —¢ < m < £). As shown in Appendix B, 8 =1/k T,
where T is the temperature of the electron. Because
B3 is determined by Feiectron, it follows that T is also
determined solely by Fejectron-

Using graphs such as in figures 2 and 3, we find

1
g3=9; p3= 9 (p300 + p310 + p3z20)

2
+3 (pa11 + paz1 + ps22)  (10)

1
ga=16; ps= 16 {paoo + paro + pazo + paso)

2
+ 6 (pa11 + paz1 + paz2 + pas1 + pas2 + pass)
(11)

For the purposes of this paper, Dahmen and Stroh
(18] graphed ps, psa and p, for any value of n. As
any quantum-thermodynamicist might have expected,
pn is spherically symmetric for n = 1,2,... (figure 4)
and, therefore, the probability density function p.ceron
or the corresponding electron shape around the proton
is spherically symmetric. The spherical shape has at
least two important implications. First, the angular
momentum of the electron in any direction equals zero.
Zero angular momentum means that the electron is not
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Figure 4. Surface of constant probability density p, in full
x,y,z-space of the electron in a hydrogen atom, arbitrary units
for any value of n [18].

moving around the proton nucleus of the hydrogen
atom, as the term stable equilibrium suggests and
electromagnetic theory requires for equilibrium to be
achieved. It is noteworthy that there exists an infinite
number of spherical shapes of the electron around the
proton which correspond to the same value FEejectron
of the energy but an upper limit of n in equation (6)
smaller than infinity. Each such shape is an unstable
equilibrium probability distribution function, and upon
a minute perturbation tends spontaneously to the shape
pglectron'

The second important implication is that the value
of the entropy that corresponds to the shape p2.ciron
is larger than that determined by any other density
operator p # pQectron and such that Trp Heectron =
Tt pectron Helectron (S€€, however, Ref. 17).

If the change of shape from p to p%...,.. occurs, the
entropy change from a low value S(p) to the largest
value S(0lcciron) 1S Spontaneous, and the process is
irreversible. There are, however, spontaneous shape
changes such as either from one wave function to
another, or from p; to p2 # p1 but at constant values
of energy (Trp1 Helectron = TT p2 Helectron ), amounts of
constituents, and parameters, for which S(p2) = S(p1)
and, then, the process is reversible.

Completion of the discussion of a hydrogen atom
in a finite-size box requires also the comsideration of
the shapes arising from the translational degrees of
freedom of the proton nucleus. The energy eigenvalues,
eigenfunctions, and shapes of a structureless proton in a
box, and the procedure for combining the translational
shapes with the clectron shapes are discussed in many
texts, including Hatsopoulos and Gyftopoulos [19]. For
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the sake of brevity, we will not repeat this discussion
here except for only one comment. If the probability
density function of the proton is derived from an energy
cigenfunction, the value of the speed of the proton in
any direction is zero (see Appendix B). So, in a stable
equilibrium state, both the electron velocities and the
proton velocities are all zero  nothing moves, that is,
the concept of stable equilibrium in the unified theory
is the samc as the concept of stable equilibrium in
classical mechanics. However, there exists an important
difference between the two theorics. Whereas in classical
mechanics the stable equilibrium state of a system
corresponds to the lowest energy of the system, in the
unified theory there exists one stable equilibrium state
for each set of values of energy, amounts of constituents,
and parameters (scc Appendix A).

5. CONCLUDING REMARKS

In closing, we wish to reiterate that the entropy
of thermodynamics is: (i) a nonstatistical property of
the constituents of a system, in the same sense that
incrtial mass is such a property; (ii) valid for any
system, both macroscopic and microscopic, including
a system with only one particle; (iil) valid for any
state, thermodynamic equilibrinm or not; and (iv) a
measure of the geometric shape of the constituents
of the system, even if the system consists of only
one particle. Moreover, irreversibility is due to the
spontaneous change of the shape of the constituents as
they try to conform to the external and internal forces
of the system.
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APPENDIX A

Thermodynamics
A.1. General remarks

Gyftopoulos and Beretta [11] have composed a novel
exposition in which all basic concepts of thermody-
namics are defined completely and without circular
arguments in terms of the mechanical concepts of space,
time, and force or inertial mass. Many of these def-
initions are new. The order of introduction of con-
cepts and postulates is: system (types and amounts of
constituents, forces between constituents, and external
forces or parameters); properties; states; the first law;
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energy (without work and heat); energy balance; clas-
sification of states in terms of time evolutions; stable
equilibrium states; second law (without temperature,
heat, and entropy); generalized available energy; en-
tropy of any state, stable equilibrium or not, in terms
of energy and generalized available energy and not in
terms of temperature and heat; entropy balance; fun-
damental relation for stable equilibrium states only;
temperature, total potentials, and pressure in terms of
energy, entropy, amounts of constituents and parameters
for stable equilibrium states only; the third law; work in
terms of energy; and heat in terms of energy, entropy,
and temperature. All concepts and postulates are valid
for all systems (both macroscopic and microscopic), all
states (both stable equilibrium and not stable equilib-
rium), and require no statistical probabilities.

A.1.1. Definition

We define general thermodynamics or simply ther-
modynamics as the study of motions of physical con-
stituents (particles and radiations) resulting from ex-
ternally applied forces, and from internal forces (the
actions and reactions between constituents). This def-
inition is identical to that given by Timoshenko and
Young about mechanical dynamics [20]. However, be-
cause of the second law, the definition encompasses a
much broader spectrum of phenomena than mechanical
dynamics.

A.1.2. Kinematics: conditions at an instant
in time

In kinematics we give verbal definitions of the terms
system, property, and state so that each definition
is valid without change in any physical theory, and
involves no statistics attributable to lack of information.
The definitions include innovations. To the best of
our knowledge, they contradict neither any theoretical
principle nor any experimental result.

A system is defined as a collection of constituents
confined by a nest of internal intermolecular forces and
external forces or parameters. Without modification,
this definition applies to all paradigms of physics. The
term paradigm is used in the sense of Kuhn [21].

Everything that is not included in the system is the
environment.

For a system with r constituents, we denote their
amounts by the vector n = {n1,n2,...,n,}. For a system
with external forces described by s parameters we
denote the parameters by the vector 8 = {81,82,...,0s}.
One parameter may be volume, 5 = V.

At any instant in time, the amount of each
constituent, and the parameters of each external force
have specific values. We denote these values by n and 3
with or without additional subscripts.

By themselves, the values of the amounts of
constituents and of the parameters at an instant in time

do not suffice to characterize completely the condition
of the system at that time. We also need the values
of a set of independent properties at the same instant
in time. The value of an independent property can be
varied without affecting the values of other properties.
Each property is an attribute that can be evaluated at
any given instant in time (not as an average over time)
by means of a set of measurements and operations
that are performed on the system and result in a
numerical value — the value of the property. This value
is independent of the measuring devices, other systems
in the environment, and other instants in time.

For a given system, the values of the amounts of
the constituents, the values of the parameters, and
the values of a complete set of independent properties
encompass all that can be said about both the system at
an instant in time, and the results of any measurements
that may be performed on the system at that same
instant in time. We call this complete characterization
of the system at an instant in time the state of the
system. This definition of state is novel and, without
change, applies to any branch and any paradigm of
physics.

A.2. Dynamics: changes of state in time

The state of a system may change in time either
spontaneously due to the internal and external forces,
or as a result of interactions with other systems, or
both. The relation that describes the evolution of the
state of an isolated system — spontaneous changes of
state — as a function of time is the equation of motion.
Certain time evolutions obey Newton’s equation which
relates the total force F on each system particle to its
inertial mass m and acceleration a so that F = ma.
Other evolutions obey the time-dependent Schroedinger
equation, that is, the quantum-mechanical equivalent of
Newton’s equation. Other experimentally observed time
evolutions, however, do not obey either of these two
equations. So the equations of motion that we have are
incomplete. The discovery of the complete equation of
motion that describes all physical phenomena remains a
subject of research at the frontier of science — one of the
most intriguing and challenging problems in physics |2,
5, 8-10, 22-24]. Many features of the equation of motion
have already been discovered. These features provide not
only guidance for the discovery of the complete equation
but also a powerful alternative procedure for analyses of
many time-dependent, practical problems. Two of the
most general and well-established features are captured
by the consequences of the first and second laws of
thermodynamics discussed later.

A.3. Energy and energy balance
Energy is a concept that underlies our understanding

of all physical phenomena, yet its meaning is subtle
and difficult to grasp. It emerges from a fundamental
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principle known as the first law of thermodynamics. The
first law asserts that any two states of a system may
always be the initial and final states of a change (weight
process) that involves no net effects external to the
system except the change in elevation between z; and
22 of a weight, that is, a mechanical effect. Moreover, for
a given weight, the value of the expression Mg(z1 — 22)
is fixed only by the end states of the system, where
M is the mass of the weight, and g the gravitational
acceleration.

The main consequence of this law is that every system
A in any state A; has a property called energy, with
a value denoted by the symbol E; (Ref. [11], Sec. 3.4,
pp- 32-33). The energy E; can be evaluated by means of
a weight process that connects A; and a reference state
Ag to which is assigned an arbitrary reference value Ey
so that

E1 = Eo - Mg (21 - Zo) (A—l)

Energy is shown to be an additive property (Ref. [11],
Sec. 3.6, pp. 34-35), that is, the energy of a composite
system is the sum of the encrgies of its subsystems.
Moreover, it is also shown that energy has the same
value at the final time as at the initial time if the
system experiences a zero-net-effect weight process, or
remains invariant in time if the process is spontaneous
(Ref. [11], Sec. 3.7, pp. 35-37). In either of the last
two processes, zp = z and E(tz) = E(f) for time
to greater than t1, that is, energy is conserved. Energy
conservation is a time-dependent result. In Ref. [11], this
result is obtained without use of the general equation of
motion.

Energy can be exchanged between systems by means
of interactions. Denoting by E4~ the amount of energy
exchanged between the environment and system A in a
process that changes the state of A from 4; to A;, we
can derive the energy balance. This derivation is based
on the additivity of energy and energy conservation
(Ref. [11], Sec. 3.8, pp. 37-38), and reads

(Ey — E1) = EA (A-2)

system A T

In words, the energy change of a system must be
accounted for by the energy transferred across the
boundary of the system. The energy E4~ crossing
the boundary of A is positive if energy flows from the
environment to system A.

A.4. Types of states

Because the number of independent properties of a
system is infinite even for a system consisting of a single
particle with a single translational degree of freedom
— a single variable that fixes the configuration of the
system in space — and because most properties can vary
over a range of values, the number of possible states
of a system is infinite. The discussion of these states is
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facilitated if they arc classified into different categories
according to time evolutions. This classification brings
forth many important aspects of physics, and provides a
readily understandable motivation for the introduction
of the second law of thermodynamics.

The classification consists of: unsteady states; steady
states; noncquilibrium states; and equilibrium states
(Ref. [11], Sec. 4.1, pp. 53-58). An equilibrium state
is onc that does not change as a function of time
while the system is isolated — a state that does not
change spontancously. An unstable equilibrium state is
an equilibrium state that may be caused to proceed
spontaneously to a sequence of entirely different states
by means of a minute and short-lived interaction that
has only an infinitesimal effect on the state of the
environment. A stable equilibrium state is an equilibrium
statc that can be altered to a different state only by
interactions that leave net effects in the environment
of the system. These definitions are identical to the
corresponding definitions in mechanics but include a
much broader spectrum of states than those encountered
in mechanics. The broader spectrum is due to the second
law discussed later.

Starting either from a nonequilibrium state or from
an equilibrium state that is not stable, energy can be
extracted from a system and affect a mechanical effect
without leaving any other net changes in the state of
the environment. In contrast, experience shows that,
starting from a stable equilibriumn state, no encrgy can
be extracted from the system that would result in
the mechanical effect just cited. This impossibility is
one of the most striking consequences of the first and
second laws of thermodynamics. It is consistent with
innumerable experiences.

A.5. Generalized available energy

The existence of stable equilibrium states is not self-
evident. It was first recognized by Hatsopoulos and
Keenan [25] as the essence of all correct statements
of the second law. Gyftopoulos and Beretta (Ref. [11],
Ch. 4, pp. 53-66) concur with this recognition, and state
the second law as follows (simplified version): Among
all the states of a system with a given value of cnergy,
and given values of the amounts of constituents and
the parameters, there exists one and only one stable
equilibrium state.

The existence of stable equilibrium states for the
conditions specified and, therefore, the second law
cannot be derived from the laws of mechanics. Within
mechanics, the stability analysis yields that among all
the allowed states of a system with fixed values of
amounts of constituents and parameters, the only stable
equilibrium state is that of lowest energy. In contrast the
second law avers the existence of a stable equilibrium
state for each value of the energy. As a result, for every
system the second law implies the existence of a broad
class of states in addition to the states contemplated by
mechanics.
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The existence of stable equilibrium states for various
conditions of a system has many theoretical and prac-
tical consequences. Omne consequence is that, starting
from a stable equilibrium state of any system, no energy
is available to affect a mechanical effect while the values
of both the amounts of constituents and the parame-
ters of the system experience no net changes (Ref. [11],
Sec. 4.5, pp. 64-65). This consequence is often referred
to as the impossibility of a perpetual motion machine of
the second kind (PMMZ2). In some expositions of ther-
modynamics, it is taken as the statement of the second
law. In the new exposition, it is only one aspect of both
the first and the second laws.

At fixed values of both the amounts of constituents
and the parameters, another consequence is that not
all states of a system can be changed to the state
of minimum energy by means of solely a mechanical
effect. This is a generalization of the impossibility of a
PMM2, and is represented by a property called adiabatic
availability, and denoted by ¥ (Ref. [11], Secs. 5.2 to
5.4, pp. 73-76). The concept of adiabatic availability can
be generalized to the concept of generalized adiabatic
avaslability (Ref. [11], Secs. 5.5 and 5.6, pp. 77-80). The
latter represents the optimum amount of energy that can
be exchanged between a system and a weight in a weight
process in which the respective initial and final values
of the amounts of constituents and/or the parameters
differ. Generalized adiabatic availability differs from
energy. Like energy, this property is well defined for any
system in any state. Unlike energy, it is not additive
{Ref. [11], Sec. 5.3.8, p. 75).

In striving to define an additive property that
captures the important features of generalized adiabatic
availability, Gyftopoulos and Beretta introduce a special
reference system, called a reservoir, and discuss the
possible weight processes that the composite of a system
and the reservoir may experience. Thus, they disclose
a third consequence of the first and second laws, that
is, a limit on the optimum amount of energy that can
be exchanged between a weight and a composite of a
system and a reservoir R — the optimum mechanical
effect. They call the optimum value generalized available
energy (Ref. [11], Sec. 6.8, pp. 95-97), denote it by 2%,
and show that it is additive (Ref. [11], Sec. 6.9.6,
pp. 98-99). It is a generalization of the concept of
motive power of fire first introduced by Carnot. It
is a generalization because he assumed that both
systems of the composite acted as reservoirs with fixed
values of their respective amounts of constituents and
parameters, whereas Gyftopoulos and Beretta do not
use this assumption. The definition of a reservoir is
given in Ref. [11], Sec. 6.3, pp. 87-88.

If the net exchanges between a system and its envi-
ronment involve only energy, the process experienced by
the system is called adiabatic. For an adiabatic process
of system A only, it is shown that the energy change
E), — B> of A and the generalized available energy change
2% — OF of the composite of A and reservoir R satisfy
the relations (Ref. [11], Sec. 6.9, pp. 97-99):

if the adiabatic process of A is reversible:

Ey — By = 21 — Q% (A-3)
if the adiabatic process of A is irreversible:

Ey— Ex < Q% - 0F (A-4)

A process is reversible if both the system and its
environment can be restored to their respective initial
states. A process is irreversible if the restoration just
cited is impossible.

It is noteworthy that energy and generalized available
energy are defined for any state of any system, regardless
of whether the state is steady, unsteady, equilibrium,
nonequilibrium, or stable equilibrium, and regardless of
whether the system has many degrees of freedom or one
degree of freedom, or whether the size of the system is
large or small.

A.6. Entropy and entropy balance

A system A in any state A; has many properties.
Two of these properties are: energy Ei, and generalized
available energy 2% with respect to a given auxiliary
reservoir R. These two properties determine a third
property called entropy, and denoted by the symbol S.
It is a property in the same sense that inertial mass is
a property, or energy is a property, or momentum is a
property. For a state A1, S1 can be evaluated by means
of an auxiliary reservoir R, a reference state Ao, with
energy Eo and generalized available energy 028, to which
is assigned a reference value Sp, and the expression

Si=S+ — [(Br—Eo)— (2R - 2f)]  (A)

where cr is a well-defined positive constant that depends
on the auxiliary reservoir R only. Entropy S is shown
to be independent of the reservoir (Ref. [11], Sec. 7.4,
pp. 108-112), that is, S is a property of system A and
the reservoir is auxiliary and is used only because it
facilitates the definition of S. It is also shown that S can
be assigned absolute values that are nonnegative, and
that vanish for all the states encountered in mechanics
(Ref. [11], Sec. 9.8, pp. 137-138).

Because energy and generalized available energy
satisfy relations (A-3) and (A-4), the entropy defined
by equation {A-5) remains invariant in any reversible
adiabatic process of A, and increases in any irreversible
adiabatic process of A. These conclusions are valid
also for spontaneous processes and for zero-net-effect
interactions. The latter features are known as the
principle of nondecrease of entropy. Both a spontaneous
process and a zero-net-effect interaction are special cases
of an adiabatic process of system A.

The entropy created during an irreversible process as
a state changes in time is called entropy generated by
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irreversibility. It is positive. The entropy nondecrease
is a time-dependent result. In the exposition of
thermodynamics in Ref. [11], this result is obtained
without use of the general equation of motion. Because
both energy and generalized available energy are
additive, equation (A-5) implies that entropy is also
additive (Ref. [11], Sec. 7.2.2, pp. 103-104).

Like energy, entropy can be exchanged between
systems by means of interactions. Denoting by S*~ the
amount of entropy exchanged between the environment
and system A in the course of a process that changes the
state of A from A; to A2, we derive a very important
analytical tool, the entropy balance (Ref. [11], Sec. 7.3,
pp. 106-108), that is,

(52 — S1) = SA4_ + Sier (A-6)

system A
where S is positive or at least zero and represents
the entropy generated spontaneously within system A
during the time interval from ¢; to t2 required to affect
the change from state A; to state Az. Spontaneous
entropy generation within a system occurs if the
system is in a state that is not stable and the system
forces precipitate the natural tendency towards stable
equilibrium. The entropy S~ crossing the boundary
of A is positive if entropy flows from the environment
to system A. The dimensions of S depend on the
dimensions of both energy and cr. It turns out that
the dimensions of cr are independent of mechanical
dimensions, and are the same as those of temperature.
Temperature is defined later.

A.7. Stable equilibrium states

It is shown that among the many states of a system
that have given values of the energy E, the amounts
of constituents n, and the parameters 3, the entropy of
the unique stable equilibrium state that corresponds to
these values is larger than that of any other state with
the same values E, n, 3 (Ref. [11], Sec. 8.2, pp. 119-120).
Moreover, the entropy of a stable equilibrium state must
be a function solely of E, n, 3, that is,

S = S(E, n,B) (A-7)

Equation (A-7) is called the fundamental relation
(Ref. [11], Sec. 8.3, pp. 120-124). For states that are not
stable equilibrium, S depends on more variables than
E,n,3, that is, equation (A-7) is not valid.

The fundamental relation is concave with respect to
energy (Ref. [11], Sec. 9.4, pp. 131-132), that is,

S
(W) <0 (A-8)
n,3

and analytic in each of its variables E.n3 (Ref. [11],
Sec. 8.3, pp. 120--124).
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Moreover, the fundamental relation is used to define
other properties of stable equilibrium states, such as
temperature T (Ref. {11]. Ch. 9),

1 a8

R A

T ( aE )n,ﬁ ( 9)
total potentials p; for i = 1,2,...,r (Ref. [11], Ch. 10,
pp. 147-151)

o5
T — =T
s ( ani )E,n.ﬁ

and pressure p (Ref. [11], Ch. 11, pp. 157-162)

oS
p—T(a—v)E,n,ﬁ

Detailed discussion of properties of stable cquilibrium
states are given in Ref. [11], Chapters 8-11.

fori=12,...,r

(A-10)

for 81 =V = volume . (A-11)

A.8. Comment

The concept of entropy introduced here differs from
and is more general than that in all textbooks except
Ref. [11]. It does not involve the concepts of temperature
and heat; it is not restricted to large systems; it applies
to both macroscopic and microscopic systemns, including
a system with one spin, or a system with one particle
with only one (translational) degree of freedom; it is
not restricted to stable (thermodynamic) equilibrium
states; it is defined for both stable equilibrium and not
stable equilibrium states because energy and generalized
available energy are defined for all states; and most
certainly, it is not statistical — it is a property of
matter and not a measure of the lack of information of
an observer.

A.9. Interactions

Work, heat, bulk flow, and diffusion interactions,
and their use in the balance equations are discussed in
Refs. [11] and [26] and will not be repeated in this brief
review.

APPENDIX B

Unified quantum theory of mechanics
and thermodynamics

B.1. Statistical descriptions

Ever since the enunciation of the first and second laws
of classical thermodynamics by Clausius more than 130
years ago, the question of the relation between classical
thermodynamics and mechanics has been the subject
of intense investigations and controversy. Invariably,
Maxwell’s seminal ideas prevail [27], that is, ... the
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molecules in a vessel full of air at uniform temperature
are movmg with velocities by no means uniform ...”7,
and “In dealing with masses of matter, while we do not
perceive the individual molecules, we are compelled to
adopt what I have described as the statistical method
of calculation, ...”. Though deeply rooted in classical
mechanics, these ideas play a major role in conventional
quantal explanations as well.

Specifically, in statistical quantum mechanics, the
dominant view currently held about the physical
significance of classical thermodynamics is based on
the interpretation of a “thermodynamic equilibrium
state” as a composite that best describes the knowledge
of an observer possessing only partial information
about the “actual state” of a macroscopic system. The
“ith actual state” at any instant in time is defined
as the set of quantal probabilities derivable from an
energy eigenprojector p; = |e;)(e;], or from an energy
eigenfunction e;, where |¢;) is an energy eigenket of
conventional quantum mechanics. Because observers
are uncertain about the actual state, they consider
all possible “actual states” and assign to each of
them a statistical probability «;. The assignment is
achieved by using a hypothesis in addition to the laws
of conventional quantum mechanics. The combination of
the two types of probabilities is a mixture characterized
by an overall density operator p = > a;p;, where

S i =1, and p > p*. The theories that have evolved

pursuant to the view just cited are called informational,
though the general idea is the foundation of each
statistical interpretation of thermodynamics proposed
to date.

If at an instant in time, p; for 7 = 1,2,..., and
p are represented by ensembles of identical systems,
von Neumann has shown that the ensemble for each
pe is and must be homogeneous [13], that is, each
member of the ensemble is assigned the same p;
as any other member, whereas the ensemble for p
is heterogeneous, that is, only a fraction a; of the
members of the p ensemble is assigned the projector p;
(figure B-1). In addition to representing the fractions of
the p;’s in p, the statistical probabilities a; enter in the
evaluation of an informational measure of uncertainty,
a subjective entropy, such as § = —k Y a; Ina;, where

k is Boltzmann’s constant.

Comments

Statistical theories of thermodynamics yield many
correct and practical results. For example, they yield the
canonical, grand-canonical, Boltzmann, Bose-Einstein,
and Fermi- Dirac distributions, and predict the equality
of temperatures of systems in mutual stable equilibrium,
the Maxwell relations, and the Gibbs equation [28,
29]. Mutual stable equilibrium is defined in Ref. [11],
Sec. 6.2, pp. 86-87. Despite these successes, the

HETEROGENEOUS ENSEMBLE

P#£P1

;
P 7 P2

FRACTION oy FRACTION a2

OVERALL DENSITY p = 01p; + ai2p,

Figure B-1. Representation of a heterogeneous ensemble.

premise that entropy is a subjective characteristic
of the knowledge of a partially informed observer
rather than a property of a system leaves much to
be desired in the light of many accurate, reproducible
and nonstatistical experiences, such as the mixing of hot
and cold substances, the characteristics of an internally
discharging electricity storage battery, the Peltier effect,
and chemical reactions. In all these experiences, entropy
plays a dominant and decisive role which is entirely
independent of whether an observer is informed or
misinformed. As pointed out by Schroedinger and
others [30-32], the conceptual foundations of statistical
interpretations of thermodynamics are not on solid
ground. For example, they seem to require abandonment
of the concept of state of a system, a cornerstone
of traditional physical thought. Again, they foreclose
opportunities for the development of a sound theory
of nonequilibrium. The reason for the foreclosure is
that each statistical theory considers either Newton’s
equation or Schroedinger’s equation as the relation
that specifies the evolution of the “actual state” in
time, but faces insurmountable conceptual difficulties
to propose deterministic equations for the evolutions
of the a;'s in time. In fact, any argument that
considers the «;’s as indices of ignorance but proposes
a deterministic evolution of this ignorance in time
is an oxymoron. Though the successes of mechanics,
equilibrium thermodynamics, and the mathematical
formalism of statistical mechanics leave no doubt about
the validity of the numerical results, the need for
a coherent physical theory capable of encompassing
these same results within a sound unified conceptual
framework continues to be an interesting challenge.

B.2. The unified theory

Intrigued by the experiences, ideas, and concerns just
cited, Hatsopoulos and Gyftopoulos [5-8] have proposed
a resolution of the dilemmas and paradoxes that have
preoccupied generations of physicists over more than a
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century in their attempts to rationalize the relation be-
tween mechanics and thermodynamics. The resolution
differs from all statistical interpretations of thermody-
namics, in general, and from Maxwell’s explanation, in
particular. This resolution eliminates the need for the
statistical estimates «;, and is the quantum-theoretic
underpinning of the exposition of thermodynamics sum-
marized in Appendix A, that is, the exposition which
asserts that thermodynamics is a general, nonstatistical
or noninformational theory of all physical phenomena.
The basis of the resolution is a unified quantum the-
ory of mechanics and thermodynamics which without
modification encompasses all systems (both microscopic
and macroscopic), and all states (both thermodynamic
equilibrium and not thermodynamic equilibrium). The
key for the elimination of the statistical probabilities
«; is the recognition that the only density operators
p > p° that are subject to the laws of physics (quantum
theoretic and thermodynamic) are those that can be
represented by a homogeneous ensemble. In such an
ensemble, every member is assigned the same p as any
other member (figure B-2) and experimentally (in con-
trast to algebraically) p cannot be decomposed into a
statistical mixture of either projectors or density opera-
tors different from p. The impossibility of decomposition
is analogous to von Neumann’s conclusion that a pro-
jector cannot be decomposed into a statistical mixture
of states of classical mechanics. Moreover, and perhaps
more importantly, the extension of the concept of ho-
mogeneity to density operators p > p? is accomplished
without radical modifications of the quantum-theoretic
postulates and theorems about observables, measure-
ment results, values of observables, and densities or
probabilities of measurement results. Key concepts —
definitions, postulates, and theorems — of the unified
theory are discussed briefly below. They are included
here because of the emphasis that must be given to the
concept of homogeneous or unambiguous ensemble.

B.3. Kinematics

The term kinematics refers to the definitions of the
terms system, property, and state, all at an instant in
time.

B.3.1. System

The meaning of the term system is discussed in
Appendix A. The quantum-theoretic representation of
a system is as follows.

B.3.2. System postulate

To every system there corresponds a complex,
separable, complete, inner product space, a Hilbert
space H. The Hilbert space of a composite system of
two distinguishable subsystems 1 and 2, with associated
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Figure B-2. Representation of a homogeneous ensemble.

Hilbert spaces H' and H2, respectively, is the direct
product space H' @ H? [33].

B.3.3. Homogeneous or unambiguous
ensemble

At an instant in time, an ensemble of identical
systems is called homogeneous or unambiguous [8] only if
upon subdivision into subensembles in any conceivable
way short of measurements, cach subensemble yields
in every respect measurement results — spectra of
values and frequency of occurrence of each value within
a spectrum — identical to the corresponding results
obtained from the ensemble. For example, the spectrum
of energy measurement results and the frequency of
occurrence of each energy measurement result obtained
from any subensemble are identical to the spectrum
of energy measurement results and the frequency of
occurrence of each energy measurement result obtained
from an independent ensemble that includes all the
subensembles.

B.3.4. Preparation

A preparation is a reproducible scheme used to
generate one or more homogeneous ensembles for study.

B.3.5. Property

The meaning of the term property is discussed in
Appendix A. It refers to any attribute of a system that
can be quantitatively evaluated at an instant in time by
means of measurements and specified procedures. All
measurement results and procedures are assumed to be
precise.

Without any modifications the meanings of the
concepts of homogeneous ensemble, preparation, and
property are valid in all paradigms of physics.

B.3.6. Observable

From the definition just cited, it follows that
each property can be observed, that is, evaluated.
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Traditionally, however, in quantum theory, a property is
called an observable only if it conforms to the following
mathematical representation.

B.3.7. Correspondence postulate

Some linear Hermitian operators A B,... on Hilbert
space H, which have complete orthonormal sets of
eigenvectors, correspond to observables of a system
(33].

As explained by Park and Margenau, the content
of this postulate is slightly different from that of its
analogues in typical axiomatics inspired by the work of
von Neumann. In its original form, the correspondence
postulate included both of the following statements:
(i) every Hermitian operator corresponds to a physical
observable; and (ii) every observable has a Hermitian
operator representative. Superselection rules introduced
by Wick et al. [34] exclude certain Hermitian operators
from being observable. By replacing the word every in
statement (i) by the word some, superselection rules are
satisfied. Compatibility of simultaneous measurements
introduced by Park and Margenau [33] excludes certain
observables from corresponding to Hermitian operators.
In addition, in a unified theory of mechanics and ther-
modynamics other properties are observable, such as
temperature, but correspond to no Hermitian opera-
tors. By replacing the word every in statement (ii) by
the word some the asymmetry between observables and
operators is embraced. It is clear that the correspon-
dence postulate as stated earlier accommodates both
the asymmetry between operators and observables and
the asymmetry between observables and operators.

B.3.8. Measurement act

A measurement act is a reproducible scheme of
measurements and operations on a member of an
ensemble. The result of such an act is a precise —
error free — number associated with an observable.

If a measurement act is applied to each and every
member of a homogeneous ensemble, the results conform
to the following mathematical representation.

B.3.9. Mean-value postulate

If a measurement act of an observable represented
by Hermitian operator A is applied to each and every
member of a homogeneous ensemble, there exists a
linear functional m(A) of A such that the value of
m(A) equals the arithmetic mean of the ensemble of A
measurements, that is,

m(A) =(4) =Y a/N  for N - o0 (B-1)
where a; is the error-free measurement result of the

measurement act applied to the ith member of the
ensemble, and (A) another notation for m(A) [33].

B.3.10. Mean-value theorem

For each of the mean-value functionals m(A) of a
system at an instant in time, there exists the same
Hermitian operator p such that [33]

m(A) = (4) = Tr[p A] (B-2

The operator p is known as the density operator or
the density of measurement results of observables. The
concept of the density operator was introduced by von
Neumann [35] as a statistical average of projectors. In
contrast, here p is restricted to homogeneous ensembles
and, therefore, it is exclusively quantum-theoretic. The
operator p is proven to be Hermitian, nonnegative-
definite, unit trace and, in general, not a projector [8,
22, 36], that is,

p>0; Trp=1; p>=p° (B-3)

B.3.11. Probability theorem

If a measurement act of an observable represented
by operator A is applied to each and every member
of a homogeneous ensemble characterized by p, the
probability or frequency W(a»,) that the results will
vield eigenvalue a,, is given by the relation

W (an) = Trlp Aul (B-4)

where A, is the projection onto the subspace belonging
to an,

Alan) = anlom) forn=12,... (B-5)

and |a,) the nth eigenket of operator A.

B.3.12. Measurement result theorem

The only possible result of a measurement act of the
observable represented by A is one of the eigenvalues of
A (equation B-5).

Though the statements of the mean-value postulate,
and the probability and measurement result theorems
are practically the same as those given by Park and
Margenau [33], here the contents of the statements
differ from those of Park and Margenau because of
the restriction of p to a homogeneous ensemble. The
importance and necessity of this restriction in the unified
theory cannot be overemphasized.

B.4. Comment on the pictorial represen-
tation of a homogeneous ensemble

Because no conceivable decomposition of a homoge-
neous ensemble short of measurements can yield compo-
nent subensembles with different measurement results
— spectra of values and frequency of occurrence of

753



E.P. Gyftopoulos

each value - - the density operator p can be assigned to
each member of the homogeneous ensemble as shown in
figure B-2. This assignment introduces no ambiguities,
that is, a homogencous ensemble can be safely thought
of as consisting of identical systems each of which has
the same operators A,B,... that represent observables,
the same values (A4),(B),... of observables, and the same
density operator p. In fact, this unambiguous character-
ization of a member at an instant in time is all that can
be said at that time.

B.4.1. State

The meaning of the term state is discussed in
Appendix A. In essence, it is all that can be said
about a system at an instant in time. In view
of the discussion of the meaning of figure B-2, the
mathematical representation of state in the unified
theory consists of a set of Hermitian operators A,B,. ..
that correspond to a complete set of independent
observables the value of an independent observable
can be varied without affecting the values of other
observables — and the relations

(4) = Trlpdl = Ya/N
(B) = TpB = Lu/N gy

In these relations, either the density operator p is
specified a priori and the values of the observables
are calculated, or the values of all the independent
observables > a;/N, Y b;/N,... are measured, and

a unique density operator is calculated. The density
operator is unique because equations (B-6) are lincar in
p-

Because the idea is sometimes overlooked, it is very
important to emphasize that the quantum-theoretic
value of an observable is always determined by the
corresponding equation in set (B-6) and not by any
particular measurement result. A measurement act
yields an eigenvalue. But no correct quantum postulate
or theorem asserts that this eigenvalue was necessarily
the value of the observable prior to measurement. An
ensemble of measurement results of an observable is
needed in order to ascertain its value.

B.4.2. Dynamics

Under the heading of dynamics there is only one
concept, the equation of motion. As discussed in Refs.
[5, 11], the equation of motion of conventional quantum
mechanics in the Schroedinger picture is incomplete
because it prescribes only a unitary evolution in time of
a projector p; = p? fori = 1,2,..., and such an evolution
corresponds to a reversible adiabatic process only. In a
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unified theory, the equation of motion must account for
unitary changes in time of density operators that are not
projectors (p > p?), for reversible adiabatic processes
that are not unitary and, of course, for irreversible
processes. Until a complete equation of motion is
universally accepted by the scientific community, three
postulates provide a partial substitute for the purposes
of the unified theory — equation (B-7) and the first
and second laws of thermodynamics. The substitute is
partial because it covers only some of the requirements
of the unified theory.

B.4.3. Limited dynamical postulate

Hatsopoulos and Gyftopoulos [5] postulate that
unitary transformations of p in time obey the relation

dp 7
=2 — B-
7 w1 p—pH] (B-7)

where H is the Hamiltonian operator of the system. The
unitary transformation of p satisfies the equation

p(t) = Ult,to) p(to) U™ (t,t0) (B-8)

where U™ is the Hermitian conjugate of U and, if H is
independent of ¢,

U(t,to) = exp[—(i/h) (t — to) H) (B-9)
and, if H is explicitly dependent on ¢,
% = —(i/R) H(t) Ult.t) (B-10)

Though equation (B-7) is well known in the
literature as the von Neumann equation, here it must
be postulated for the following reason. In statistical
quantum mechanics [37], the equation is derived as a
statistical average of Schroedinger equations, each of
which describes the evolution in time of a projector
p: In the statistical mixture represented by p, and
cach of which is multiplied by a time independent
statistical probability «;. In the unified theory, p is not
a mixture of projectors and, therefore, cannot be derived
as a statistical average of projectors. It is noteworthy
that the dynamical postulate is limited or incomplete
because all unitary evolutions of p in time correspond
to reversible adiabatic processes. But not all reversible
adiabatic processes correspond to unitary evolutions of
p in time [7], and not all processes are reversible.

B.4.4. The first and second laws
of thermodynamics

A partial relief to the limitations of the incomplete
dynamical postulate just cited is provided by adding
to equation (B-7) two more statements, the first
law and the second law of thermodynamics. These
statements are given in Appendix A. The quantum-
theoretic postulates and theorems, and the two laws
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of thermodynamics provide the conceptual framework
for the exposition of the unified quantum theory
of mechanics and thermodynamics, a theory that
applies to all systems and all states. Moreover, the
quantum-theoretic concepts lurk behind every aspect
of the exposition of thermodynamics summarized in
Appendix A.

It is noteworthy that the third law of thermodynam-
ics is not needed because it is inherent in the quantum
theoretic foundations.

B.4.5. Entropy

On the basis of the new exposition of thermodynam-
ics presented in Ref. [11] and summarized in Appendix
A, and the unified theory presented in Refs. [5-8], and
summarized in this appendix, in Ref. [38] we prove that
of all the expressions for entropy S that have been pro-
posed in the literature the only one that satisfies all the
necessary criteria is given by the relation

S = —kTr[plnp| (B-11)

provided that p is exclusively represented by a homoge-
neous ensemble. If p is represented by a heterogeneous
ensemble, then equation (B-11) does not represent the
entropy of thermodynamics.

For given values of energy, amounts of constituents,
and parameters, if p is a projector then S = 0, and
if p corresponds to the unique stable equilibrium state
required by the second law then S has the largest value
of all the entropies of states that share the given values
of energy, amounts of constituents, and parameters. If,
as it is usually done for projectors, we interpret a density
operator p as the shape of constituents of a system, then
the entropy of the system is a special measure of the
shape with values ranging from zero to a maximum for
each set of values of energy, amounts of constituents,
and parameters.

If we adopt the measure of shape interpretation
for entropy, an interesting concomitant ensues. Let
us assume that the paradigm of the unified quantum
theory was conceived prior to that of classical mechanics,
and that a physicist wished to approximate quantum
theoretic results by classical concepts. We can safely
predict that he would have done an excellent job
because for macroscopic systems with highly degenerate
eigenkets, densities of measurement results of practically
all observables can be approximated by the Dirac
delta function §(q — qo) 6(p — po) of space coordinates
q and momenta p. Though highly accurate, such an
approximation would be inadequate because it does
not include the concept of shape of the constituents
of the system and, therefore, provides neither the
mathematical representation for the concept of entropy
as a property of the constituents, nor the possibility of
change of this mathematical representation over a range
of values. This is another aspect of the inadequacy of
classical mechanics to accommodate the concepts of
thermodynamics.

B.4.6. Density operator of a stable
equilibrium state

We can find the density operator p° of a thermody-
namic or stable equilibrium state Ao of system A by
maximizing the entropy S subject to the constraints

Trp=1 and (H) = Tr [p H] = given value E .
(B-12)
For simplicity, we assume that the system has only
volume as a parameter, and only one constituent with an
amount n equal to an eigenvalue of the number operator
of the constituent. Moreover, we use a different subscript
1 even for orthonormal projectors that correspond to the

same eigenvalue.

The constrained maximization solution is proven to
be [39]

0 _ eXp _
Trexp Z pis |€i) (il (B-13)
where
Hle;) = eiles) ;

pls = exp(~Bei)/ Y exp(—Be:)

and B is determined by the value of the energy E
because

(H)=E=Tep’H] = phie:

We can show that

6 = [0S/9B), ], /k (B-14)
where the subscript “e” stands for fixed values of all the
energy eigenvalues €1,£2,. .., and the subscript “0” for

state Ao, that is, the partial derivative is taken along
the stable equilibrium state locus for fixed values of
parameters (fixed €) and fixed amount of the constituent
n at state Ag. But for stable equilibrium states, the
partial derivative [(85’ /OE )E‘n] , 1s defined as the inverse

temperature of Ap. Accordingly
B=1/kT (B-15)

B.4.7. Translational velocity of a molecule

We consider a system A in a stable equilibrium
state Ao with energy E, number of molecules n > 1,
and volume V. For such a state, the value (px) of the
momentum of a single molecule in the spatial direction
zy, is given by the relation

(pr) = Tr [Pl = D Y pn (emlen) (enlprlem)

3

= Z Z Pgm Onm <5n1pk|em>

=" o (emlprlem) =0 (B-16)
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where the third of these equations results from the
fact that the energy eigenkets are orthonormal and,
therefore,

(ém|€n) = 6nm = Kronecker delta (B-17)
and the last equation from the relation
(em|pr|€m) =0 for all kK and m (B-18)

The proof of equation (B-18) is straightforward.
First, we observe that the Hamiltonian operator H
of the system and the momentum operator px of a
particular molecule satisfy the commutation relation

[zx,H] = ihpe /M (B-19)
where M is the mass of the molecule. Next, upon
defining for all k¥ and m

(A21)2, = (emlzdlem) — (emlarlen)”  (B-20)
(AH);, = (em|H?em) — (em|Hlem)”  (B-21)

we can readily prove that [40]
(Azi),, (AH),, > hl(emlpelen)l/2M  (B-22)

But for a system with a finite extension L, along the
coordinate axis of zx, and an energy eigenket |em), we
have

(B-23)

0< (A:Ek)m < Ly and (AH)m =0

and so equality (B-18) is proved.
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