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Abstract

In Part II of this two-part paper we prove that Maxwell’s demon is unable to accomplish his
task of sorting air molecules into swift and slow because in air in a thermodynamic equilibrium
state there are no such molecules. The proof is based on the principles of a uni0ed quantum
theory of mechanics and thermodynamics.

The key idea of the uni0ed theory is that von Neumann’s concept of a homogeneous ensemble
of identical systems, identically prepared, is valid not only for a density operator � equal to a
projector (every member of the ensemble is assigned the same projector, �i = | i〉 〈 i| = �2

i , or
the same wave function  i as any other member) but also for a density operator that is not a
projector (every member of the ensemble is assigned the same density operator, �¿ �2, as any
other member). So, the latter ensemble is not a statistical mixture of projectors. The broadening
of the validity of the homogeneous ensemble is consistent with the quantum-theoretic postulates
about observables, measurement results, and value of any observable.

In the context of the uni0ed theory, among the many novel results is the theorem that each
molecule of a system in a thermodynamic equilibrium state has zero value of momentum, that
is, each molecule is at a standstill and, therefore, there are no molecules to be sorted as swift
and slow. Said di6erently, if Maxwell were cognizant of quantum theory, he would not have
conceived of the idea of the demon.

It is noteworthy that the zero value of momentum is not the result of averaging over di6erent
momenta of many molecules. Under the speci0ed conditions, it is the quantum-theoretic value
of the momentum of any one molecule, and the same result is valid even if the system consists
of only one molecule. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The de0nition of Maxwell’s demon, a brief history of his more than 130 years life,
and a novel, consistent, and noncircular thermodynamic exorcism of his existence are
discussed in Part I of this two-part paper [1]. The novelty of the exorcism lies in:
(i) a new exposition of thermodynamics which avers that the laws of thermody-
namics are valid for all systems and all states, and are not statistical [2,3]; and
(ii) the proof of a theorem asserting that each air molecule in the system proposed
by Maxwell has a well-de0ned, nonstatistical property called entropy [3], in the same
sense that it has other properties, such as inertial mass, momentum, and
energy. The new exposition of thermodynamics and the theorem just cited di6er
diametrically from Maxwell’s idea that entropy is a thermodynamic equilibrium
statistical measure of information, inapplicable at the molecular or microscopic
level.

The purpose of Part II is to present an exorcism of the demon based on a
uni0ed quantum theory of mechanics and thermodynamics. In contrast to
statistical quantum mechanics, a key idea of the uni0ed theory is that the laws of
physics—quantum theoretic and thermodynamic—do not apply to density
operators that represent mixtures of quantal probabilities derived from projectors
�i = | i〉 〈 i|, for i = 1; 2; : : : ; and statistical (informational) probabilities �i that
reFect the lack of information about some or all aspects of the state of a
system. Instead, the uni0ed theory avers that the laws of physics apply only to
density operators each of which is construed as the seat of exclusively quantal
probabilities, that is, only to density operators � that can be represented
by homogeneous ensembles of identical systems, identically prepared. Homogeneous
is an ensemble in which the probabilities of results of measurements on any
member are represented by the same density operator � as those on any other mem-
ber. Accordingly, experimentally (in contrast to algebraically) the ensemble cannot
be decomposed into statistical mixtures of projectors or other nonprojector density
operators.

The concept of homogeneous ensemble was introduced by von Neumann [4]. But
he assumed that it applies only to projectors (�i = �2

i ), whereas here the concept is
extended to all self-adjoint, nonnegative de0nite, linear, unit trace density operators.
Each such operator satis0es the relation �¿ �2.

Using the uni0ed theory, we prove that each molecule of a system in a thermo-
dynamic equilibrium state has zero value of momentum, that is, each molecule is at
standstill and, therefore, there are no molecules to be sorted as swift and slow. The
zero momentum is not the result of adding vectors in di6erent directions, each repre-
senting the momentum of a particular molecule. The quantum-theoretic value of the
momentum of one molecule is equal to zero, even if the system consists of only one
molecule in a thermodynamic equilibrium state.

The paper is organized as follows. The foundations and a few theorems of the uni0ed
theory are described brieFy in Section 2, the quantum-theoretic exorcism and possible
criticisms of this exorcism are discussed in Sections 3 and 4, and conclusions are
summarized in Section 5.
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2. Quantum theoretic considerations

2.1. Statistical descriptions

Ever since the enunciation of the 0rst and second laws of classical thermody-
namics by Clausius more than 130 years ago, the question of the relation between
classical thermodynamics and mechanics has been the subject of intense investiga-
tions and controversy. Invariably, Maxwell’s seminal ideas prevail [5], that is, “. . . the
molecules in a vessel full of air at uniform temperature are moving with velocities
by no means uniform . . . ”, and “In dealing with masses of matter, while we do
not perceive the individual molecules, we are compelled to adopt what I have de-
scribed as the statistical method of calculation, . . . ”. Though deeply rooted in classi-
cal mechanics, these ideas play a major role in conventional quantal explanations as
well.

Speci0cally, in statistical quantum mechanics, the dominant view currently held about
the physical signi0cance of classical thermodynamics is based on the interpretation of
a “thermodynamic equilibrium state” as a composite that best describes the knowl-
edge of an observer possessing only partial information about the “actual state” of a
macroscopic system.

The “ith actual state” at any instant in time is de0ned as the set of quantal proba-
bilities derivable from an energy eigenprojector �i = |�i〉 〈�i|, where |�i〉 is an energy
eigenket (or from an energy eigenfunction  i) of conventional quantum mechanics.
Because observers are uncertain about the actual state, they consider all possible
“actual states” and assign to each of them a statistical probability �i. The assign-
ment is achieved by using a hypothesis in addition to the laws of conventional
quantum mechanics. The combination of the two types of probabilities is a mix-
ture characterized by an overall density operator � =

∑
i; �i; �i, where

∑
i �i = 1, and

�¿ �2.
The theories that have evolved pursuant to the view just cited are called informa-

tional, though the general idea is the foundation of each statistical interpretation of
thermodynamics proposed to date.

If at an instant in time, �i for i = 1; 2; : : : ; and � are represented by ensembles
of identical systems, von Neumann has shown that the ensemble for each �i is and
must be homogeneous [4], that is, each member of the ensemble is assigned the
same �i as any other member, whereas the ensemble for � is heterogeneous, that
is, only a fraction �i of the members of the � ensemble is assigned the projector �i

(Fig. 1).
In addition to representing the fractions of the �i’s in �, the statistical probabilities �i

enter in the evaluation of an informational measure of uncertainty, a subjective entropy,
such as S = −k∑i �i ln �i.

Except for the probabilities represented by each energy eigenprojector �i, the de-
scription of a thermodynamic equilibrium state in conventional statistical quantum me-
chanics appears to be a complete analogy to Maxwell’s statistical classical mechanical
description of the molecules. It will be seen later, however, that the appearance is
misleading.
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Fig. 1. Schematic of a heterogeneous ensemble of identical systems.

2.2. Comments

Statistical theories of thermodynamics yield many correct and practical results. For
example, they yield the canonical, grand-canonical, Boltzmann, Bose–Einstein, and
Fermi–Dirac distributions, and predict the equality of temperatures of systems in mutual
stable equilibrium, the Maxwell relations, and the Gibbs equation [6,7].

Despite these successes, the premise that entropy is a subjective characteristic of
the knowledge of a partially informed observer rather than a property of a system
leaves much to be desired in the light of many accurate, reproducible and nonstatis-
tical experiences, such as the mixing of hot and cold substances, the characteristics
of an internally discharging electricity storage battery, the Peltier e6ect, and chemical
reactions. In all these experiences, entropy plays a dominant and decisive role which
is entirely independent of whether an observer is informed or misinformed.

As pointed out by Schroedinger and others [8–11], the conceptual foundations of
statistical interpretations of thermodynamics are not on solid ground. For example,
they seem to require abandonment of the concept of state of a system, a corner-
stone of traditional physical thought. Again, they foreclose opportunities for the de-
velopment of a sound theory of nonequilibrium. The reason for the foreclosure is that
each statistical theory considers either Newton’s equation or Schroedinger’s equation
as the relation that speci0es the evolution of the “actual state” in time, but faces
insurmountable conceptual diLculties to propose deterministic equations for the evo-
lutions of the �i’s in time. In fact, any argument that considers the �i’s as indices
of ignorance but proposes a deterministic evolution of this ignorance in time is an
oxymoron.
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Fig. 2. Schematic of a homogeneous ensemble of identical systems.

Though the successes of mechanics, equilibrium thermodynamics, and the mathe-
matical formalism of statistical mechanics leave no doubt about the validity of the
numerical results, the need for a coherent physical theory capable of encompassing
these same results within a sound uni0ed conceptual framework continues to be an
interesting challenge.

2.3. A new development

Intrigued by the experiences, ideas, and concerns just cited, Hatsopoulos and
Gyftopoulos [12–15] have proposed a resolution of the dilemmas and paradoxes that
have preoccupied generations of physicists over more than a century in their attempts to
rationalize the relation between mechanics and thermodynamics. The resolution di6ers
from all statistical interpretations of thermodynamics, in general, and from Maxwell’s
explanation, in particular.

This resolution eliminates the need for the statistical estimates �i, and is the quantum-
theoretic underpinning of the exposition of thermodynamics summarized in Part I [1],
that is, the exposition which asserts that thermodynamics is a general, nonstatistical
or noninformational theory of physical phenomena. The basis of the resolution is a
uni0ed quantum theory of mechanics and thermodynamics which without modi0cation
encompasses all systems (both microscopic and macroscopic), and all states (both
thermodynamic equilibrium and not thermodynamic equilibrium).

The key for the elimination of the statistical probabilities �i is the recognition that the
only density operators �¿ �2 that are subject to the laws of physics (quantum theoretic
and thermodynamic) are those that can be represented by a homogeneous ensemble. In
such an ensemble, every member is assigned the same � as any other member (Fig. 2)
and experimentally (in contrast to algebraically) � cannot be decomposed into a statisti-
cal mixture of either projectors or density operators di6erent from �. The impossibility
of decomposition is analogous to von Neumann’s conclusion that a projector cannot
be decomposed into a statistical mixture of states of classical mechanics. Moreover,
and perhaps more importantly, the extension of the concept of homogeneity to density
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operators �¿ �2 is accomplished without radical modi0cations of the quantum-theoretic
postulates and theorems about observables, measurement results, values of observables,
and densities or probabilities of measurement results.

Key concepts—de0nitions, postulates, and theorems—of the uni0ed theory are dis-
cussed brieFy below. They are included here rather than in an appendix because of the
emphasis that must be given to the concept of homogeneous or unambiguous ensemble.
System. The meaning of the term system is discussed in Refs. [2,3]. It is a set of

speci0ed types and amounts of constituents, con0ned by a nest of internal and external
forces. Without any modi0cation this de0nition applies to all paradigms of physics
[16]. The mathematical representation of a system is as follows.
System postulate [17]. To every system there corresponds a complex, separable,

complete, inner product space, a Hilbert space H. The Hilbert space of a composite
system of two distinguishable subsystems 1 and 2, with associated Hilbert spaces H1

and H2, respectively, is the direct product space H1 ⊗H2.
Kinematics. The term kinematics refers to a snapshot of a system at any instant in

time. It includes the following concepts.
Homogeneous or unambiguous ensemble. At an instant in time, an ensemble of iden-

tical systems is called homogeneous or unambiguous [15] only if upon subdivision into
subensembles in any conceivable way short of measurements, each subensemble yields
in every respect measurement results—spectra of values and frequency of occurrence of
each value within a spectrum—identical to the corresponding results obtained from the
ensemble. For example, the spectrum of energy measurement results and the frequency
of occurrence of each energy measurement result obtained from any subensemble are
identical to the spectrum of energy measurement results and the frequency of occur-
rence of each energy measurement result obtained from an independent ensemble that
includes all the subensembles.
Preparation. A preparation is a reproducible scheme used to generate one or more

homogeneous ensembles for study.
Property. The meaning of the term property is discussed in Refs. [2,3]. It refers

to any attribute of a system that can be quantitatively evaluated at an instant in time
by means of measurements and speci0ed procedures. All measurement results and
procedures are assumed to be precise, and not to depend on either other systems or
other instants in time.

Without any modi0cations the meanings of the concepts of homogeneous ensemble,
preparation, and property are valid in all paradigms of physics.
Observable. From the de0nition just cited, it follows that each property can be

observed. Traditionally, however, in quantum theory, a property is called an observable
only if it conforms to the following mathematical representation.
Correspondence postulate [17]. Some linear Hermitian operators A,B, : : : ; on Hilbert

space H, which have complete orthonormal sets of eigenvectors, correspond to observ-
ables of a system.

As explained by Park and Margenau [17], the content of this postulate is slightly
di6erent from that of its analogues in typical axiomatics inspired by the work of von
Neumann. In its original form, the correspondence postulate included both of the fol-
lowing statements: (1) every Hermitian operator corresponds to a physical observable;
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and (2) every observable has a Hermitian operator representative. Superselection rules
introduced by Wick et al. [18] exclude certain Hermitian operators from being observ-
able. By replacing the word every in statement (1) by the word some, superselection
rules are satis0ed. Compatibility of simultaneous measurements introduced by Park and
Margenau [17] excludes certain observables from corresponding to Hermitian opera-
tors. In addition, in a uni0ed theory of mechanics and thermodynamics other properties
are observable, such as temperature, but correspond to no Hermitian operators. By re-
placing the word every in statement (2) by the word some the asymmetry between
observables and operators is embraced. It is clear that the correspondence postulate
as stated earlier accommodates both the asymmetry between operators and observables
and the asymmetry between observables and operators.
Measurement act. A measurement act is a reproducible scheme of measurements

and operations on a member of an ensemble. The result of such an act is a precise
number associated with an observable.

If a measurement act is applied to each and every member of a homogeneous en-
semble, the results conform to the following mathematical representation.
Mean-value postulate [17]. If a measurement act of an observable represented by

Hermitian operator A is applied to each and every member of a homogeneous ensemble,
there exists a linear functional m(A) of A such that the value of m(A) equals the
arithmetic mean of the ensemble of A measurements, that is,

m(A) = 〈A〉 =
∑

i

ai=N for N → ∞ ; (1)

where ai is the measurement result of the measurement act applied to the ith member
of the ensemble, and 〈A〉 another notation for m(A).
Mean-value theorem [17]. For each of the mean-value functionals m(A) of a system

at an instant in time, there exists the same Hermitian operator � such that

m(A) = 〈A〉 = Tr[�A] : (2)

The operator � is known as the density operator or the density of measurement results
of observables.

The concept of the density operator was introduced by von Neumann [19] as a statis-
tical average of projectors. In contrast, here � is restricted to homogeneous ensembles
and, therefore, it is exclusively quantum-theoretic.

The operator � is proven to be Hermitian, positive semide0nite, unit trace and, in
general, not a projector [15,20,21], that is,

�¿ 0; Tr � = 1; �¿ �2 : (3)

Probability theorem. If a measurement act of an observable represented by operator
A is applied to each and every member of a homogeneous ensemble characterized by
�, the probability or frequency W (an) that the results will yield eigenvalue an is given
by the relation

W (an) = Tr[�An] ; (4)

where An is the projection onto the subspace belonging to an, and

A|�n〉 = an|�n〉 for n = 1; 2; : : : : (5)



428 E.P. Gyftopoulos / Physica A 307 (2002) 421–436

Measurement result theorem. The only possible result of a measurement act of the
observable represented by A is one of the eigenvalues of A (Eq. 5).

Though the statements of the mean-value postulate, and the probability and measure-
ment result theorems are practically the same as those given by Park and Margenau
[17], here the contents of the statements di6er from those of Park and Margenau be-
cause of the restriction of � to a homogeneous ensemble. The importance and necessity
of this restriction in the uni0ed theory cannot be overemphasized.
Pictorial interpretation of �. Because no conceivable decomposition of a homoge-

neous ensemble short of measurements can yield component subensembles with dif-
ferent measurement results—spectra of values and frequency of occurrence of each
value—the density operator � can be assigned to each member of the homogeneous
ensemble as shown in Fig. 2. This assignment introduces no ambiguities, that is, a
homogeneous ensemble can be safely thought of as consisting of identical systems each
of which has the same operators A,B, : : : ; that represent observables, the same values
〈A〉; 〈B〉 : : : of observables, and the same density operator �. In fact, this unambiguous
characterization of a member at an instant in time is all that can be said at that time.
State. The meaning of the term state is discussed in Refs. [2,3]. In essence, it is

all that can be said about a system at an instant in time.
In view of the discussion of the pictorial interpretation of �, the mathematical repre-

sentation of state in the uni0ed theory consists of a set of Hermitian operators A,B, : : : ;
that correspond to a set of independent observables—the value of an independent
observable can be varied without a6ecting the values of other observables—and the
relations

〈A〉 = Tr[�A] =
∑

i

ai=N ;

〈B〉 = Tr[�A] =
∑

i

bi=N ;

...
...

... : (6)

In these relations, either the density operator � is speci0ed a priori and the values of
the observables are calculated, or the values of the independent observables

∑
i ai=N,∑

i bi=N; : : : are measured, and a unique density operator is calculated. The mappings
from density operator to values of observables and from values of observables to
density operator are unique because Eqs. (6) are linear in both � and in values of
observables.

Because the idea is sometimes overlooked, it is very important to emphasize that the
quantum-theoretic value of an observable is always determined by the corresponding
equation in set (6) and not by any particular measurement result. A measurement act
yields an eigenvalue. But no correct quantum postulate or theorem asserts that this
eigenvalue was necessarily the value of the observable prior to measurement. An en-
semble of measurement results of an observable is needed in order to ascertain its value.

This completes the brief discussion of some key concepts of kinematics. Under the
heading of dynamics there is only one concept, the equation of motion. As discussed
in Refs. [2,3,12], the equation of motion of conventional quantum mechanics in the
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Schroedinger picture is incomplete because it prescribes only a unitary evolution in
time of a projector �i = �2

i for i = 1; 2; : : : ; and such an evolution corresponds to
a reversible adiabatic process only. In a uni0ed theory, the equation of motion must
account for unitary changes in time of density operators that are not projectors (�¿ �2),
for reversible adiabatic processes that are not unitary and, of course, for irreversible
processes.

Until a complete equation of motion is universally accepted by the scienti0c commu-
nity, three postulates provide a partial substitute for the purposes of the uni0ed theory.
The substitute is partial because it covers only some of the requirements of the uni0ed
theory.
Limited dynamical postulate. Hatsopoulos and Gyftopoulos [12] postulated that uni-

tary transformations of � in time obey the relation

d�
dt

= − i˝ [H�− �H] ; (7)

where H is the Hamiltonian operator of the system. The unitary transformation of �
satis0es the equation

�(t) = U(t; t0) �(t0) U+(t; t0) ; (8)

where, if H is independent of t,

U(t; t0) = exp[ − (i=˝)(t − t0) H] ; (9)

and if H is explicitly dependent on t,

dU(t; t0)
dt

= −(i=˝) H(t) U(t; t0) (10)

and U+ is the Hermitian conjugate of U.
Though Eq. (7) is well known in the literature as the von Neumann equation, here it

must be postulated for the following reason. In statistical quantum mechanics [22], the
equation is derived as a statistical average of Schroedinger equations, each of which
describes the evolution in time of a projector in the statistical mixture represented by
�, and each of which is multiplied by a time independent statistical probability. In the
uni0ed theory, � is not a mixture of projectors and, therefore, cannot be derived as a
statistical average of projectors.

It is noteworthy that the dynamical postulate is limited or incomplete because all
unitary evolutions of � in time correspond to reversible adiabatic processes. But not
all reversible adiabatic processes correspond to unitary evolutions of � in time [14],
and not all processes are reversible.
The 6rst and second laws of thermodynamics. A partial relief to the limitations of the

dynamical postulate just cited is provided by adding to Eq. (7) two more statements,
the 0rst law and the second law of thermodynamics. These statements are given in
Refs. [2,3], and are not repeated here.

The quantum-theoretic postulates and theorems, and the two laws of thermodynamics
provide the conceptual framework for the exposition of the uni0ed quantum theory of
mechanics and thermodynamics, a theory that applies to all systems and all states.
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Moreover, the quantum-theoretic concepts lurk behind every aspect of the exposition
of thermodynamics in Ref. [2].
Entropy. As discussed in Ref. [3], on the basis of the new exposition of thermody-

namics in Ref. [2], and the uni0ed theory in Refs. [12–15], we prove that, of all the
expressions for entropy S that have been proposed in the literature, the only one that
satis0es all the necessary criteria is given by the relation

S = −k Tr[� ln �] : (11)

For given values of energy, amounts of constituents, and volume, if � is a projector
then S = 0, and if � corresponds to the unique stable equilibrium state required by the
second law then S has the largest value of all the entropies of states that share the
given values of energy, amounts of constituents, and volume. If, as it is usually done
for projectors, we interpret a density operator � as the shape of an atom, a molecule,
or an entire system, then the entropy of the system is a special measure of the shape
with values ranging from zero to a maximum for each set of values of energy, amounts
of constituents, and volume.

With this interpretation in mind, we can think of the spontaneous increase of entropy
in the course of irreversible processes as a natural tendency of a system to adapt the
shape of its state to the nest of internal and external forces of the system until no
further reshaping is possible—largest value of S for given values of energy, amounts
of constituents, and volume is achieved.

If we adopt the measure of shape interpretation for entropy, an interesting con-
comitant ensues. Let us assume that the paradigm of the uni0ed quantum theory was
conceived prior to that of classical mechanics, and that a physicist wished to approx-
imate quantum-theoretic results by classical concepts. We can safely predict that he
would have done an excellent job because for macroscopic systems with highly de-
generate eigenkets, densities of measurement results of practically all observables can
be approximated by Dirac delta functions �(q− q0) �(p− p0). Though highly accurate,
such an approximation would be inadequate because it does not include the concept
of shape of an atom, or molecule, or entire system and, therefore, provides neither
the mathematical representation for the concept of entropy as a property of the atom,
the molecule, or the entire system, nor the possibility of changing this mathematical
representative over a range of values.
Density operator of a stable equilibrium state. We can 0nd the density operator

�0 of a thermodynamic or stable equilibrium state A0 of system A by maximizing the
entropy S subject to the constraints

Tr � = 1 and 〈H〉 = Tr[�H] = 0xed = E : (12)

For simplicity, we assume that the system has only volume as a parameter, and only
one constituent with an amount n equal to an eigenvalue of the number operator of the
constituent. Moreover, we use a di6erent subscript i even for orthonormal projectors
that correspond to the same eigenvalue.

The constrained maximization solution is proven to be [23]

�0 =
exp (−�H)

Tr exp (−�H)
=
∑

i

�0
ii |�i〉 〈�i| ; (13)
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where

H|�i〉 = �i|�i〉; �0
ii =

exp(−��i)∑
i exp(−��i)

and � is determined by the value of the energy E because

〈H〉 = E = Tr[�0H] =
∑

i

�0
ii�i :

We can show that

� =
[@S=@E)�;n]0

k
; (14)

where the subscript “�” stands for 0xed values of all the energy eigenvalues �1; �2; : : : ;
and the subscript “0” for state A0, that is, the partial derivative is taken along the stable
equilibrium state locus for 0xed volume V (0xed �), and 0xed amount n, at state A0.
But for stable equilibrium states, the partial derivative [@S=@E)�;n]0 is de0ned as the
inverse temperature of A0. Accordingly

� = 1=kT0 : (15)

3. A quantum-theoretic exorcism

With the results presented in the preceding section, we have all the quantum-theoretic
tools to investigate the feasibility of a demon that can sort the molecules into swift
and slow.

We consider a system A in a stable equilibrium state A0 with energy E, number of
molecules n¿ 1, and volume V . For such a state, the value of the momentum of a
molecule 〈pk〉 in the spatial direction xk is given by the relation

〈pk〉= Tr[�0pk] =
∑
m

∑
n

�0
nn〈�m|�n〉〈�n|pk|�m〉

=
∑
m

∑
n

�0
nn �nm〈�n|pk|�m〉 (16)

=
∑
m

�0
mm〈�m|pk|�m〉 = 0 ;

where the third of these equations results from the fact that the energy eigenkets are
orthonormal and, therefore,

〈�m|�n〉 = �nm = Kronecker delta (17)

and the last equation from the relation

〈�m|pk|�m〉 = 0 for all k and m : (18)

The proof of Eq. (18) is straightforward. First, we observe that the Hamiltonian operator
H of the system and the momentum operator pk of the molecule satisfy the commutation
relation

[xk ;H] = i˝pk=M ; (19)
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where M is the mass of the molecule. Next, upon de0ning for all k and m

(Qxk)2
m = 〈�m|x2k|�m〉 − 〈�m|xk|�m〉2 ; (20)

(QH)2
m = 〈�m|H2|�m〉 − 〈�m|H|�m〉2 (21)

we can readily prove that [21]

(Qxk)m(QH)m¿˝|〈�m|pk|�m〉|=2M : (22)

But for a system with a 0nite extension Lk along the coordinate axis of xk, and an
energy eigenket |�m〉, we have

0¡ (Qxk)m¡Lk and (QH)m = 0 (23)

and so equality (18) is proved.
In summary, in order to establish the momenta or velocities of the molecules of

Maxwell’s air in the context of the uni0ed quantum theory of mechanics and ther-
modynamics, we see that his brainchild—the demon—must perform measurements on
homogeneous ensembles, each member of which is assigned a density operator �0

(Eq. (13)). By doing so, he will establish that each molecule has a value of momen-
tum equal to zero and, therefore, that there are no swift and slow molecules to be
sorted out. Though he will continue to venerate the imaginative and creative intellect
of his father, he will regret that quantum theory was not recognized earlier so that he
could have been spared the e6orts to solve a problem that does not exist!

4. Discussion of criticisms

The main idea of this manuscript—in a system in a stable equilibrium state each
molecule is at a standstill 1 —has been the subject of criticisms by some scientists and
engineers. Because other readers may have similar criticisms, I think it is purposeful
to include here the opinions that I heard and my responses.

(i) Colleagues agree that in a stable equilibrium state, the expectation value of the
momentum of each molecule vanishes. But they argue that “the expectation value is
not what enters into a typical measurement or interaction with an external system”.

This criticism contradicts the mean-value postulate and the mean-value theorem. To
be sure, one interaction that attempts to measure the velocity of a molecule yields a
precise value of velocity—an eigenvalue proportional to one of the eigenvalues of the
momentum operator (see measurement result theorem). In general, however, quantum
theory does not assert that such a result represents the value of the velocity of the
molecule prior to measurement. To make such an assertion, we need an ensemble
of measurements on a homogeneous ensemble and then, only if the density operator
of the state of the system is a momentum eigenprojector |p〉〈p|, we have that the
common result of the ensemble of measurement acts is the value of the momentum prior
to measurement. Because the demon performs his measurements on a homogeneous

1 It is noteworthy that each molecule is at a standstill even in a system that is in an equilibrium state
which is not stable.
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ensemble assigned a density operator �0 �= |p〉〈p| (Eq. (13)), the result consists of a
spectrum of momentum values, and a frequency of occurrence of each value in the
spectrum. So, he is faced with the question, “Which result accounts for the value of
the momentum?” In quantum theory, the answer is not a matter of personal opinion or
choice but the contents of the mean-value postulate and the mean-value theorem.

In addition, it is noteworthy that the lack of motion refers to an isolated system and
not to what happens in an interaction with an external system, such as the demon.
This remark notwithstanding, it is also noteworthy that, in interactions with an external
system, the expectation values enter in the balances and not any particular eigenvalues
that account for the e6ects. Examples illustrative of this remark are the theorems of
energy conservation, mass conservation, and momentum conservation if applicable.

(ii) A chemist said, “In a day and age when spectroscopists can measure molec-
ular velocity distributions, and have such elegant tricks as optical molasses to slow
molecules, how can one possibly assert that in quantum mechanics molecular veloci-
ties, in equilibrium, must vanish?”

Again, the assertion is not a matter of personal opinion. It is a consequence of the
postulates and theorems of quantum theory. Unless either the demon, or spectroscopists,
or both can provide evidence that invalidates the premises and consequences of that
theory, we must abide by it because so far it has been a triumphant and fertile paradigm
of physics.

Besides, the quantum-mechanical result that, in equilibrium, molecular velocities van-
ish neither contradicts nor is mutually exclusive with the elegant, imaginative, and
productive tricks of spectroscopists. All that the theory avers is that a measurement
act on a member of a homogeneous ensemble assigned a density operator �0 yields
neither the value of an observable, nor the characterization of the member of the en-
semble prior to measurement. It seems to me that physics is full of such distinctions
and rightly so, no one objects to them. For example, because a photon is emitted
in the course of deexcitation of an electron in a molecule, we do not claim that prior
to the observation of the photon the molecule consisted of an electron and a photon,
and that after deexcitation it has only an electron. Again, in the course of an interaction
heat Fows from one system to another, and yet, in view of our current understanding
of heat, we do not say that prior to the interaction heat was contained in one or both
of the interacting systems.

Finally, if molecules are observed to be moving, such an observation does not con-
tradict any of the arguments just cited. All it implies is that the system is not in a
thermodynamic equilibrium state. In contrast to other expositions of thermodynamics,
states that are not thermodynamic equilibrium are part of the uni0ed quantum theory.

(iii) Several chemists and physicists said, “Molecules do move and bounce into
walls; that is why there is pressure”.

This criticism is not correct for at least three reasons. First, whereas pressure is
de0ned for all systems that have volume as a (an external) parameter and that are in
any stable equilibrium state [2,3], the calculation of pressure in terms of molecules that
bounce into walls is a numerical coincidence that applies only to dilute systems that
behave as ideal gases, and that obey the laws of classical mechanics. This calculation
is not valid outside the range of validity of the ideal gas behavior.
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Second, as discussed earlier, the broad class of states encompassed by the uni0ed
theory cannot be regularized by classical mechanics because the latter does not include
any concepts that can account for entropy as a property of a molecule for systems with
an arbitrary number of molecules, including one.

And third, and perhaps more importantly, pressure of any system in a stable equilib-
rium state can be evaluated at one instant in time based on results from measurements
on a homogeneous ensemble. The basic elements of this calculation are given by ter
Haar [24].

(iv) Many physicists, chemists, and engineers agree that

〈�〉 = Tr[�0p] = 0 (24)

for any number of atoms or molecules n¿ 1. However, they counterargue that

〈p2〉 = Tr[�0p2] �= 0 (25)

and, therefore, that the atom or molecule with momentum represented by the operator
p has kinetic energy and is moving.

I believe that the counterargument is not correct for at least two reasons. First, I
have searched the literature, and have found not even one calculation that evaluates
evolution in time by using 〈p2〉. In contrast, I 0nd several examples based exclusively
on 〈p〉, such as

d〈x〉
dt

=
〈px〉
M
;

d〈px〉
dt

= −〈@Vp=@x〉; M
d2〈x〉
dt2

=
d 〈px〉

dt
; (26)

where Vp is the potential energy function, and M the mass.
Second, the expression for kinetic energy is not universal for all paradigms of

physics. For one particle, it is Mv2=2 in classical mechanics, E − m0c2 in the spe-
cial theory of relativity, nonexistent in the general theory of relativity, and unknown
in conventional quantum mechanics.

And third and, perhaps, more importantly, for the sake of mathematical simplicity let
us consider one structureless molecule having only one translational degree of freedom
x in a force free range −a6 x6 a of a well of in0nite depth, and a density operator
� = |�n〉〈�n|, where |�n〉 is the nth energy eigenket of the Hamiltonian operator H.
According to the measurement result theorem of the uni0ed theory, an ensemble of
energy measurement results yields the energy eigenvalue �n and a probability W (�n)=1.
On the other hand, an ensemble of momentum measurement results yields a continuous
spectrum of momentum eigenvalues in the range −∞¡ px ¡∞ and a probability
density function in the momentum language [24, pp. 3, 65].

W (px) = 〈px|�n〉〈�n|px〉

=
4n2�a˝3

(p2
xa2 − n2�2˝2)2

{
cos2(pxa=2˝) for odd n ;

sin2(pxa=2˝) for even n :
(27)

If the demon interprets p2
x=2M as kinetic energy of the molecule, then he will be faced

with the monstrosity that an ensemble of direct energy measurement results yields
only one eigenvalue with probability equal to unity, whereas an ensemble of indirect
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energy measurement results—based on momentum measurements—yields a continu-
ous spectrum of values from −∞ to ∞, and a probability density function given by
Eq. (27). Because he is omniscient, he will recognize immediately that such a mon-
strosity is justi0ed neither by the postulates nor by the theorems of quantum theory.
Because the eigenvalue result is a cornerstone of the theory, he will abandon the in-
terpretation of p2

x=2M as kinetic energy, and will use it only in the calculation of the
variance of the distribution density W (px). In doing so, he is consistent with other cal-
culations, such as the value of energy 〈H〉 and the variance of an ensemble of energy
measurement results 〈H2〉 − 〈H〉2.

5. Conclusions

For given values of energy E, volume V , and amounts of constituents n, we can
think of the molecules of a system as changing their shape as they tumble from a state
in which quantum probabilities are described by a projector to quantum probabilities
described by a density operator �0 of the unique stable equilibrium state that corre-
sponds to the values E, V , and n. If the shape is �0, no further change is possible,
and the (expectation) value of the momentum of each molecule vanishes. Accordingly,
Maxwell’s demon cannot think of the molecules in classical terms because the concept
of molecular shape does not exist in classical mechanics, and cannot sort the molecules
of air in a container into swift and slow because there are no such molecules.
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