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The effect of delayed neutron precursors on the stability of nuclear reactors described by non-
linear equations is investigated. 1t is shown by means of Liapunov’s second method that a suffi-
cient condition of stability is that the reactor be stable without delayed neutron precursors. An

illustrative example is included.

INTRODUCTION

The effect of delayed neutron precursors on the
stability of neutron chain resctors has been investi-
gated by several authors (7, 2). In cases of au-
tonomous reactors, with or without special non-
linearities, it has been found that delayed newtrons
have a stabilizing influence on the dynamic behavior
of the reactor.

The present paper is an attempt to generalize the
previous results to reactors with any order non-
linearities and reactors which are nonautonomous.
In the first section the dynamic equations are ar-
ranged in a convenient matrix form. In the second
section the effect of the delayed neutroms on the
stability of the reactor is investigated by means of
Liapunov’s second method (3). It is proved that a
sufficient condition of stability is that the reactor be
stable witheut delayed neutrons. In the third seetion
the value of this assertion is illustrated by means of
a particular reactor with two temperature coeffi-
cients. Finally, the paper is closed by a discussion
of the derived results and their implications.

REACTOR MODEL

For mathematical expediency conszider an un-
reflected reactor. Actually, in prineiple, there is no

* Present address:
Belgium.

University of Brussels, Brussels,

difficulty in analyzing a reflected reactor, but the
problem beecmes unnecessarily complex.

The reactor dynamics is deseribable by two sets of
time dependent eguations. The first is related to
the neutron balance and the second to the nonnuclear
variables. Both sets of equations are subsequently
derived and reduced to a convenient matrix form.

NEvTrRON KINETICS

Assume the reactor fuel is stationary. The kineties
equations can be derived from the time dependent
transport equation. More specifically, the time
behavior of the directional flux density and the
delayed neutron concentrations are described by the
following equations (4):

N
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where

C: = C[F, 1) Delayed neutron precursor con-
centration

Energy spectrum of neutrons of
ith species

N =N({Fv Q0 Neutron directional flux density

v Neutron speed

B, Bi Delayed neutron fractions

fi = f(B)
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T B, E,%-Q, ) Total cross section for scattering
from energy £’ and direction
@ to Fand O

A; Decay constant
» Fission neutron yield
F, B ) Total eross section for ab-

sorption

ZiF, B, D Fisston cross section

- Lf{ffdf”dﬂ’v’zfv’
47" b Ja

Neutron produetion operator

J

-

K = fu-grad + o5 — ff dE" 4T,
0s @

Neutron depletion operator

In the definition of the various cross sections a
time dependeney is infredueced to account for the
effects of the nonnuclear variables and external dis-
turbanees on the neutron population.

Equations (1) and (2) are very cumbersome to use.
However, they can be reduced to a more convenient
form by formally imtegrating out all the phase space
dependencies, as indicated by Henry (4). To this
effect, define the parenthesis {F, @) as

(r,@) = [ raav (3)
u
where the integral is taken over the entire volume of
the phase space. Furthermore, introduce the change
of variable

N = A@BNF, v, @) {4)

Thus, the original equations may be rearranged
to yield

CE%EE? -2 B aw + zjjjx,-()i(t) (5)
W~ 84 - no .
i= 1,2 m
where
A = (No*, No)
3 = B{No*, JoNo)
ACH{D) = (1/4m)(No¥, f:C5)
o = (No*, [Jo — KINo)
Bt = Bi(Nv*, JiNo)
No* = adjoint of N,
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For a complete discussion of the physical meaning
of the previous transformations, the reader is re-
ferred to reference 4. For the purposes of this
presentation, it suffices to note the following:

(@) The change of variable, introduced in Eq. (4),
Is no restriction on N. It is merely a definition.
However, in many practical cases, it can be shown
that No(7, v, @) may be taken as the fundamental
mode of the critical reactor (4).

(b) The derived Egs. (5) and (6) are similar in
form to the conventional kinetics equations but for
3 fundamental difference. The coefficients are im-
plictt or explicit functions of time, through the effects
of nonnuclear variables such as temperature, pres-

sure, voids, ete. or extraneous disturbances,
regpectively,
Noanverear Dynamics

Nonnuelear dynamics refers to the relationships
between reactor power, temperatures, pressures,
flows, voids, etc. throughout the reactor core. These
relationships are derived from the equations of con-
servation of energy, momentum and mass.

For the purposes of this presentation it is not
necessary to derive specific equations for the non-
nuclear dynamics. Only the form of the equations
is adequate.

To this effect, consider s typical nonnuelear vari-
able denoted by T.(F, ). This variable may be
averaged over a number of regions in the reactor
and approximated as closely as desired by a set of
funetions 7';(). The latter functions are, in general,
solutions of equations of the form:

[dT3(t)/di]

i

FAT(D), A®)]

,2---n @)

Jal=

The set of equations (7) describes the nonnuclear
dynamics. It is assumed to be of the first order.
This is always possible because, if the equations were
not of first order, one could perform an appropriate
change of variables and reduce them to first order.
Also, the functions F; are assumed independent of
the delayed neutron precursors sinee there is no
physical process which links T,(¢) and ().

Marrix Form or REacTor DyNaMics

Equations (5), (6), and (7) give the complete
dynamic picture of the reactor. In this section, they
are reduced to a compact matrix form as follows.

The coefficients (p — §)/A, 8.7/ A, and the functions
F; are expanded into power series of the nuclear
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and nonnuclear variables. Thus, a new system of
dynamic equations results:

da(t) _ po+ () — Bo S
L= A alt) + Z Neei(t)

(8)

pl1)

+ A 2 k(00,() + B Ao + n(a, 00)
5 o

dei(t )
ot

= @ alt) — n;ei(t)
A . (9)
A+ Aq ; g:;(0)8:;() + ¢, 61)

YD — e + Z o260 + p(a, 0 (10)
where

a(l) = A(t) — Ae

e (1) = Ci(t) — Cy

9,'(ﬁ) = Tj(t) _.T:iﬂ

po + p(t), Bo, B, Ao = values of coefficients at
Tj = qu andA = Ag

po is S0 chosen that py — Bo + 2 S = 0

kilt) = % [p K ﬁ]T__T_

_ 8 |8
Q‘u(t) ""' 3Tj [A:Ir,-=1','a

P(0) = O F(Tit), AU amriamay

oilt) = % [F5(T(1), A rimrior 1ess

n, &, u; = second-order quantities in alt) and 6,(t).
All the time-dependent coefficients are assumed
uniformly bounded.

GYFTOPOULOS AND DEVOOGHT

The set of equations (8) to (10) is equivalent fo
the matrix equation

aol-175 sllo]+ v+ o

or

d., Aq
G2 = M2+ Bl +Q (11a)
where
_ [C
TP
—A B
=[]
[o(D)] = p(f) o matrix form
' = column matrix [Ci(t)] i=1,2---m
P = column matrix [af), 0;(8)] 7=1,2---n

A = m-m matrix (gsee matriz I, below)

B = m-(n + 1) matrix (see matrix 1L, below)

E = (n 4+ 1)-m matrix (see matrix III, below)
D = (n+ 1) (n+ 1) matrix (see matrix IV, below)
@ = column matrix [{s .7, &)

When the delayed neutron preeursors aré not
considered

Eqg. (11) reduces to:
d

N O 0
0 X --- 0
0O 0 < A
4]
Bln/An Aq {7551 A i
ﬁzu/Au Ay a1 Ao o

A 1] anJ

[B%/ Aﬂ A 8 QTnl )
(m

. Ay
&P = DyP + A [o{£}] 4 Qo (12)
where
D0=D,anQ with Bi=Xhi=p =0
7\1 }\2 tes hm
0o 0 --- 0
0 0 --- OJ
(111
po -+ p{1) — Bo Aoky Aok
Ao
71 11 e Tin
| T Tal Tpn _|
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DELAYED NEUTRONS AND NONLINEAR

STABILITY

In this section the effect of the delayed neutrons
on the stability of the reactor is investigated by
means of Liapunov’s second method (3). It is shown
that if the reduced reactor system [i.e., the reactor
without delayed neutrons described by Eq. (12)] is
stable for unifermly bounded variations of reae-
tivity p(f), then the actual reactor system with
delayed neutrons, described by Eq. (11), is also
stable under the same condition. The stability is
characterized by the existence of a Liapunov
funetion.

In order to proceed with the proof of the previous
statement, the following assumptions, definitions,
and assertions are necessary:

{e) Assume that the homogeneous reduced
equation

(d/dD)P = DoP (13)

admits a Liapunov function V{P, t). In other words,
postulate that there is a region B(@, 7) in the multi-
dimensional space (P, £), in which a definité positive
function V(P,t), with a definite negative time
derivative exists. The function V (P, t) is such that
lim V(P,¢) = 0as || P| — 0, uniformly in &

The existence of the Liapunov funetion V(P, 1)
is equivalent to the assumption that the solution of
equation (13) is asymptotically stable (3).

(b) Define the triangular matrix Dy by the trans-

formation
Dy = ToDyTy" (14)

where T is a uniformly bounded real matrix which
possesses & uniformly bounded inverse. The existence
of Ty has been shown by Diliberto (4) and Perron
(3, 6). :

(¢) Define the diagonal matrix H as

H = |H4 | s =1,2---(n+ 1) (15

where

H, - ¢, T)f GV, ) dr (16)
4

¢
G.(L, 7) = expf du(t) dt > (17)

(17a)
{d) Define the variable P, by the transformation
P, = ST.P (18)

.. = diagonal element of Dy

where S is a diagonal matrix to be subsequently
discussed.
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{e) Admit with Perron (3, 7) that, if p(t) is uni-
formly bourided, the necessary and sufficient con-
dition for the solution of Eq. (12) to be stable is the
existence of the Liapunov fumction V(P, &) in a
region R(G, r) where | P || < &, ¢ > 7. The magni-
tude of B(@, r) is determined by Q, .

(f) Admit with Perron (7), Persidski (8), and
Malkin (9) that the existence of the Liapunov fune-
tion V(P, t) implies the existence of two constants
hy and h; such that

0 < he < Hyt 7) < he (19)
and the existence of a quadratic Liapunov function
Ly = PHSHS P, = P*H Py (20)

where X* denotes the conjugate adjoint of X. A
discussion of this problem can also be found in
reference 3.

(g) Introduce the change of variable P, = ST,P
[Eq. (18)] into Eq. {11) and thus find
i) =175 57
dat| P £ D || P
(21)

P | _
+ 587 2 (0] + T0'ST'Q
i
where
Bi = BT7'8StY By = ST.E
Dy = 8T:D-18+

Notice that the application of the uniformly bounded
transformations T4, S does not change either the

uniformiy bounded character of p(£) or the order of Q.

(k) Prove that the quadratic form
L =1L+ C*C (22)

is a Edapunov function of the homogeneous part of
equation (21) which is

ale] =[50 2]

d/dtyz, = MZ, (23a)

To this effect, consider the time derivative of L.
Since ¢ and P, are solutions of Eq. (23), after some
elementary algebra, find that

ar _ dL,
dt dt

(23)

or

+ ZMY My - M;ﬁl Y1z, (24)

where

Y = |:£ ISJ I = m-m unit matrix
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M]_l = [_A Bl ] ] DTi = SDTS_I

L, Di— Dn
" The sign -of the first term on the right-hand side
of equation {(24) is always minus (see paragraph f,
above):

(dIn/jdiy <O - (25)

The sign of the second term may be established
as follows. Rewrite the second term as:

ZHMYMu - M Y1Z, = Z¥YY M + M*Y|Z (26)

where M} equals the matrix (V) shown below.
The (m + 1)-(m -~ 1) submatrix of Mi, which
corresponds fo the variables [c,{f), a(t)], has char-
acteristic values, solutions of the equation

Aop + 2 [Baap/(p +2)] = 0 (27)
Evidently, Eq. (27) admits (m + 1} distinct roots,
one equal to zero and m negative, because 350 > 0.
Since the characteristic roots of the submatrix are
distinet, it is possible te perform an orthogonal
transformation of ¢:(¢) and o(t) and reduce the sub-
matrix to its diagonal form. If this orthogonal trans-
formation is combined with a unit transformation
of 6;(), the matrix M3 is reduced to a triangular
form Mi with all the main diagonal elements zero
or negative. Thus, Fe. (26) becomes:

ZHYMY + M*Y|Z = ZHYMY + MT*Y)Z,

= 27X YM1)Z,
where Z; is the matrix resulting from Z when the
orthogonal transformation of [ci{f), a(?)] and the

unit transformation of 9;(f), are applied. Following
a procedure introduced by Malkin (9), the quadratic

(28)
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form (28) can be made to take the sign of the diagonal
elements of M7, This is achieved by choosing matrix
S to be of the form

8 = [, w >0 (29)

and properly adjusting the positive number w.
Consequently, the second term of Eq. (24) is always
zero or negative, since it can be reduced to a negative
quadratie form by orthogonal and similarity trans-
formations.

ZHY My + MEYZ 20 (30)

The ecombination of inequalities (29) and (30)
yields

(@dL/df) < 0 NGIN

which establishes the fact that L is a Liapunov
function.

Now, on the basis of assumptions and assertions
{a) through (h) it is eagy to ascertain the statement
about the effect of delayed neutrons on stability.
Since all the transformations used in the preceding
discussion are, geometrically speaking, rotations or
dilatations, the Liapunov character of the quadratie
form 1. is definite and independent of the eoordinate
system Z;. Therefore, it is concluded that the
homogeneous part of Eqg. (11) admits a Liapunov
function. According to Perron this implies that there
i8 a region R(Z, 1), in the multidimensional space
(%, ©), in which the solution of Eq. (11) is stable.
Of course, the magnitude of E(Z, r) is determined
by the second-order terms included in Q.

In summary, the following theorem has heen
proved: If the reduced system of kinetics equations,
without delayed neutronis, is stable, then thé com-
plete system, which includes delayed neutrons, is

m + 1 n
- 0 - 0 B/ Ao % Aoqu Aogin |
0 —h - 0 Bin/ Ao ! Aogn Aogan
. . v . . I - -
|
) ; e ) . L . 1
M=l 0 0 - = Ba/Ae L Ao g Ab G
” |
NN Am o D Blo/he O 0
e i _______________
0 0 0 o 10 0 }n
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also stable. Furthermore, it can be easily shown that
agymptotic stability of the reduced system implies
the asymptotic stability of the eomplete system.

ILLUSTRATIVE EXAMPLE

In this section the value of the derived theorem
is illustrated by means of an example. Consider a
heterogeneous reactor with two temperature coefi-
cients of reactivity. The complete system of equa-
tions describing the dyramics of this reactor is (10)

PO — o) + 0140 + R aCl) 62
P ICRST S (YO R ACICY)
o P _ AW - Ad— XMt — 0] GO
A0 B n i 1o a g
g =3 A0 -n0E i=1,2--68 (35)
where
A Reactor power
i, T2 Ratio of temnperature coefficient of

reactivity to neutron lifetime
X Thermal eonductivity

Y1, Yo Fractional power generated in medium
T or 2, respectively (jn + 32 = 1)
€ , € Heat capacity

81(8), 82(f) Temiperature increment

The system of the nine equations (32) to (35) is
rather involved to analyze. The reduced system,
however, of the three equations (32) to (34) without
delayed neufrons, after some elementary algebraic
operations, yields (10)

d d| Al ALy

L [A—o — 1 —1In A,

a T

+ aladi(t) + «00F + alfys) — az(z)lz} “

= —20,ts[6,(8) — ()]

where
1 714 72
gy = — -
YT a4t e
o_ﬁL.T1€2*T261‘ 1
T2 a+te /a) — (/e
= X + e
€ €2

The function L is a Liapunov funetion if

o1 >0 and 62> 0 (87}

249

Therefore, it can be immediately concluded that
the solutions of the complete system of Hgs. (32)
to (35) are stable, and in fact asymptotically stable,
if conditions (37) are true.

DISCUSSION

It has been shown, quite generally, that if a re-
actor without delayed neutrons is stable for uui-
formly bounded changes of reactivity, then the
same reactor with delayed neutrons will also he
stable. This assertion is of great value to the study
of the problem of stability of nonlinear reactor
dynamics. It reduces the number of kinetic equa-
tions by m and thus greatly simplifies the mathe-
matical complexity of the problem. It should be
pointed out, however, that if stability is not affected
by the delayed neutrons, the actual solutions of the
kinetic equations are modified appreciably, as it is
well known, even in the case of simple linear reactor
models.

The reactor dynamics have been assumed de-
scribable by a set of differential equations. Strictly
speaking, this is not completely general, because
there are reactor designs where integral operators,
not reducible to differential equations, are introduced
in the feedback loops. However, the dynamics of
such reactors can be approximated as closely as
desired by a series of differential equations. Therefore
the previous conclusions arc applicable since the
derivations of this paper are independent of the
number of equations assumed.

A comment is necessary on the size of the region
R(Z, r) in which the derived stability criterion is
valid. Many studies of stability in the field of reactor
kinetics introduce Liapunov functions with un-
bounded domains of validity. This feature allows
the consideration of starting points of trajectories
anywhere in the space (Z, f) but at the same time
reduces the scope of the method. The advantage of
copsidering any starting point is likely to be often
offset by the fact that the kinetic equations are not
valid for large displacements. The region R(Z, 7)
introduces 2 restriction on the size of displacements,
which in most of the practical cases is not as re-
strictive as the conditions imposed by the validity
of the basic equations. The size of R(Z, ) can be
determined in each specific case and its importance
can be assessed by comparison with the domain of
validity of the nonlinear kinetic equations.

Finally, it should be recognized that the assumed
existence of a Liapunov function for the reduced
system of kinetics equations is more restrictive than
the requirement of mere stability. Tt can be shown
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that if all systems having a Liapunov function are
stable, not all stable systems possess a Liapunov
function (3). However, this fact rests on very particu-
lar mathematical hypotheses and therefore may be
overlooked when discussing physical problems.
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