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Abstract. In the scientific and engineering literature, entropy - the distinguishing feature of ther-
modynamics from other branches of physics - is viewed with skepticism, and thought to be not a
physical property of matter - like mass or energy - but a measure either of disorder in a system,
or of lack of information about the physics of a system in a thermodynamic equilibrium state, and
a plethora of expressions are proposed for its analytical representation. In this article, I present
briefly two revolutionary nonstatistical expositions of thermodynamics (revolutionary in the sense
of Thomas Kuhn, The Structure of Scientific Revolutions, U. Chicago Press, 1970) that apply to all
systems (both macroscopic and microscopic, including one spin or a single particle), to all states
(thermodynamic equilibrium, and not thermodynamic equilibrium), and that disclose entropy as an
intrinsic property of matter.

The first theory is presented without reference to quantum mechanics even though quantum
theoretic ideas are lurking behind the exposition. The second theory is a unified quantum theory of
mechanics and thermodynamics without statistical probabilities, that is, I am not presenting another
version of statistical quantum mechanics.

ENCOMIUM

I am deeply moved by my participation in this gathering honoring the memory of Pro-
fessor Keenan. His clarity of thinking and his demand for rational conceptions about and
logical conclusions of scientific and engineering efforts had a lasting influence on my
academic career. The clarity and rigor of his scientific and engineering thinking inspired
George N. Hatsopoulos and me to develop a nonstatistical theory of quantum thermody-
namics, and Gian Paolo Beretta and me to develop a novel theory of thermodynamics.
I would like to express my gratitude to Professor Keenan by translating a brief greek
prayer: “light be the earth that covers him forever”.

INTRODUCTION

Given that many ideas about thermodynamics were introduced in the 19th and 20th
centuries, we might have assumed that there is little controversy about its foundations.
However, even a cursory review of the relevant literature shows that this is not the case
[1–9].

About forty years ago, a group at MIT began a response to the concerns raised about
the correct foundations of the subject, which I present below not necessarily in the
chronological order it was developed. Gyftopoulos and Beretta [10] have composed an
exposition of thermodynamics in which all basic concepts are defined completely and
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without circular and ambiguous arguments in terms of the mechanical ideas of space,
time, and force or inertial mass only. Hatsopoulos and Gyftopoulos [11] conceived
a unified quantum theory of mechanics and thermodynamics, and Beretta et. al. [12,
13] discovered a complete equation of motion for the unified theory just cited. Both
quantum mechanical developments involve only quantum mechanical and no statistical
probabilities of the types used in either statistical classical mechanics, or statistical
quantum mechanics.

In what follows, I present the foundations of thermodynamics in Sections 2 and 3, the
foundations of the unified quantum theory without the equation of motion in Section 4,
and conclusions in Section 5.

THERMODYNAMICS

Definition

We define thermodynamics as the study of motions of physical constituents resulting
from externally applied forces, and from internal forces. This definition is identical
to that given by Timoshenko and Young about mechanical dynamics [14]. However,
because of the first and the second laws, we will see that the definition encompasses a
much broader spectrum of phenomena than mechanical dynamics.

Kinematics: Conditions at an Instant in Time

We give precise definitions of the terms system, property, and state so that each
definition is valid without change in any paradigm of physics, and involves no statistics.

A system is defined as a collection of r constituents with amounts n = {n1,n2, . . . ,nr}
subject to s external forces or parameters βββ = {β1,β2, . . . ,βr}. One parameter may be
volume β1 = V , and another an externally applied electric field β2 = E .

At any instant in time, each amount and each parameter have specific values.
By themselves, the values of the amounts of constituents and of the parameters do

not characterize completely the condition of a system at that time. We also need the
values of a complete set of linearly independent properties at the same instant in time.
A property is defined as an attribute that can be evaluated at any instant in time by a set
of measurements.

For a given system at an instant in time, the values of n, βββ , and of a complete set of
linearly independent properties encompass all that can be said about the system at that
instant. We call this complete characterization the state of the system, and recognize that
it applies to all paradigms of physics.
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Dynamics: Changes of State in Time

The state of a system may change in time either spontaneously due to the internal
forces, or as a result of interactions with other systems, or both. The relation that
describes the evolution of the state of either an isolated system, or of a system subject
to forces that do not violate the definition of the system is the equation of motion. The
equation of motion is discussed by Beretta in these proceedings. For the nonce, I note
that many features of the complete equation of motion have been discovered, and that
two of the most general and well-established features are captured by the three laws of
thermodynamics discussed later.

Energy and Energy Balance

Energy is a concept that underlies our understanding of all physical phenomena. It
emerges from a fundamental principle known as the first law of thermodynamics.

The first law asserts that any two states of a system may always be the initial and
final states of a weight process, i.e., a process that involves no net effects external to the
system except the change in elevation between z1 and z2 of a weight Mg, where M is the
mass of the weight, and g the gravitational acceleration. Many other mechanical effects
may be used instead of the weight for the definition of the first law.

The main consequence of this law is that every system A in state A1 has a property
called energy, with a value E1. The value of E1 can be evaluated with respect to a
reference state A0 to which is assigned an arbitrary reference value E0 so that

E1 = E0−Mg(z1− z0) (1)

Energy is shown to be an additive property [10], that is, the energy of a composite system
is the sum of the energies of the subsystems. Moreover, it is also shown that energy has
the same value at the final time as at the initial time if the system experiences a zero-
net-effect weight process, and remains invariant in time if the process is spontaneous. In
either of the processes just cited, z2 = z1 and E(t2) = E(t1) for time t2 > t1, that is, energy
is conserved. Energy conservation is a time-dependent result, and is here established
without use of the relevant equation of motion.

Energy is transferred between systems as a result of interactions. Denoting by EA←
the amount of energy transferred from the environment to system A in a process that
changes the state of A from A1 to A2, we can write the energy balance. This balance is
based on the additivity and conservation of energy, and reads

(E2−E1)system A = EA← (2)

The arrow indicates that EA← is positive if energy is transferred to the system.
For most practical applications relativistic effects are negligible, and a mass balance

of the form
(m2−m1)system A = mA← (3)

is a satisfactory approximation, and mA← is positive if mass is transferred to the system.
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Types of States

Because the number of independent properties of a system is very large even for
a system consisting of a single particle, and because most properties can vary over a
range of values, the number of possible states of a system is infinite. The discussion
of these states is facilitated if they are classified into different categories according to
evolutions in time. This classification brings forth many important aspects of physics,
and provides a readily understandable motivation for the introduction of the second law
of thermodynamics.

The classification consists of unsteady states, steady states, nonequilibrium states, and
equilibrium states. Unsteady and steady states occur as a result of sustained (continuous)
interactions of the system with its environment. A nonequilibrium state is one that
changes spontaneously as a function of time. An equilibrium state is one that does
not change in time while the system is isolated. An unstable equilibrium state is an
equilibrium state that may be caused to proceed spontaneously to a sequence of entirely
different states by means of a minute and short-lived interaction that has either an
infinitesimal and temporary effect or a zero net effect on the state of the environment. A
stable equilibrium state is an equilibrium state that can be altered to a different state only
by interactions that leave net effects in the environment of the system. These definitions
are identical to the corresponding definitions in mechanics but include a much broader
spectrum of states than those encountered in mechanics on account of the first and the
second laws of thermodynamics.

Reversible and Irreversible Processes

A process is reversible if it can be performed in at least one way such that both the
system and its environment are restored to their respective initial states. A process is
irreversible if it is impossible to restore both the system and its environment to their
respective initial states.

Second Law

The second law of thermodynamics is a statement of existence of stable equilibrium
states. More than the first, the second law distinguishes thermodynamics from mechanics
and other branches of physics.

The existence of stable equilibrium states is not self-evident. It was recognized by
Hatsopoulos and Keenan [15] as the essence of the second law. Gyftopoulos and Beretta
[10] concur with this recognition, and state the second law as follows: Among all the
states of a system with given values of energy, amounts of constituents, and parameters,
there exists one and only one stable equilibrium state. For each set of the conditions
just cited, the stability is not local but global [16]. Moreover, starting from any state
of a system, it is always possible to reach a stable equilibrium state with arbitrarily
specified values of amounts of constituents and parameters by means of a reversible
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weight process.
The existence of stable equilibrium states for the conditions specified and therefore

the second law cannot be derived from the laws of mechanics. Within mechanics, the
stability analysis yields that among all the allowed states of a system with fixed values of
amounts of constituents and parameters, the only stable equilibrium state is that of lowest
energy. In contrast, the second law avers the existence of a globally stable equilibrium
state for each value of the energy. As a result, for every system the second law implies the
existence of a broad class of states in addition to the states contemplated by mechanics.

The existence of stable equilibrium states for various conditions of a system has many
theoretical and practical consequences. One consequence is that, starting from a stable
equilibrium state of any system, no energy is available to affect a mechanical effect
while the values of the amounts of constituents, the internal forces and the parameters
of the system experience no net changes [10]. This consequence is often referred to as
the impossibility of the perpetual motion machine of the second kind (PMM2). In some
expositions of thermodynamics, it is taken as the statement of the second law. In this
exposition, it is only a theorem of our statements of both the first and the second laws
and the set of rigorous definitions that provide their rigorous framework. Moreover, it
does not suffer the circularity inherent in the Kelvin-Plank statement of the second law.

Another consequence is that not all states of a system can be changed to a state of
lower energy by means of a mechanical effect. This is a generalization of the impossi-
bility of a PMM2. In essence, it is shown that a novel important property exists which is
called generalized adiabatic availability and denoted by Ψ [10]. The generalized adia-
batic availability of a system in a given state represents the optimum amount of energy
that can be exchanged between the system and a weight in a weight process that begins
with system A in a state A21 with values n21, βββ 2

1, and ends in a state A22 with values n22, βββ 2
2.

Like energy, this property is well-defined for all systems and all states, but unlike energy
it is not additive [10].

Reservoirs

In striving to define an additive property that captures the important features of
generalized adiabatic availability, Gyftopoulos and Beretta introduce a special reference
system, called a reservoir, and discuss the possible weight processes that the composite
of a system and a reservoir R may experience. A reservoir is an idealized kind of system
that approaches the following three limiting conditions.

1. It passes through stable equilibrium states only.
2. In the course of finite changes of state, it remains in mutual stable equilibrium with

a duplicate of itself that experiences no such changes.
3. At constant values of amounts of constituents and parameters of each of two reser-

voirs initially in mutual stable equilibrium, energy can be transferred reversibly
from one reservoir to the other with no net effects on any other system.

Two systems are in mutual stable equilibrium if their composite system is in a stable
equilibrium state.
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Available Energy

Given a reservoir R with fixed values of amounts of constituents and parameters, the
adiabatic availability of the composite of system A and reservoir R is an additive property
of system A called available energy with respect to reservoir R, and denoted by ΩR.

The available energy ΩR
1 - with respect to reservoir R - of a system A in any state A1

is the largest amount of energy that can be transferred to a weight in a weight process
for the composite of system A and reservoir R without net changes in the values of the
amounts of constituents and the parameters of the system and the reservoir. When ΩR

1
is transferred out, systems A and R are left in mutual stable equilibrium, that is, their
composite system is in a stable equilibrium state.

The first scientist who raised the question about the largest amount of energy that
can be transferred to a weight in a weight process for the composite of a system A
and a reservoir R was Carnot. He restricted his investigation, however, to A also being
a reservoir. His results constitute the seminal ideas - the conception event - of the
science of thermodynamics. The discussion of the available energy ΩR

1 as a property
is a generalization of the results of Carnot in that system A need not be a reservoir, and
state A1 need not be a stable equilibrium state. Available energy can be assigned to any
system in any state.

Generalized Available Energy

Another property, the generalized available energy [10], may also be defined as a
property of system A in any state A1 and a reservoir R (Fig. 1). Its definition is identical
to that of available energy except that the final state A12 of system A corresponds to
arbitrarily assigned values of the amounts of constituents and parameters, that differ
in general from those of state A222 . The generalized available energy of state A12 is
defined with respect to reservoir R and the arbitrarily assigned values of the amounts of
constituents and parameters, that differ in general from those of state A12 . For simplicity,
we denote this property by the same symbol ΩR

1 as for the available energy and for the
sake of simplicity disregard the prime and double prime notation. We distinguish the
generalized available energy from available energy of state A1 with respect to reservoir
R by name and context.

The difference between the generalized available energies, ΩR
1 −ΩR

2 , of two states A12
and A222 is equal to the energy that can be exchanged with a weight in a reversible weight
process of the composite AR of system A and reservoir R as system A goes from state
A12 to state A222 . Upon denoting the energy exchanged with the weight in a reversible
process by (W AR→

12 )rev, we have

(W AR→
12 )rev = ΩR

1 −ΩR
2 (4)

The value of(W AR→
12 )rev is positive if energy is transferred from the composite AR to the

weight, and then it is the largest energy transfer to the weight that can be achieved as
system A goes from state A12 to state A222 . It is negative if energy is transferred from the
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FIGURE 1. End states of weight process involved in the discussion of generalized available energy.

weight to the composite AR, and then it is the least energy transfer that is required to
achieve the change of A from state A12 to state A222 .

Two important relations exist between the energies E1 and E2, and the generalized
available energies ΩR

1 and ΩR
2 of any two states A12 and A222 of system A. By virtue of the

first law, the two states can always be interconnected by means of a weight process for
system A alone. But the first law determines neither the direction of the weight process,
nor its reversibility. By contrast, a comparison between the difference in energies and
the difference in generalized available energies of the two states determines both the
direction and the reversibility of the process. Specifically, if

ΩR
1 −ΩR

2 = E1−E2 (5)

then a weight process for A alone is possible both from A12 to A222 and from A222 to A12 ,
and is reversible. However, if

ΩR
1 −ΩR

2 > E1−E2 (6)

then a weight process for A alone is possible only from A12 to A222 , and is irreversible.
More details about ΩR are given in [10].

Entropy and Entropy Balance

An important consequence of the two laws of thermodynamics is that every system
A in any state A1 with energy E1 and generalized available energy ΩR

1 with respect to
auxiliary reservoir R has a property called entropy, denoted by the symbol S1. Entropy
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is a property, in the same sense that energy is a property, and is defined by the relation

S1 = S0 +
1
cR

=
(E1−E0)− (ΩR

1 −ΩR
0 )

)
(7)

where cR is a well-defined positive constant, and A0 is an arbitrary reference state. For
a given auxiliary reservoir R, cR is selected in such a way that the values of entropy
found by means of Eq. (7) are independent of the reservoir. In other words, despite the
dependence of the difference of generalized available energies ΩR

1 −ΩR
0 in Eq. (7) on the

selection of the reservoir R, we can show that there is a constant property cR of reservoir
R that makes the right hand side of Eq. (7) independent of R. Thus, S is a property of
system A only. In due course, the concept of temperature is defined as a property of
stable equilibrium states. Then we show that the temperature of a reservoir is constant,
and that cR is equal to the constant temperature of the reservoir.

Reversible and Irreversible Processes

Because energy and generalized available energy satisfy relations (5) and (6), the
entropy defined by Eq. (7) remains invariant in any reversible adiabatic process of A,
and increases in any irreversible adiabatic process of A. These conclusions are valid also
for spontaneous processes, and for zero-net-effect interactions. The latter features are
known as the principle of non-decrease of entropy. Both a spontaneous process and a
zero-net-effect interaction are special cases of an adiabatic process of system A.

The entropy created as a system proceeds from one state to another during an irre-
versible process is called entropy generated by irreversibility. It is positive. The entropy
non-decrease is a time-dependent result. In the novel exposition of thermodynamics [10],
this result is obtained without use of the complete equation of motion. Because both en-
ergy and generalized available energy are additive, Eq. (7) implies that entropy is also
additive.

Like energy, entropy can be transferred between systems by means of interactions.
Denoting by SA← the amount of entropy transferred from systems in the environment
to system A as a result of all interactions involved in a process in which the state of A
changes from state A1 to state A2, we derive a very important analytical tool, the entropy
balance, that is

(S2−S1)system A = SA←+Sirr (8)

where Sirr is non-negative. A positive Sirr represents the entropy generated spontaneously
within system A in the time interval from t1 to t2 required to affect the change from state
A1 to state A2. Spontaneous entropy generation within a system occurs if the system is
in a state that is not stable and then the internal system dynamics precipitate the natural
tendency toward stable equilibrium.

The dimensions of S depend on the dimensions of both energy and cR. It turns out that
the dimension of cR is independent of the dimensions used in non-thermodynamic the-
ories of physics. It is the same as the dimension of temperature. Temperature is defined
below. From Eq. 7, it follows that the dimensions of S are energy over temperature.
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Properties of Stable Equilibrium States

Among the many states of a system that have given values of energy E, the amounts
of constituents n, and parameters βββ , the second law specifies that one and only one be
a stable equilibrium state. It follows that any property of such a state must also be a
function of E, n, and βββ , and that the entropy must be given by the relation

S = S(E,n,βββ ) (9)

Equation (9) is called the fundamental relation.
The fundamental relation is analytic in each of its variables, concave with respect to

energy [10], that is, :
∂ 2S
∂E2

(
n,βββ

≤ 0 (10)

and is used to define other properties of stable equilibrium states, such as temperature T

1
T

=
:

∂S
∂E

(
n,βββ

(11)

total potentials

μi =−T
:

∂S
∂ni

(
E,n,βββ

for i = 1, 2, . . . , r (12)

and pressure p

p = T
:

∂S
∂V

(
E,n,βββ

for βi = V = volume (13)

The temperature, total potentials, and pressure of a stable equilibrium state appear
in the necessary conditions for systems to be in mutual stable equilibrium, that is,
in states that do not affect each other. The conditions are temperature equality, total
potential equalities, and pressure equality. Moreover, these equalities are the bases for
the measurements of T , μi’s, and p.

The ranges of values of T ,μi’s, and p are infinite. This fact can be established by
careful considerations of the behavior of interactions induced by differences in temper-
ature, total potentials, and pressure, and easily proven by quantum mechanical analyses.
If quantum mechanical concepts are not used, then the ultimate values of temperature
are expressed in the form of the third law of thermodynamics as follows. For each given
set of values of the amounts of constituents, the internal forces, and the parameters of
a system without upper limit on its energy, there exists one stable equilibrium state with
infinite inverse temperature, or, equivalently, zero temperature. For systems with both a
lower and an upper limit on energy, such as a system consisting of a finite number of
spins only, then there exist two stable equilibrium states with extreme temperatures, one
with a positive inverse temperature equal to +∞, and the other with a negative inverse
temperature equal to −∞.
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Work and Heat

A system can experience a great variety of interactions with systems in its environ-
ment. Here, we discuss only two of these interactions, work and heat.

Work is an interaction in which the system exchanges only energy with systems in
its environment, without any exchange of entropy and/or constituents. If the amount of
energy exchanged is W→, then the energy and entropy balances are

Efinal−Einitial = ΔEsystem =−W→ (14)
Sfinal−Sinitial = ΔSsystem = Sirr (15)

where the arrow indicates that W→ is positive if energy flows out of the system, and
therefore the energy of the system decreases.

Heat is an interaction in which the system exchanges only energy and entropy with
a reservoir in its environment and nothing else.1 The amount of energy exchanged is
denoted by Q← and the entropy by Q←/TR, where TR is the fixed temperature of the
reservoir, and the arrow indicates that Q← is positive if energy flows into the system. It
is noteworthy that Q← is not a function of TR because, by definition, a reservoir has the
same TR for any value Q←. Thus, for a system experiencing only a heat interaction, the
energy and entropy balances are

ΔEsystem = Q← (16)
ΔSsystem = Q←/TR +Sirr (17)

In practically all expositions of thermodynamics, entropy is claimed to be defined by
a relation of the form S =

B
dQ/T + Sirr. To be meaningful, the temperature T in this

integral must be a function of Q, but such a function is nonexistent.
Detailed discussions of properties of stable equilibrium states, such as the fundamen-

tal relation, temperature, total potentials, and pressure, and of different interactions,
such as work and a more general definition of heat are given in Ref. [10], Chapters 8-12.

General Characteristics of the Expression of S

From the discussions in the preceding sections and our knowledge of classical ther-
modynamics, we conclude that any expression that purports to represent the entropy S of
thermodynamics must have at least the following eight characteristics or, equivalently,
conform to the following eight criteria.

1. The expression must be well-defined for every system (large or small) and every
state (stable equilibrium or not stable equilibrium).

2. The expression must be invariant in all reversible adiabatic processes, and increase
in any irreversible adiabatic process.

1 Alternatively, heat can be defined as an interaction causing exchanges of energy and entropy only.
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3. The expression must be additive for all well-defined systems and all states of such
systems.

4. The expression must be non-negative, and vanish for all the states encountered in
mechanics.

5. For given values of the energy, the amounts of constituents, and the parameters, one
and only one state must correspond to the largest value of the expression.

6. For given values of the amounts of constituents and parameters, the graph of
entropy versus energy of stable equilibrium states must be concave and smooth.

7. For a composite C of two subsystems A and B, the expression must be such
that the entropy maximization procedure for C [criterion no. (5)] yields identical
thermodynamic potentials (for example, temperature, total potentials, and pressure)
for all three systems A, B, and C.

8. For stable equilibrium states, the expression must reduce to relations that have been
established experimentally and that express the entropy in terms of values of energy,
amounts of constituents, and parameters, such as the relations for ideal gases.

It is noteworthy that: (a) except for criteria (1) and (4), we can establish the remaining
six criteria by reviewing the behavior of entropy of classical thermodynamics. These
criteria are important in determining the quantum mechanical expression for entropy.

Comment

The definition of entropy introduced here differs from and is more general than the
entropy presented in practically all textbooks on physics and thermodynamics. The new
definition does not involve the concepts of temperature and heat; it is not restricted to
large systems; it applies to macroscopic as well as microscopic systems, including a
system with one spin only; it is not restricted to thermodynamic equilibrium; and it is
not statistical. Despite these and other differences, for thermodynamic equilibrium states
it has the same values as those listed in existing tables. It is a bona fide property of matter
in the same sense that mass, velocity, energy, etc. are physical properties.

QUANTUM THERMODYNAMICS

Definition

We present a summary of a quantum theory that differs from the presentations in prac-
tically every textbook on the subject. The key differences are the recognitions that: (i)
the probabilities associated with ensembles of measurement results at an instant in time
require a nonstatistical density operator ρ ≥ ρ2, i.e., a ρ represented by a homogeneous
ensemble, and (ii) the evolution in time of ρ requires an equation delimited by but more
general than the Schrödinger equation [17].
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Our definitions, postulates, and major theorems of quantum theory are based on
slightly modified statements made by Park and Margenau [18], and close scrutiny of
the implications of these statements.

In response to the first difference, Hatsopoulos and Gyftopoulos [11] observed that
there exist two classes of quantum problems. In the first class, the quantum-mechanical
probabilities associated with measurement results are fully described by wave functions
or projectors, whereas in the second class the probabilities just cited require density
operators that involve no statistical averaging over projectors - no mixtures of quantum
and statistical probabilities. The same result emerges from the excellent review of the
foundations of quantum mechanics by Jauch [19]. In addition, this difference eliminates
the “monstrosity” of the concept of mixed state that concerned Schrödinger [20] and
Park [21].

In response to the second difference, Beretta et al [12, 13] conceived a nonlinear
equation of motion for nonstatistical density operators that consists of a linear part plus
a nonlinear part. The equation is discussed by Beretta in these proceedings.

Kinematics: Definitions, Postulates, and Theorems at an Instant in
Time

System. The term system is defined exactly the same way as in Section 2.2.
System postulate. To every system there corresponds a complex, complete, inner

product space, a Hilbert space H . The Hilbert space of a composite system of two
distinguishable and identifiable subsystems 1 and 2, with associated Hilbert spaces H 1

and H 2, respectively, is the direct product space H 1⊗H 2.
Homogeneous or unambiguous ensemble. At an instant in time, an ensemble of

identical systems is called homogeneous or unambiguous if and only if upon subdivi-
sion into subensembles in any conceivable way that does not perturb any member, each
subensemble yields in every respect measurement results - spectra of values and fre-
quency of occurrence of each value within a spectrum - identical to the corresponding
results obtained from the ensemble, Fig. 2. For example, the spectrum of energy mea-
surement results and the frequency of occurrence of each energy measurement result
obtained from any subensemble are identical to the spectrum of energy measurement re-
sults and the frequency of occurrence of each energy measurement result obtained from
an independent ensemble that includes all the subensembles. Other criteria are presented
in Ref. [11].

Preparation. A preparation is a reproducible scheme used to generate one or more
homogeneous ensembles for study.

The recognition of the existence of density operators that correspond to homogenous
ensembles has many interesting applications. It extends quantum ideas to thermodynam-
ics, and thermodynamic principles to quantum phenomena, and eliminates the need for
use of statistical probabilities of statistical quantum mechanics.

Property. The term property refers to any attribute of a system that can be quanti-
tatively evaluated at an instant in time by means of measurements and specified proce-
dures. By definition, all measurement results and procedures are considered to be pre-
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FIGURE 2. Representation of a homogeneous ensemble.

cise, that is, both error free, and unaffected by the measurement and the measurement
procedures, and not to depend on either other systems or other instants in time.

Observable. From the definition just cited, it follows that each property can be
observed. Traditionally, however, in quantum theory a property is called an observable
only if it conforms to the following mathematical representation.

Correspondence postulate. Some linear Hermitian operators A, B, ... on Hilbert
space H , which have complete orthonormal sets of eigenvectors, correspond to ob-
servables of a system.

The inclusion of the word “some” in the correspondence postulate is very important
because it indicates that there exist Hermitian operators that do not represent observ-
ables, and properties that cannot be represented by Hermitian operators. The first cate-
gory accounts for Wick et al. [22] superselection rules, and the second accounts both for
compatibility of simultaneous measurements introduced by Park and Margenau [18],
and for properties, such as temperature, that are not represented by operators and are
defined only for restricted families of states.

Measurement act. A measurement act is a reproducible scheme of measurements
and operations on a member of an ensemble. Regardless of whether the measurement
refers to an observable or not, in principle the result of such an act is presumed to be
precise, that is, an error and perturbation free number dictated solely by the system.

If a measurement act of an observable is applied to each and every member of a
homogeneous ensemble, the results conform to the following postulate and theorems.

Mean-value postulate. If a measurement act of an observable represented by a
Hermitian operator A is applied to each and every member of a homogeneous ensemble,
there exists a linear functional m(A) of A such that the value of m(A) equals the
arithmetic mean of the ensemble of A measurements, that is,

m(A) = 3A+= ∑
i

ai/N for N → ∞ (18)

where ai is the result of a measurement act of A applied to the i-th member of the
ensemble, a large number (theoretically infinite) of ai’s have the same numerical value,
and both m(A) and 3A+ represent the expectation value of A.
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Mean-value theorem. Each of the mean-value functionals or expectation values m(A)
of a system at an instant in time can also be written as

m(A) = 3A+= Tr[ρA] (19)

where ρ is an operator that is proven to be Hermitian, positive, unit trace and, in general,
not a projector, that is

ρ > 0; Tr[ρ] = 1; and ρ ≥ ρ2 (20)

The operator ρ is known as the density operator or the density of measurement results
of observables, and here it can be represented solely by a homogeneous ensemble, that
is, each member of the ensemble is characterized by the same ρ as any other member. It
is noteworthy that the value 3A+ of an observable A depends exclusively on the Hermitian
operator A that represents the observable and on the density operator ρ , and not on any
other operator that either commutes or does not commute with operator A.

Probability theorem. If a measurement act of an observable represented by operator
A is applied to each and every member of a homogeneous ensemble characterized by ρ ,
the probability or frequency of occurrence W (an) that the results will yield eigenvalue
an is given by the relation

W (an) = Tr[ρAn] (21)

where An is the projection onto the subspace belonging to an

A|a(i)
n += an|a(i)

n + for n = 1,2, . . . and i = 1,2, . . . ,gn (22)

and gn is the degeneracy of eigenvalue an.
Measurement result theorem. The only possible result of a measurement act of the

observable represented by A is one of the eigenvalues of A [18].
State. The term state encompasses all that can be said about a system at an instant

in time, that is, a set of Hermitian operators A, B, ... that correspond to a set of n2− 1
linearly independent observables - the value of an independent observable can be varied
without affecting the values of other observables - and the relations

3A+ = ∑
i

ai/N

3B+ = ∑
i

bi/N (23)

. . .

where n is the dimensionality of the Hilbert space, and in principle N → ∞. It is
noteworthy that the operators A, B,. . . are determined by the system, and either the
expectation values or the density operator and A, B,. . . specify the state. For a given
system, the mappings both from ρ to expectation values and from expectation values
to ρ are unique because Eqs. 23 are linear from expectation values to and from ρ to
expectation values, where ρ ≥ ρ2.

It is noteworthy, that no quantum-theoretic requirement exists which excludes the
possibility that the mapping from the measurable expectation values to ρ must yield
a projector ρ = ρ2 rather than a density operator ρ > ρ2, and, conversely, that a pre-
specified operator ρ must necessarily be a projector. In fact, the existence of density
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operators that are not derived as a mixture of quantum probabilities and statistical prob-
abilities provides the means for the unification of quantum theory and thermodynamics
without resorting to statistical considerations [11].

Collapse of the wave function postulate. Among the postulates of quantum mechan-
ics, many authoritative textbooks include von Neumann’s projection or collapse of the
wave function postulate [23, 24]. An excellent, rigorous, and complete discussion of the
falsity of the projection postulate is given by Park [25].

Quantum expression for entropy. Ever since the enunciation of the first and second
laws of thermodynamics by Clausius about 140 years ago, all expressions for entropy
that are not based on temperature and heat involve statistical probabilities. As we discuss
earlier, entropy is proven to be an intrinsic - inherent - nonstatistical property of any
system in any state. Gyftopoulos and Çubukçu [26] considered all the conditions that
must be satisfied by the entropy analytical expression, and show that the only function
that is consistent with all conditions is

S =−kB Tr[ρ lnρ] (24)

CONCLUDING REMARKS

Many people believe that thermodynamics is not a fundamental theory of physics be-
cause the concept of entropy - the concept that distinguishes thermodynamics from other
branches of physics - is a statistical and accurate tool for understanding phenomena as-
sociated with very large systems in a thermodynamic - chaotic - equilibrium state. I hope
the preceding discussions will be helpful in changing this belief.
Some novel results are:

Maxwell’s demon cannot accomplish his task because in a system in a stable equilib-
rium state nothing moves, the velocity of each particle is zero. So, there are no fast and
slow particles to be sorted out [27].

Alternatively, for a system without upper limit on energy, Maxwell’s demon cannot
accomplish the task because he is asked to extract only energy from a system in a stable
equilibrium state at no cost of any kind. But starting from a stable equilibrium state
there exist no states of lower energy and the same entropy. Alternatively, at no cost he is
asked to reduce the entropy of the gas he is manipulating but entropy is a nondestructible
property of matter [28].

An interesting exception to these remarks is a spin system in the region of negative
temperatures. In that region, the demon can accomplish his assignment, i.e., extract
energy only from a stable equilibrium state.

Brownian movement does not represent motions. It is the result of reallocations of the
constituents of a solvent and a colloid to continuously evolving energy eigenstates and
eigenvalues due to shape changes of the constant volumes of the solvent and the colloid.
The volume shape changes are due to infinite differences of chemical potentials between
the constituents of the solvent and the colloid, and of the constituents of the colloid and
the solvent [29].

The biography of e.Coli does not represent Brownian movement because the ambient
and e.Coli experience chemical reactions [29].
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FIGURE 3. Probability density function versus position of a particle in a square box (infinitely deep
potential well): (a) an equilibrium state of energy E; and (b) stable equilibrium state of energy E. Arbitrary
dimensionless units.

FIGURE 4. Probability density functions versus position of the electron of a hydrogen atom: (a)
heterogeneous subensemble surfaces of the constant density function [31]; and (b) homogeneous ensemble
surface of the electron in a stable equilibrium state (arbitrary units) [32].

Entropy is a measure of the spatial shape of the quantum probabilities associated
with a state [30]. For example, for one particle with specified energy confined in a two-
dimensional box, the probability distributions are oscillatory for states that are not stable
equilibrium as shown in Fig. 3a. For the unique stable equilibrium state for any specified
energy, the distribution is flat throughout the box except near the walls where it smoothly
reduces to zero as shown in Fig. 3b. The flat or even distribution is what renders the
entropy of that state larger than that of the states that correspond to the same energy but
are not stable equilibrium.
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Another illustration of the spatial shape of the quantum probabilities and entropy is
provided by the electron of a hydrogen atom in Figs. 4a and 4b.
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