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INTRODUCTORY REMARKS

These notes were compiled from hand-written notes and tape recordings
of a series of lectures presented by Dr. Elias P. Gyftopoulos, Associate
Professor of Nuclear Engineering; Massachusetts Institute of Technology.

The lectures were conducted at the SPERT facilities .at the Natlonal Reacter
Testing Station during the period from July 17, to July 28, 1961. Professor
Gyftopoulos also conducts a one year course in Control Theory (based on
similar material) &t MIT.

The purpose of thése lectures was to describe, from the standpoint
of contrel thegry, various methods of interpreting experimental results.

If one desired to attach a title to the subject matter presented herein,
a most appropriate one would be "Principles of Analysis of Physical Systems™.

In transcribing the ngtes, emphasis was placed on preserving the mood
and spontaneity of presentation. This was made possible, in large part,

by a great deal of effort by Professor Gyftopoulos in editing the entire

series of notes.
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Lecture No. 1

FOURLER SEREIES

Let's assume that someone hae taken a series of measurements of some
(at the present, undefined) physical quantity. The measurements were taken
at different times and the magnitudes of the values obtained ploited as a
funection of time. The resulting graph is shown in Figure 1 where M denotgs

the magnitude 1n arbitrary units, and t refers to real time.
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Fig. 1

Suppose that close examination of the graph shows that for every interval
of time T, the magnitude repeats itselfs i.e., the function obtained is
periodic in time. Let's call this function F{i).

Next, let us try to determine an analytical expression to describe the
function F(t) which will enable us to predict its value at any time. This
means that, for a given value of the function at some time 1, we want to
be able to say what value it will have at a time to. There are several
methods of approaching this problem; but let’s assume that the function

could be approximated by the Fourier ceries,

fi¢) = ‘Q—Z L0, Ccoswt +a, Coszwt+ + -+ a,CO0sNWT +

+ b, s'mw'f + bZSl'nZLo{ + ¢ & s & bnsinnw{“,

(1)



One might ask, why were sines and cosines chosen to represent the

function?

First, since the Fourier series contains both sineg and cosines

it is representative of both even and odd functions, and thus the origin

of time is not important.

Second, sines and cosines are orthogonal func-

tions in the range (0, T). This means that the integral of the products

of any two slnes or coslines satisflies the following relationships:

-
cin nwt sinmwt dt

3]

o

-
cosnwt cogmwt dT

O

T

sinnwt cosmwt dt =

o

Another reason for using a2 Fourier series 1s that

are evaluated by

&+T
Ay ::'F F(£) dt
z
r+T
Qn,:%: Fi£)cosnwt dt
z
Z+T

—
—

%—' F(t)sin nwt d¢

7

o (m#n)

(Wa’}:n)g (2)

S ]

if the coefficients

3
; oy Y
*N>o0
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Then we have the very important result that the error involved between
F(+) and £(t) is a minimum in the least mean square sense. This means

that

T

A ( F('[.') - jf'(t))z(_l -t- is a mininhum

-

o

and the error is given by
—_ 2 2
2 _ (L) — zi (Q; + bg)
3 PR - A

C+T

= | Frwdt -y @rk)

Z. 6. 2

I

where the bar denotes average values. In other words, the approximation
is "good" in the sense that £(t) is a least sguare fit. From Equation (k)
it is seen that the more terms involved in F(t) the smaller the error.

A final reason for choosing the Fourier geries 1g that each term is
independent of all the others. Thus, adding more terms to decrease the

error does not change the values already obtalned for the previcus terms.

The advantages of an orthogonal set of functions such as the. sines
and cosines Just described may be better appreciated in terms of a geomet-

rical picture. In general, a series in terms of orthogonal Ffunctions such

as

Flb) = £ (4) = Q@)+ 0,8 E)+ -+, dulE) e e
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where ¢2(t) is a member of a set of orthogonal functions over the range

7 and 'Z"-F[,- and,
Z+T ’

a; = -1‘:- F(t) g (¢)dt ;
. .

is a least mean square error Tit to F(t). Consider ¢;(t) to be associated
with one and only one direction in a multidimensional space. The direc-
tions of this space are perpendicular to each other because the @;(t)'s
are orthogonal. In fact, if the #;{t)'s are normalized:

Z+T
T | Blt) b () dt = 4,
Z

where the Kronecker delta is defined by

GCUM"

= 0O

n= m

sonEm | .

Then the terms ai¢i(£) are nothing else than the projections of F(t) along
the different axes. These projéctions are independent of each other and
the more projections taken into accdunt, the better thé representation of
F{t). We wiil make further use of this geometrical representation of a
function in later sections.

It should be emphasized at this point that the Fourier series does
not give an exact representation for just any function F(t), regardiess
of how many terms are used. As an example, Figure 2 shows a comparison

of a Fourier series to a square wave.



A o &""’)C&) (Four;er senes)

fL—F(%)(Sﬁuare wave)

r—

Fig. 2

By the Fourier series approximation there is always an appreciable over-
shoot (Gibbs' phenomenon). Another comparison is shown in Figure 3 where

TchebychefT polynomials are used to approximate & square wave.

AA ﬂf{&)(ﬁhe%cﬁeﬁ ,aolgnow'a/)
ML - - ‘

e F(4)(Square wave)
r—»

Fig. 3

A first glance at Figure 3 wight indicate that Tchebycheff polynomials are
a better approximation to & square wave than a Fourler series. However,
it can be shown that the error involved in Pigure 3 is greabter than that
of Figure 2. The point is, before attempting to approximate a function
F(t) by another function f£{t), be it an infinite series or what have you,
considerable thought should be given to finding an orthogonal set which

will introduce the least possible error. In the case of the square wave,
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cne should use a sguare wave, or even perhaps a combination of Walsh func-
tions, which are shown in Figure 4, in order to make the error zero or

small.

| W, (¢)
- %g T r—
) Wz ('{;) /
i T ] i i
-1 ! 3 2 Tt
| LWs ()
- 7/—1 T T —
1 Wi (1)
7=
- Ta T
Fig. 4

The Fourier geries
a <0 co,
)C(H = 2 +Za; cosiwt + Zb;sl'm’wf‘ (5)
' =1 ' ‘=

may also be written in a more useful form by uitilizing the relationship
between the rectangular and exponential expresslions for complex numbers.

Any complex number

Z= x+JY



can be written as
Z=|Zl(cose+jsine) 506

which is known as the polar form. If cos @ 4+ Jjsin @ is expanded in a

Taylor series, then

C059+j51'}49=|+d.,e£ +(529.,)?—+.“ ).;_“,(’7)
The series expansion of the exponential e gives
ei& _ ]+% +(%Z+,,. +%.:‘?_2ﬂ+.,, (3)
Since Equations {7 and 8) are identical, we have
l?leie = lZ)(COSQ +ds/ing) . (9)
Similarly,
210 - 2] (coso - Jsine) o 0

Equations (9 and 10) are called the polar forms of complex numbers. There-

fore, Equation (5) can be written as

0

——

ft)= L5 gt , D

Az —aD



where R
et ——jmw}:j‘",
BL = Flt) & ot 5 (/12)
Z
. 2T
T= = ?
and

(13)

The conclusions to be drawn from this form of the Fourier series amre the
following:

1. By determining the values of the Pn‘s we can describe a func-
tion F(t). Thus P,.is a transfornm.

2. If we plot ]Pnl and the angle / P, for various values of n, we
determine a set of frequencies necessary to represent a periodic function,
and the function may be represented by these discrete frequencies only.
Thus P, is an equivalent representation of F(t) in the frequency domsin.

At this point one might say, "0.K., so we know how to represent a
periodic function, what do we do 1f the function to be approximated is

not periodic?"
APERIODIC FUNCTIONS (FQURIER AND IAPIACE TRANSFORMS )

Bince, by definition,ra periodic function must necessarily repeat
i1teell with a period T over the time scale form - of to+ o, in any

pmmﬁﬁa,ﬂhmﬁ@nwecmzmwm?mwetmﬂypmﬂmﬁcfmmﬁom% 5till
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we see that we can approximate what we call periodic functions. However,
many times the function we want to represent does not repeat itself con-
sistently after any reasonable interval of time? i.e., one cannot assign
a period T to the function. We would like to know then if we can repre-
sent an aperiodic (non-periodic) function in a manner similar to that for
the periodic case.

Suppose we have a funection F(t) which looks like the one shown in

Figure 5. Assume the scale has been expanded for purposes of illustration.

T e T
S B(t)

Ay
> \f_‘)

NEWAN

NV

I
|
lo
|
|

e e ey e — ——

| |
Fig. 5

Congider only a small section of the curve in Figure 5 and assume that
this part of the function is a member of a periodic Function and repre-
sents one period (as shown). Now make a Fourier series exXpansion over

this small interval. Thus,

T/.Z» . + .
P o= | F() 7T y D
-V

21
T

where (J = Now let the period T increase gradually. We may then

write

(n+l)w—mw = W :?-_-,-_7[--—911(»
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where A= as T—»og. Then, we can write

Py = [ Flt) e e .09

s0 that W changes continuously rather than discretely. Equation (13)
is called the "Fourier transform of F(t)".

Then from Equation (11) for periodic functions,

/ inwt
Fit) = 37y whe
n
and, similarly, for an aperiodic function

wi

F(t) = E!:[r me(w) e dw , (6

which is the "inverse Fourier transform'.

Thus, from Equations (15 and 16) we sece that if we know either P(w)
or F(t) we can find the other. Also, we see that if a function is
aperiodic, a continuous spectrum of frequencies is reguired to represent
it whereas for a periodic function, only a discrete spectrum of frequen-
cles wasg necessary.

The bilateral integral (15) creates problems of existence. Since
many functions of interest start at t = 0 and are zero before t = 0
we restrict the definition of (15) over the range 0—o60. Then

Plew) = LF(U G_‘EMLCJt U

However, Eguation (17) does not necessarily converge.
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A sufTicient condition to guarantee the existence of Eguation (17} .-
ls the requirement that F(%) belong to a class of functions known as
"functions of exponeritial order". A function F{t) is said to be of

exponential order if, for some constant ¢,

] F(i)| e “*d ¢ < M . (8

Therefore, even though F(t) may become infinitely large as t->td, we see
that F(t) must not grow more rapidly then & multiple of some exponential
Tunction of t if EquatiOH.(lY),iSLtd”existuﬂ,Then,ﬂif‘we_writex.“;

Equation (17) as

Plcw) = [ F($) e_jw{- E’_-Cfc/'é 3 (/4)

and if the restriction, Equation (18), is satisfied, we may say that
Equation (19) exists. Thus a new transform is defined.

One might ask here, why not rewrite Equation (19) to give

ob

* ~(c+iw)t
Ple+jw) = |[FH) e dt

o
However, c is a constant and we would be trying to work with a complex
funetion which is not a function of a complex variable. Therefore, in-
stead of making ¢ a constant let it be a variable (not of time) so that

¢ corresponds to the real part of a complex variable,

S = 0 + Jw
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Then we have
o0

P(rtjw) = fF(f) YL era

oy

which may be written

» -<t
F(s) = fF(Jc)e d t DI
o (20)

As we said before, P is a transform and we call F(s) the "laplace trans-
form of F(t)".

Let's stop for a wmoment and see what we now have. First, we have a
function, F(s), defined by Equation (20) which is a function of a complex
variable, s = G_+qu. Second, the integration has been simplified bj;

on tthe
changing from - €0 <—4to.0 ~ #£&0. Finally, thevonly“requirement_/xvélidity -
of Equation (20) is that Re(s) = ¢ >0y, , which defines the abscissa of
absolute convergence, so that the integral will converge. However, as
we will see later, it will be possible to remove even this restriction.
Thus, we see that for functions F(t) for which F(t) vanishes for t0,
the Fourier transform of Eguation (15) becomes formally identical with
the Laplace transform of Equation (20) if we replace Jau by 0'+JIU .

Similarly, the "inverse Laplace transform”, which is analogous to

Equation (16), is given by .

C+iw 4 :
s
Fi4) = 557 | Ftsoe¥ds 5 o
J C-yw (30
We can summarize by noting that:
a. F(s) is an equivalent representation of F(t) in the sense that

if we have F(s) we can find F(t). The correspondence is one to one and
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works both ways.

. The transform F(s) is a function of a complex variable s. Since
there are many powerful theorems associated with functions of complex
variables, we are at liberty to use these to our benefit.

c. The limitation Re(s))@%}is only mathematical and, as we will
see later, can easily be disregarded. |

d. As we will also see later, the representation of F(t) in the
complex (not imaginary) Trequency domain does not requirs an infinite
number of frequencies.

Now let's consider a few examples of Laplace transforms to convince
ourselves that they are analytical functions of complex variables.

Examples of laplace Transforms

Unit Step Function U(t)

The unit step function is defined such that

Ut) = o for t<o

and

ult) = for 50

Then

"

W —

et = -

g o

A |-

Tt
F(s) = [VH)e dt

provided @e (5) > O or J; =0 . The necessity that for this case

Re(s) ) O can be seen from the evaluation of the integral.



| } e-5°° [ -S0
"g e i - 7 —S_ + E <
~ S0
i _J.. — —!. G °
s )
Now i
. ~Ton
—§wWod _ ‘
| e I = | 5 and 't r>o <& —_— O,

_ - 00 _ ‘ .
T hen —é- C — 0 aund Zi“jaa“f/'wz (22) /s valid

Exponential e -at

For F(t) = e @ with t >0

o —(51‘&)% @0
_ -at ~-st L et |

| e -(s5+4a) o0

B
%
-+
o
wn
~.
o

- 4 3 (525)

provided Re(s) = 0 ) =a. Thus for F(%) = e-at, the abscissa of absolute

convergence is ¢, = -a.

Sinusepldal Function sin |5t

s

Ior F(f) = S'I‘Vf.pf

>, _ct f -ipt
Frs) = [sipt &t =£§f’%£ sty

_ L (24)

N
s+ P
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provided Re(s) » 0.

Table I lists the abscissas of absolute convergence for these and
some other simple functions.

As hag already been mentioned, since the Laplace transforms are
functions of complex variables, we may be able to make use of the theorems
coneerning analytic functions of complex variables. It will be advanta-:
geous at this time to review briefly some theories of funptions of complex

variables.
THEECRY OF FUNCTIONS OF COMPLEX VARTABLES

A complex number is one with a real part and an imaginary part. IT
both the real and imaginary parts are variables, the complex number can

be represented on what we will call the s-plane ag shown in Figure 6.

k)
JW s-plane

o(@Jw)

Pig. 6

In vector (polar) notation,

s = I’(‘E"9 ~w,4@rc r‘:.)GJ:f-wL 3 9‘:{&%—‘{'—;

3

FTunction of a Complex Variable

Let s = 6“+ja3'be a complex variable. If there is another number 32,

which is also a complex variable and which is so related to s that to each
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TABLE 1

Abscissas of Abscolute Convergence

F(s) Ta
1
< Q
i T
f
"S" (@)
sinpt ._ f
\// N - ©
< +/3
\e‘°+ |
s +0a -
~{a+Bit  (cHjd)}t
+ € ’ )
: . o,
a>cyo Statif $7.¢rid -
— o0
!
t* .
e Ne abscissa
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value of s there corresponds a definite value, or set of values of &,

then 2 is called a "function" .of the complex varisble s3 i.e.,
Z = G(s) : (25)

Then if Z is a function of s, separating B into real and imeginary parts

gives
Ef = U+ly = (}'(0’+qu ) 3

and each of the real functions u and V™ are determined by the pair of

real variables ¢ and w3 i.e.,

A = M(ij) anc] V:V(O—JUJ)»
Consequently,

Z=06(s) = WGw) +J (T, w) . (29

To plot the function G we also need a plare which we will call the

G-plane, as shown in Figure 7.

4
(G G-plane

o (W,v)

U (T, w)—

Fig. 7

In vector notation,

Gesy= R 6”& h where R= Juts o™ ) = fam"-b-(’/:
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Analytic Functions of a Complex Variable {Differentiation)

A function G{&) is said to be "analytic” in a region R of the complex
s-plane if G(s) has a unique derivative at each point of R.
To require that a function Z = G(s) have a unigue derivative at a

point s is equivalent to requiring that the Limit

4z _ [G—CSMS)“G@;&Jz lw  AE (21)

ds AS =20 A4S AS =0 A

exist uniquely as As-»0 from any direction in the complex plane. That
HE

is, the value approached by the ratio As must exist for any direction

of approach and must not depend upon the direction.

As an example of a simple function which is not analytic anywhere,

consider the relation

Z = ON—-\'IM = E- ] 5 (';23)
Here % can be considered as a function of s = U +jWw , since if s is given,
the resl and imaginary parts of s are determined and hence % is determined.

However, if we examine the ratio

AE G(s-rzﬁ)—-c-(s}
L8 AS

T ~jw + AT —jAw -0 + Jw

AT +gaw

AT H+gH W

we see that if As-»0 along a line parallel to the real (¥) axis, so that

Ao = O throughout the limiting process, the limit of Egquation (29) is + 1,
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whereas 1f As—>0 along a line parallel %o the imaginary () axis, so that
AT = 0 throughout the limiting process, the limit is -1l. In general, if A s
approaches zerco along a curve with slope duJ/dc' = m &t the point considered

in the cowplex plane, then we have

5
1
N
.
@™

. |""\J‘AU' i—m\l
. Az = Jrm = — = & B@
faod AsS v Al
AS—>0 or=o LI+ ae by
LW O

and hence, different values of the limit are approached for each vaiue of m.

The whole purpose of this example has been to emphasize that not just any
functlon can have a unique derivative at a point in the complex plare, and
that for those functions which do, we reserve the name "analytic functions"
of complex variables.

Suppose that we are given a function of a complex variable which is
defined over gome region. Obviously it is practically impossible to deter-
mine by trial 1f the function has & unique derivative at every point in
the region. However, a siumple set of conditions which are both necessary
and sufficient for analyticity have been determined and are called the
"Cauchy-Riemann conditions”. These are derived in practically any book

which discusses complex variables and are simply stated here as

24 . 2V

2T 2w )
(31

2u . _2r

Ow 2

The fact that both the real and imaginary parts of a function of a complex
variable satisfy the Cauchy-Riemann conditions is sufficient that the

function by analytic.
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PROPERTIES (OF ANALYTIC FUNCTIONS OF COMPLEX VARIABLES

A. Theory of Conformal Mapping

For functions of real variables, ususlly denoted by & = f(x), we can
easily visualize the behavior of the function by plotiting it in the xy-plane.
However, in order to interpret the case of a function Z = G(s) of a complex
argument geometrically, we wmust use two planes, an s-plane and & G-plane as
was previously described in Figure 7. This is because both G(s) and s have
two coordinates; U7 and (J corresponding to the s=plane, and u and ¥ correspond-
ing to the G-plane..

Supposé that on the s-plane we choose several values of s and draw the

curves shown in Figure 8 as AB and BC. .

Fig. 8

Now draw tangents to the curves at the point B and direct them away from B
in the mamner shown. Measure the angle © in a clockwise direction between
the tangents. Suppose we have a relationship % = G(s) and wish to evaluate
and plot this function for every value of 8 on the curves AB and BC of
Figure 8. The result of plotting in the G-plane might look as shown in
Figure 9. The shape and location of the curves in the G-plane would of
course depend upon the function used, but the useful result is that the
angle between the tangents (providing the directions are chosen the same

as in Figure 8) is preserved if % = G(s) is an "analytic function". The
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Fig. 9

importance of this result will become apparent when we later discuss the
Nyquist theory.

B. Cauchy's Integral Theorem

Suppose we have a function G(s) which is analytic for all values of s
on the boundary of and within the arbitrary contour C shown in Figure 10.
Then Cauchy's integral theorem states that integration counterclockwise

around the contour C glves

Sﬁé(s)ds = 0 . (32)

c

Je S-flane

Fig. 10

This says that if the function G(s) is defined (continuous) and differentiable
(analytic) on and within the region C, the integral of the function between

any two points of C i1g independent of the path of integration between them.
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€. Cauchy's Integral Formula

Let's again consider that we have a G(s) which is analytic for all
values of s on the boundary of and within the contour C shown in Figure 11.

Then Cauchy's integral formula is

G(S) "
G (s.) = g,}';qu's_gads . ()
C

™ s-plane

Fig. 11

This thecrem states that if a function is known to be analyticyas prescribed
above)on and within the contour C and if its values sre known along the
path C then the values of the function along the boundary completely deter-
mine the values of the function in the interior of C.

A very useful extension of Cauchy's integral formula is given by the
following theorem:

The function G{sp) defined by

| Ges) 4
G(So) = E’.le €-C, cl 3 ‘ J
o , kK

where k is an arbitrary path along which G(s) is defined and tontinupus,
possesses derivatives in the region of definition of every order and these

are given by the following formulas:
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y e ) ds | (34
G(Se) = Zarg (s-Ss)" | J
k

N 2 ! G(S) _
G (se) ppe # e oo ds 3 (35)

J
K
and in general
tn) n! GLS)  de (3¢)
G (s.) = : N+ 3
° 2 (.S'So)
K
forn =1, 2, 3,
D. The Principle of Analytic Continuvation

Suppose we have two functions Gl(s) and Ge(s). Let G1(s) be defined
and analytic in a region C1 and also let Gg(s) be defined and analytic in
a region Cop, as shown in Figure 12. 'Let the regions Cq and Co overlaps
L.e., there is a regiéﬂ g such that the wvalues of ¢ in g are common to bhoth
C, and Cy. In the region g, let G—l(s) = Ge(s). Under these conditions the
functions Gq(s) and Gg(s) are then analytically continued from the one

region to the other.

Fig. 32
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We can say, therefore, that if tﬁe two regions Cy and C5 are in the
position just described, and if an analytic function is defined in Cl’ then
either there is no function at all or precisely one function which is analytic
in Cy and coincides with Gl(s) in g. If such a function G,(s) exists, then
the function Gl(s) defined in C, is said to be ”(:onti1flua:ble"1 beyond Cy into
the region Co. The principle of analytic continuation will be used later
to remove the restriction on the Laplace transform that the real part of s be
greater than the abscissa of absolute convergence.

The above Tormulas and theorems from the theory of complex varisbles
have been presented without proofs, however the proofs are given in most
books which treat complex variables. As it will be seen later, these few
statements about functions of & complex variable represent essentially all
there is in the mathematical background of stationary linear systems.

Now that we are a little more familiar with complex variables, let's

review some of the fundamental properties of Iaplace transforms.
PROPERTTES OF LAPIACE TRANSTORMS

A Poles and Zervs of Complex Functions

For our purpose, the functions of complex variables which are of interest
are ratios of polynomials. Thus, we will have functions of the form

Gn S" + 0, S""'+ o+ =+ Qo
b $™ + b, $" s e o+ b,

G(s) =

__/q CS—%IXS-ZZ). 'oe (S"'%'n) (37)
T (sepMs-p ) v v e (s-p2) )

with

= fziL .
;9 én4 b
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In Equation (37) the Z's (roots of the numerator) are zeros of G{s) and the
p;'s (roots of the denominator) are poles of G(s). By depicting all values
obtained for the %;'s and pi's from the two polynomials on the s-plane, we
have a grephical representation of the function G(s) which is called a pole-
Zero plot of the function. A representative pole-zero plot is shown in
Figure 13, where the number of zeros has been chosen to be four, and the

number of poles to be five. In Figure 13, the poles are indicated by ¥X's

Fa W
& J X;3
*q
il N r?y
b ~ >
X
A
Q * Xﬂf
%5
Fig. 13

and the zeros are indicated by circles, a notation which will be used con=
sistently throughout this series of lectures. Notice that, apart from the
constant A, all the information about a Lapiace transform which is a ratio
of two polynomials ils given by the poles and zeros. In other words, only

a few complex frequencies are required to describe the function.

Assume that we are given an £(t) and from this have determined F(s),
the Laplace transform of f(%t). We would like to know if there is any
relationship between this F(s) and the laplace transform of other functional
relations related to f(t), such as the derivative df/dt, etc. The answer
is yes. There are some fundamenﬁal rules which determine the new Laplace
transforms, and these are presented below for several fundamental opera-

tions.
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1. Multiplication by e

Here the problem is: given f(t) and F(s), find the Laplace trans-

at

form of e™"f(t). Applying the basic formula,

—at

Laplace transform of (& jf (+)

Hi

vyl {é’ “ jﬁc%)} - F'a+7ﬁ(+) St
- ﬁf%) ety |

= F(s+a) . (2%) .

Thus, the Iaplace transform of e ®Yf(t) is determined by replacing s in
F{s) by 8 4+ a.

Example

f{COS@t} = s:-p*' s

-0t % _ ' g +a
f {@ COSF ] a (S-ﬂ*a)?"f'pl

2. Multiplication by t

Given f(t} and F(s), find the laplace transform of t f£{t). By

definition
| . )
Fes) = f%(f) et )+ ,

Then

_dFs) [{;m e ) . (39
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Thus, the Laplace transform of t £(t) is determined by taking the negative

of the derivative with respect to s of the laplace transform of f(t). In

general,
o ¥,
n d"Fs)
frf fe Yt = (-1)" ~on . )
-
- Example _
For f(t) = smpt /—’Cs) = -;;%g;. .
Then
. d Fts)
o?o{f S;M/Sf} = T
| . 285 :
(s*+p%)"
3. Some General Remarks

There is a unique correspondence between the location of the poles
of a function of a complex.variable and the behavior of the time function
for which the function of a complex variable is the Laplace transform. This
correspondence is described graphically in Table II. As an example, consider
the time function to be e“atsinf3t. Table II shows the graph of this func-
tion in the t-plane as a damped oscillation as a function of time. In the

s«<plane this function is represented by two poles in the left-half-plane?}

A

2 27
(s+a)= +p
and the abscissa of absolute convergence is -a. As another example, con=

i.e., to the left of the jaJwax155 its Laplace transform is

gider the time function t sinFSt, Table 11 shows the graph of this function
to be divergent as a function of time. The laplace transform of thig function

is Emgguiggsé—- with an abscissa of absgolute convergence of zero. The
8= 4 .
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Dauble POIB
a‘t Or‘l‘CII.n

TARTE IT
abscissa
t-plane F(s) s-plane of absolute
convergence
U )

|

g v 3 O
sin (3{‘

(3 i
AR : ;
ema'l‘: !

—at
ea Stk Fa“i'
- (s+a)"+ B* y - a
t
A
S?—. O
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TABLE 11

(continued)

abscissa
t=-plane F(s) s-plane of absolute
convergence
t_e—at'
|
(s + o) 7S - G
tsinft_~
AN | 2
z O
AW, (s7¢£)
\ .
™~
s-a 4 >
A
-at . at
e smeJc te ool o
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function t sinﬁ?t is represented in the s-plane by a zero at the origin and
two double poles on the jwl-axis.

By considering the s-plane representation of several functions of time,
some general rules can be determined for predicting the behavior of these
functions in the time domain. These general rules apply to increasing,

decreasing, and constant functions of time and are listed below.

Increasing functlong of %ime | Constant functicns Decreaging functions of time

Poles in the right~half- Single order poles | Poles in the left-half-plane
plane of any order. Multi« {on the j-axis. of any order.

ple poles on the j-axis.

Now we will consider some more properties of ILaplace transforms.
L. Differentiation in the Time Domain
The problem is, if we are given a f(t) and the corresponding F(s),
arit) '
d

find the Laplace transform of Applying the general Tormula

d i) dAL) st
tlp [ C}t } = Cff? é? Cj1é

by partial integration

4) —st % - -st

But the integral on the right hand side is just s times the Laplace transform

of f(t). Therefore
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where £(0) is the furction £(t) evalusted at time t = 0.

In arriving at Equation (41) we have assumed no mathematical restrictions
0

on the function £(t}. However, in order to evaluate e STe(t)
o

a "function of exponential order", as previously described. From Equation

, (%) must be

(41} we see that differentiation in the time domain corresponds to multiply-
ing by s in the frequency domain.
By repeated application of this procedure, in general

f{éﬂﬂﬁ} _ )(j_f_'_’if_f.) e 5ty

o , den

h=- -2 chf'f) —
- s"F(s) -s '-f(o)-S” *;/?tw

_ Clﬂ"l]([_é)

. (42)
d¢"”

t=0o

5. Integration in the Time Domain

Again, if we are given a f(t) and F(s), is there a relationship

between the Laplace transform F(s) and the Leplace transform of jff(t)dt?

From
F(s) = J{(—H e ¢

with partial integration

Foo = [f07 0t = & Clodt +s [ T / e

o

= 'ﬁ(f) It + S/f[oz;f(f) a/é]e'ﬂ;/z‘)
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where it has been assumed that e ™ %F(e0 }—50, i.e., ‘ff(t)dt ig of exponential

[s] -
order. Then [ (t)at = £7(0) (the initial value

and

($)

__7§m_

i

Lm[ fwc) dt]e Lt

(s)
s

T

of the integral at time t =

0},

{7 (o)
+ 3

CONN

(o]
since Jf(t)dt = 0. Thus, integration in the time domain corresponds to divie

sion by s in the frequency domain.

It will be noticed that the initial values

of the function £(t) have been included in this formulation.

Examples

Let £(t) = cos Bt = _ii_sinpt.. Then
' at

;
[cospt et <

5 | & S:4 F"

‘__

F(8)
t
Let £(t) =jU(t)dt. Then

® ....!I_-
S

(s) = (fe“Sfc/f =

£ ‘
N

-

Another question is whether there is a correspondence between the magni -

tude of the function in the time domain and the magnitude of the function in

the fregquency domain.
correspondence.
value theorems and correspond to the conditions t =
5—»0, respectively.

6.

Iinitial Value Theorem

The theorem states that

w s Fesy]

S e OO

—

f(o)

With two exceptions, the answer is that there is no
These two excepiions are known as the initial and final

Q; s> and t =00 ;

(44)

%
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The proof is as foilows:

We know that

of)
dflt) ~stip - < Froy - £eo)

It

By letting s~»on, the integral approaches zero and in the limit

'[‘MA [ s Fes) j =

S = o0
Example

0,8 +0, Zfé
Jf F = o] bys +be e

T Final Value Theorem

The theorem states that

lim [ F®)] =

S0

fco)

3

(43)

provided f{e0) is finite} i.e., F(s) has no poles in the right half plane.

The proof is as follows:

dei-&) —s'fa/{_ < Fo)

0
If, before we integrate we let s = 0, then
[y m f—g%—) e c}{' - 76(00)
S—=9 /]

Thus

Jim  [sFes] =

S—®0

- 76603

£ ¢o0)

-—-F(o)

§—=0

s Fts)-fw) .
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Examples
Suppose T£(t) is a unit step function. Then F(s) = l/s and flab ) =

sF(s) = s(l/s} = 1,
S0

.at i s 21 5 1.
! er, suppose £{t) = é*Y, Then F(s) = == and lim|[sF{s)]| = llm[‘”f] =0
owever, supp (t) =& en P(s) S and limjs ( )] ] e

This is inconsistent with f(a0) = e®® s 00, and the final value of the func-

at

tion e cannot be determined by knowing only F(s). This is in agreement with

the restriction that £(e0) be finite or F{s) have no poles in the right half

rlane.
8. Translation in Time
0 = t&£0
Suppose £{t) ={‘f(t); t20 [ .
Then
=0
-SZ ,

f}(f-»z:“)e“Sfc/f = € F(S) . (4t

.
Proof:

If £(t) is translated through Z units of time in the positive direction,
f(t) vecomes £(t -7) when t > 7 and zero otherwise. Then since the trans-

lated function vanishes when 0£ t < T,its transform is defined by

Jm-w e St ¢ :

/
If t is replaced by t +7, the lower limit becomes zero and

ﬁff') T = e'srf%-(f') et ¢!

- e F(s) .
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9. Ilinearity

The following relationships are satisfied by laplace transforms

QQ;F sl
ﬁ&) At = Fs)

then

o roa‘?(%)e_.-s‘té{ - a F(s) 3 0= ConS'Llan iﬁ(‘ﬁ)

b, Sfat-ﬁ(t)»razﬂt%ﬂe’s{df - o, F) ta,Rs) |, (4)

We will now proceed to the discussion of the analysis of linear systems.
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Lecture No. IT

ANATYSIS (QF LINEAR SYSTEMS

rom our experiences with diffefent rhysical processes we have come to
classify these systems under different names; such as thermal, electrical,
mechanical, hydraulic, ete. However, in attempting to describe the behavior
of any of these systems mathematically as a function of time, the same princi -
ples are involved for one as for any other; i.e., we ultimately are faced with
having to solve differential equations.

let's examine what these system cquations really say. We see that we can
visualize physical guantities by certain laws. We have imposed upon nature
some fundamental quantities which we give names, such as "energy"”. We also
krow that we can postulate that certain of these quantities are conserveds
i.e., in the case of energy there is a balance betwsen the total energy of a
system and the energies asscclated with different aspects of the system.
Just what energy is referred to here depends on what system one is talking
about. If we propose that the system is electrical, we are talking about
electrical energies; if it is a mechanical system, there are mechanical

(i.e., kinetic, potential, etc.) energies involved.

We also define another quantity which is conserved and call it "momentum".

Some systems are described in terms of "particles", and, as we well know,
there is conservation of particles. Thus, when we attempt to describe a
Physical system we are really thinking in terms of the laws of conservation
of the physical quantities involved. Therefore, the differential equations

which one writes are really means of implementing the conservation laws for
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the physical quantities involved in a given system. We do this by writing
the equations in terms of the characterigstic parameters of the system.

In order teo define the characteristic parameters, let's consider the
quantity "energy", and ask ourselves, "what can we do to energy'"? One
thing we can do is to store energy. In an electrical system, for instance,
where current may be passed through an inductor there is a magnetic field
assoclated with the inductor and we visualize this by saying there is energy
stored in the inductor. We also know that we can dissipate energy. This is
not to say that the energy is lost but, whereas in the case of the inductor
we can get the energy back, there are many instances where energy is not
recoverable. As an example of energy being dissipated, if current is passed
through a resilstor energy is used to heat the resistor but we canncot recover
this energy.

Thus, from a knowledge of the characteristic properties of the system
we can define the characteristic parameters of energy storage and dissipa~
tion. Before discussing these parameters of storage and dissipation further,
let's first restrict ourselves to a particular system.

We want to consider for the present, only linear systems. By this we
mean that 1f a system is characterized by two conjugate quantities, say
current I and voltage V, then we can describe energy in bterms of these
quantities, and if we put a value of I intc the system and measure a value
of V, then if the system is linear, when we put in 2 I we will measure 2 V.

If the system we wish to describe is an electrical system then we can
use the quantities called resistance, capacitance and inductance. If the
system 1s a thermal system we speak of thermal resistance, thermel capaci-
tance, etc. TFor nuclear reactors the delayed neutron precursor concentra-

tion corresponds to storage and the decay constant A corresponds to a loss.
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In a broad sense, energy and particle processes can be visualized as
equivalent.

Thus, we see that for different systems we are compelled to character-
ize them by similar parameters associated with potential energy, kinetic
energy and dissipation of ensrgy.

Having established these parameters on the basis of energy, we could
look at the problem in another way. Let's forget about the conservation
lawsg and invoke an observation of nature which we will call "lagziness”.

Now we know that no physical systew is capable of changing its status
instantaneously. This is easily scen since the rate of change of a physical
quantity cennot be infinite. Let's characterize a linear system by a black
box where we have an input i(t) and an output r(t}. For the present we are

talking about linear systems in general, not just an electrical system.

i(¢) rit)

‘”_’"““*"Lfnear\ Su;s tem (———>

If we talk about storage only, the response of the system must be

glven by one of two relationships;

d )
r(t) = a a9t ; (49)

or

rE) = b fdmdf . (59)

In these equations a and b are constants and represent inductive or capacitive

effects. In terms of dissipation or loss of energy, the relationship would be

r(+) = ¢ ((4) (5))
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where the response is directly proporticnal to the inputb.

Now, locking at the problem from the viewpoint of storége and dissipation
of energy, we are in a position to describe the system in terms of equations.
We must do this systematically by taking the various parts of the gystem and
describing them individually. The equations which we will arrive at for
linear gystems will be integrodifferential equations. In addition to requir-
ing that the system is linear, we also assume that interactions within the
syatem propagate infinitely fast. By this we mean that there is nc delay
time invelved between a measurement in one part of the system and another
measurement somewhere else in the system. This assumption therefore implies
spatial independence and we call the gystem a "lumped-parameter" system.

If spatial dependence were to be considered, fhe equations describing the
system would be partial differential equations rather than ordinary differ-
ential equations.

Now let's také a specific system, formulate the equations describing
the system, and by some method, solve the equations. Let's consider the
electrical network shown in Figure 1. Although the diagram has been referred
to as an electrical network, we could conceivably represent any physical systenm
in the same manner since any system can be described in terms of the character-
igtic coefficlents of inductance, capacitance and resistance which effectively
represent the possibiiities of storage and dissipation of energy.

S/ L,

I Y[

,j(,g)() ng ~=c, ¢,z

[
P
™~

Fig. 14
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We interpret the diagram as saying that when the switch 3 is closed,
the excitation i(t) is applied to the system. In this case we will call
i(t) current and when current is introduced to the different elements
voltages are formed throughout the system. In thlg particular case, the
construction of the diagram implies that in the first part of the system
there is a dissipation of energy by passing current through the resistor
Ry. This energy is not recoverable. In the second part, we can think of
the capacitor C as a small ténk in which we can store energy Tor later use.
When current is passed through the inductance I we are storing kinetic
energy because of the magnetic field created. The same reasoning applies to
the other portions of the network. We see then that we can interpret the
physical system as a model and for our purposes we can think of it only as
& mathematical model.

One method of attacking the problem of writing the equations for the
model. 1s to consider that energy is conserved and write the balance equations
for each pgrtion of the diagram. However, an equivalent statement of the
conservation of energy is obtained from the laws relating the voltages and
currents of the system. These are known as Kirchhoff's laws. There are
two ways to express Kirchhoff's laws; first, by considering any closed loop,

the algebraic sum of the voltages around the loop is zeroj i.e., for a logp

>V = 0O (53)
2 J
and second, by consldering a nodeywhere currents enter and leave, the alge-

braic sum of the currents into and ocut of the node is equal to zero; i.e.,

for a node

S ()= 0 , (53)
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These two statements are equivalent to the proposition of conservation of
energy . |
In the case of Figure 14 it is convenient ito use the second expression

of Kirchhoff's laws to dérive the equations of the system. .Thus we will
use the nodal apérpach and have that for each node, %he algebraic sum of
the currents into and out of thét node is zero. The diagram of Figure 1L
is redrawn in Figure 15 to show the two nodes to be considered,which are
denoted by the voltages V| and V5, and to show the direction of current
through each element_° Thg voltages Vl and Vo are determined with respect

to ground. The switch is now closed.

Fig. 15 °

We can write the equations for each node. For the firsi node:

(Zf{) = ;Eg; +i CH gi}iL -+ —f:: Jr(\h"\4z) CJ.% * (:;%%)

For the second no&e:

f_f(v.—vz)d% = Coat Ty, . (%)

Thus we have a set of ordinary integrodifferential equations.
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Now that we have the equaticns for the system we need to solve them to
determine the voltages V, and Vo since we can assume that we know the
excitation signal i(t) and all of the coefficients R, L, and €. Tor our
purposes, we will assume that the coefficlents are constants; i.e., the
values of R, L, and C de not vary with time. We will also need to specify
the initial values of the voltages at the time the switch is closed. It
is possible that the capacitors have charge stored in them prior to closing
the switch, thus giving rise to an initial value of the voltage across the
capacitors different from zero. However, we will assume that there is no
initial charge on the capacitors and that all voltages are zero rrior to
throwing the switch. Similarly we assume that the initial current through
the inductance is =zero.

Even though for the simple example we have chosen here there are other
methods of solving the equations which are just as easy, Tfor the reasons
explaired in the introduction we choose to solve them by using laplace
transforms? The entire first lecture was concerned with describing the
Laplace transform as a tool, and now we will learn how to use this tool.

We start by taking the Laplace transform of all the terms in each
equation. As a watter of notation the laplace transform of a guantity will
be denoted by a bar over the symbol, such as, the laplace transform of the
current i will be denoted by I. Then,in transform language Equation (54)

becomes
v, s T T
T-=—9 +0C5sVY +f(!§,_vz> , 50
I !

and for Equation (55)

L (V. V) VoL Ve . (5)
L”(S _S—) —_ CZS\/Z +——?2—
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By using laplace transforms we see that the intergrodifferential equations
we gtarted with have been transformed into algebraic equations. We have
already decided that the initial voltages are zero, and by rewriting the

equations we get

= [m o Gs ATV R (s8)

O = [h?%; + CZ’S + i] Ve -~ ZL_ §7 ¢ (qu)

At This point let's examine the obvious properties of these equations.

1. They are algebraic.

2. The variables Vi and Vé are related in terms of coefficients
involving the characteristic coefficients of the system.

3. The coefficients of the variables are functions of the complex
variable s.

4, iT ift) is the only input to the system, none of the coefficients
of the variables are dependent on i(t).

Solving Equation (59) for V), in terms of Vé we get

LS[QZ_‘*'C S +73 ]\/ . (L0)

Substituting Equation (60) into Equation {58) gives

T =lz w0 sl es il - LV

LS
and solving for Vé
i
IZ; - _ L, § j? .

[o +as +ns [[# 065 +p ] - e
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Then

Vg. = .z (s) '.j? 5 (é’D

where

£(s) = .
/ 3 / 7
[K +CS+ ]I? +CS*L3 LPs*
Solving Equation (60) for Vi we get
v (7 1Gs g ] T
i 7 7 -
: [18 +Gs 4[;,5][4? +CS+E]—F51

Yes)- T | | (62)

vhere

We see then that it is possible to describe the system in terms of
quantities &(s) and Y(s), which depend only on the characteristic coeffi-
cients (R, L, and C) of the system, which are known, and a term I which
depends only on: the input of the system, which is also known. The
quantities Z(s) and Y(s) are rightfully called the "system functions” and
the term L is called the "excitation function'. Vi and Vé are called the
lLaplace transforms of the responses.of the system.

Notice that regardless of which variable V4 or V, we solve for, the

denominators (i.e., the poles) of the terms 2(s) and Y{s) are identical.
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This will always be the case for linear systems and we call these the eigen-

values of the system. We may now write

V, = Y T )

and > b
Ve = X [20-T]

which we will leave in this form for the present time. Z?_l denotes the

tf

inverse laplace transform; i.e., the operation required to transform back
to the time domain.

To illustrate the applicability of this method of analysis to another
physical system, let's consider an example of a mechanical system. A

diagram of the physical system is shown in Figure 16.

LSS

dyx. _
¢ 77
Pj' 1’X“1ﬁ
B
L&r\éf“"‘;/\ 3 dxe o
dt

qu ? X},Vi
f
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For a mechanical system, Newton's second law of motion, or a slightly
different expression of it known as D'Alewbert’s principle, correspornds

to Kirchhoff's electric-network current law which was used in the first
example. Assuming the motion of a body to be in the X-direction, this can

be expressed by

. d’x 3
Z)E[{) acting 1n The x-divection = M g1 . (63

Writing Equation (63) in the form
Z
- x
> Ftt) actig in the x-direchion — M Gp = O (e4)

expresses D'Alembert’s principie, nameiy:
The sum of the instantaneous external forces acting on a
body in a given direction and the body's reaction force in that
direction due to intertis is zero.

The equations for the system of Figure 16 are as follows: For MQ’

dv, (4) t
L) = M, klj(mf)—mn)c/f + B v (4) y (49)

and for My,

t t

)
Wy (vewdt +hy (vid) = () £ (€9

O ="y

I we assume that all initial conditions are equal to zero, the Laplace

transform of Equations (65) and (66) are:

Fo=[Ms+B+8V -2V | @

S

2
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and

O =[Ms +tkdy k.7 :

Solving for vi

where

YLSJ =

S
[rys + Begee[Ms By v 2] B

Solving for Vé

—

V, = Zs)-F g

Where

[Mys + gk
[M,S + k.;kz][-M.ZS{_Bl_!_%]“J@SEZ

Fis) =

Thus we see that an identical procedure can be used to aralyze the two
linear systems, the electrical and the mechanical, and that for both cases
we end up with the result that we can characterize any output by the prow
duct of two terms; one which is a function only of the system and another
which depends only on the input signal to the system. The fact that we
can do this is a direct property of the Laplace transform method of analy-
sis, and to be even more gemeral it will now be shown that for any linear

system we will always have these two terms.

(L%)

(L9)

(70)
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System Function - Transfer Function

Let's visualize a linear system by means of a diagram where there is
an input £(t) to the system, an output f5{t), and the system is character-

ized by the system function h{t).

f(f) Linear Syztewm fé[fﬂ

| h(t)

We can describe the function h(t) by considering thaf the input {to the
system is an impulse. Mathematically an impulse is & function having zero
width and infinite height, but the product of the width and the height is
a finite nuﬁber, Physically we can never achieve ap impulse, but by making
the width very close to zero we can approximate 1t. The response of the
system to & unit impulse input will have some particular shape, and this

output will necessarily be the system function itself.

: o) = hd) h(4)
é%;%?‘hm&w 5%+w*—j£——>

Assuming then that we know the system function, that is, the response of the
system to a unit impulse input, we would like to know what the response of
the system Will be for an arbitrary input. The arbitrary input may have
any shape. ©&Since the system is linear we know that we could calculate the
output for any input by breaking the input up into several inputs, the sum
of which gives the original input, measuring the ocutput of each individual
input and then adding them up. However, since presumably we already know
the system response to an imﬁulse input, we may mathematically break any

input into a number of impulses.
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Graphically then the input £(%) can be characierized by many small

ifpulses with an ared glven by

]c(f)

1 Hrea of t:m/(//se = )((E')le'

——7 1 I

Then for any impulse f(Z)d7, the output is

de) = h(¢-7)fz) dr

This is shown graphically as

hit-z)fer) dz

z ¢ —

By considering all the possible impulses in the input, the output is

given by
7 t
)&[f) = jh(f-z)fé‘f)c/f .

Equation {72) then describes the response of the system to an arbitrary
driving force (input) in terms of the response of the system to a unit

impulse, and the integral is called the real convolution integral,

(71)

(72)
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describing convolution in the real domain. We can extend the limitsg of
integration to +60 since the product of h{t -Z) and £(Z) is zero after

= ¢ anyway. This can be seen from the graphs of h(t ~Z )} and £(T).

Hf) \/ & h (+-7)

. N .
Al P

Then Equation (72) can be written as
[='a]
][(f) = fh(f—z) fer) do . (73
o o

Equation (73) can also be written in the form,

f ) = fuz) fte-z) dr y (79

where the same reasoning appiies.
These equations have sll been written for the real time domain. In

terms of Laplace transforms, from Equation {73)

' ffa(?f) et e - sy = [@ﬂs c/z‘fln(z‘~r)][éz) dr. (7%

By changing the order of integration (assumed allowable for types of functions

considered)

GUs) = /Jﬁff)a’f A(f—f)G_Sfc/f .
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Multiplying &nd dividing by e7%,

<D

F;_Ls)

Letting t - = ¢

Fo (3D /)‘(-z) e dr f}z (¢) C:“‘Fszuc/é' .
0 -z

But since h(t') =0 for t'< 0, the limits on the last integral can be from

0 tooo, and

E(s) = fyf(?f)@”sz_[/z' f;,(w e’ L
o o

We can immediately recognize the first term on the right as the Laplace
transform of the input function, and the second integral as the Laplace

transform of the system function. Then
fols) = H(s)« Fs) ,

where H(s) represents the system function and F(s) corresponds to the in-
put. We also call E(s) the "transfer function" of the system.

Equation (77) is of the same form as was derived for the electrical
and mechanical systems used as examples. Since Equation (77) was obtained
in general, the only restriction being that the system is linear, we see
then that the response of any linear physical system can be described in
terms of a factor involving only the system parameters, and a factor con-

cerned only with the input. We can say then that for any linear system,

j;@vsrjcfz)clff}q(f_g) e“s(f”z')c_/_i_ )

77

Y

A
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in the time domain the input and output are related by therconvoiution
integral, and in the frequency domain they are related by the product of
the transfer function of the system and the Laplace transform of the input.

A pictorial way of representing these results is through "block
diagrams" .

Block Disgrams

A block diagram is merely a shorthand notation of the relationship
between the input and output of a linear system. Asg we have Just shown,
if we characterize our system by a black box with a system function h{t),

an input f(t) and an output £5(t), then the diagram

(¢
Ho ) h(4) | %ot

corresponds to the eguation
. oD 0
fee) = /A(r)yf(f—r)c/z* = f}z(ffz)fér)cfz",
o o

whereas if our diagram is in terms of TLaplace transforms;

F(s) | Fo(S)

H(s) —>

the corresponding equation is

Fsy = Hesoe Fes) .

The reason we use block diagrams is because, for more involved systems

the block diagram is a convenient means of visualizing what physical
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processes we think are going on within the system. To illustrate this,

let's consider the system shown in Figure 17.

1y = constant
Ta ée/ Damping
— ampmg_
Lnput Yo \
o I )X den & Torgee
Motor tnertio L Bu
/4:';' :acn'd{fé»z
Fig. 17

From the diagram, a voltage Cvi is applied to the amplifier. The output
of the emplifier is & current I, which goes to the rotor of a motor. The
shaft of the motor rotates with angular velocity e and also has inertia.
The shaft turans a fan which experiences a2 torgue and involves friction,

denoted by the friction coefficlent forrair, Bw - The block diagram for

this system is shown in Figure 18.

_ _ -F
= T, T | W
O e (L e B ooy Bz

Fig. 18

We interpret Figure 18 by saying;
1. There is an input voltage W, to the amplifier.
2. The amplifier produces an output which is the current Ia'

3. The output from the amplifier goes to the motor which produces

an outpul in the form of a torgue Tm.
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4. The torque Ty, is what mwekes the system run because it overceomes
the torque TL at the other end,and at the same time overcomes the torques
rroduced by inertiz and friction.

5 The resultant torque then makes the shaft turn and give the speed

t . In terms of equations, we interpret Figure 18 as representing

fa = ﬂéa &—)j' (am,ﬂla'fier auzlfull) 3 (’78)

_7—; = %, Ta ( motor (:?!/Zjoull’ ; z‘orgue) , (79
and i | |

e _ - éiﬂf —_— 0

Tw =h, L. = 75 + B,w + 7, . (59

Block diagrams can become very involved. As an example, we will con-
sider this same system when a feedback loop is added.

Feedback Systems

Basically a feedback system merély means that some output signal is
fed back and compared with the input signal to determine if the system
is operating as desired. In the case of Figure 17, say it is desired that
for a certain input voltage the fan will rotate at a definite angular
velocity. By measuring the output ¢ with a tachometer and comparing this
measurement (now a voltage) with the input we have a feedback loop as shown

in Figure 19. o . 4;@//

Wi *

Ecdamfzzcr

ig. 19
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Assume the system has been built such that if the voltage from the output
@ is equal to the input voltage &/; then the angular velocity is the
desired value and nothing happens. However, if there is a difference in
these two gquantities, & signal is fed to the amplifier which essentially
tells it whether to produce more current or to decrease the current output.
In this manner then the feedback serves the purpose of controlling the
response of the system. This is what migh%t be called the "first kind" or
"control feedback” because this was introduced purposely in the design of
the system. However, there is another kind of feedback which is considered
Tictional because it is mentally created. That is to say, when we try to
analyze a system we visualize that a particular Teedback process is occur-
ring as a result of our approach to the provlem of analysis of the system.
A nuclear reactor is an example of a feedback system of this second
kind. We have observed that in a nuclear reactor we have to deal with what
we call power or neutron level, a quantity we call reactivity,which is
associated with the position of the control rods, and the temperatures of
different parts of the reactor. If we want to represent the behavior of
the reactor by a block diagram we first have to decide which variable %o
conglcder as the input. If it is assumed that the reactivity is known then

the block diagram might look ag shown in Figure 20.

+ : L-Pco,c'}'nr'
> Po
Evternal \@ Kinetics wer
Reactivity |
(Con '3'/0/ fodls)

Rea c‘h'u ;'fn, - Téwpemlturs

Fig. 20
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We interpret Figure 20 as saying thal the reactivity seen by the
reactor is not really the same as what we put in because the powér level
aifects the temperature’which in turn has an effect on the reactivity.
This 1g a loglical interpretation of the effects of the different variables -
on the behavior of the system, however, it i1g not the only intérpretation;

A% this peint Professor Gyftopoulos posed the problem that, since
reactivity is not a directly measurable guantity becauge it is calculated
Trom the measured period and the inhour formula (which in turr depends
upon the control rod calibration, etc.) perhaps another variable, which
is measurable, should be used asg the input and the response of the system
determined for this interpretation.

Now that we have established what block diagrams and feedback systems
are, there ig a very useful rule for handling feedback systems. This rule
results from the method using flow graphs.

Flow Graphs

For ' other than the most simple systems, the block diagram for a
system quickly becomes quite complicated. Since the desired results any-
way are to determine the relationship between input and output, an easy
method of getting this result would be most welcome. A method of doing
Just this will now be described briefly. The details of the method have
been worked out some time ago, thus the method is by no means new.

Suppose we have a linear physical system described by the block diagram.

___fimm> a “m__EE* (Bjock Diaqmww)

where Xy 1s an input and X, the output. We have already said that a block

dilagram represents one or more eguationsy thus we could represent the block
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diagram shown by the equation

Xz. = 0. Xl b

where a is not recessarily a constant. Another way of representing this

edquation is by the flow graph

@, a él (FWmu Graph)

Y

The implication of this graph ie that X; is the cause and X2 the effect.

Several block diagrams, representative eguations, and corresponding flow

graphs are given in Table LII.

TABLE ITI

Block Diagram Efqua?"/-an Flow Graph

X5 : 2 X

XI X2 x3 -
-_____ A2 X. = a ¥y X a X2 b Az
E )(3 = b XL
l&—a o ] X .
.il; b j:::E%D_&a 5 Yo b X3

t

+: X3
e
X o
B + 3‘(3 = CLX,+ bX'L G
%3 ¢ %, . o x . X3 ¢ X4
+ -
)(_1). L - 4 3 Ya
) + Lo
AN S -
- % - 3 v = aX, +bXs M’@s
b XS = CXZ b

[
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Some rules and basic definitions to follow in using this method
are:

1. Although there is no unigue way of drawing a flow graph for
a particuiar gystem, once you have chosen a direction for the arrows,
use this convention throughout.

2. The value of an unknown is not changed by adding a branch out
from the unknowmn. In other words, a variable can be a cause several
times, but it can be an effect only once.

Definitions
Path: A path is a succession of branches from one node to another,
&1l in the same direction and traced so that no node is
encountered twice.
Loop: A continuous succession of branches traced in the same
direction and forming a closed cycle, no node being
encountered twice.

Let's assume a physical system for which the equations

Xz = fzxé X, = E’XS'"+/PX2

X3 = QX + LLX'T ){7 = ?X3 +kx§
X4_ = bXS “!'C! XS‘“ )(S/ = X(‘, + Z X,—i
Xs = CXyg

have been obtained. Assuming we knew an input, say Xy, we then have 7

equations and 7 unknowns. Solving this set of equations Tor all unknowns

might prove to be very time consuming. However, we can construct the

Tollowing flow graph shown in Figure 21.



Fig. 21

This flow graph is merely a representation of the equations. Let's see
what we have;

There are two paths from X1 to XZ». These are denolted by

G—l = abcef and Gz’ ac&éj‘lc

There are five loops (ér "lodp gains"), denoted by
T = gk
Tz,‘ = R
el sl UL w 7; = jm
| 7, = cd

ls = bcem k I’L

-
S
i

The gain XQ/Xl is given by

Xa = G L=+ =r oo Je GU-0 ()= ]+G[- -
Y R I e

(81)

where the G;'s are defined by the paths. The general rules for determining

the quantities in the parentheses are as follows:

s ey o R O
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For the denominator we have
Sums of products ‘ Sums of products

of 2 loop gains of 3 loop gains
cum of loop gains;
1 - —F which do not touch;| — | which de net touch; | + ete.

ie., 2Ty

L.e., D TyTy waich i.e., > TyT4Ty which

do neit fouch do not touch

For the numerator we have

i Sum of loop gaing Sum of products 1 ]
‘Whicﬁ do not touch of 2 loop gains‘
Gy | 1 - | path Gy and do not | + | which do not touch | - <+ | 4 Go|---|+ ete.
touch each other path G and do net
L touch each other

. — .

For our example (Pigure 20)

%o G (1 - 1) + Gy (1 -T) (2)
Xy L = (Ty+Tpter4T5) 4 (TqT3+ TyTy + TpTy, +T4T)) =~ TyTaTy

Continuing this process, we can solve for each variable in terms of X
if so desired, or in terms of any other variasble. For each equation, such as
Eguation (82), we must reconstruct the flow graph with the independent variable
as the input and the dependent variable as the output.

By this method then we can spive directly fer the relationship between
~the input and the ocutput.
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IECTURE NO. III

Tet's review for 8 moment to see what has been accomplished up to this
point. In our discussion of linear systems we showed how to describe the
system by integrodifferential equations which were formulated strictiy on
the basis of conservation of energy or particles within the system. By using
the Laplace transform method for representing the system in the frequency
domain, the integrodifferential equations were transformed into algebraic
equations and the transform of the response of any linear system wasg
expressed in terms of the Laplace transform of the input function multiplied
by the transfer functibn of the system. In the time domain the input and
output are related by the convolution integral.

We have also discussed how to represent a physical system by block
disgrams which correspond to the equations describing the system, and how
to solve the eguations Tor different response functions in terms of the
input function by means of flow graphs. TFor our purposes we use flow
diagrams only as a method of solving a set of linear, independent equations.

We still don't know the response of a system in the time domain because
the reilationships determined using flow graphs are actually relationships
between the transfer function of the system and the Laplace transforms of
the input and output. We will now discuss the method of transforming Trom
the frequency domain back into the time domain.

THE INVERSE LAPIACE TRANSFORM

In the examples considered in the second lecture it was shown that

the re5ponée function for a linear system is represented by a relationship

of the form

F(s) = H(s)-Fs)
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where H(s) (the system function or transfer function) is an algebraic func-
tion of the complex variable s. This is also true of the excitation func-
tion F(s) provided the driving function is a constant, an exponential,
sinusoid, etc., which will be the case for problems of interest to us.
Since the product of two rational algebraic functions is also a rational )
alvegraic function, the responge function Foﬁs) ig a functlon of the rational
algebraic type. Then the final step in the scolution of a set of linear,
constant-coefficient integrodifferential equations with given boundary con-
ditions reduces ultimately to obtaining the inverse Laplace transform of a

ratio of rational polynomials of s.

In the Tirst lecture, the inverse laplace transform was defined as

c+y P
/ st
fi¢) = pyr Fes) eFd s , (8%
¢-gon

where F(s) is analytic everywhere except at the poles, at which points it

blows up. In general, we can express F(s) as a partial fraction expansion =

ki k; (89
— ~t J + g e &«
F(s) s-pr + ZM(S"F;Y

Therefore, apart from the exact values of the k;'s, the important aspect

and

of F(s) is the poless i.e., the pi‘s. Consider a simple term Py
BaHEy
iet p, be on the complex plane as shown in Figure 22.

JwJL SPF]QHC

X

[

Fig. 22
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Now draw a semicircle contour, ¢ with radius R as shown in Figure 23.

JwA
[y
)‘ S—Plﬂhe
R 9
N
O c 0_’
ﬂ_——-—(‘.on‘l‘ovr‘ C
Fig. 23

‘Notice that C has been drawn to exclude the point py+ Then on and within

est

the contour ¢ the function

has the following properties:

1. It is é.nalytic within and en C. This is true siﬁce it is
analytic everywhere except where it blows up and this peoint has been
excluded frem C

| 2. The function vanishes on the seimcircle for t > 0. To visualize

this, let R become very large. Then from

s = Re‘;cb = R [Cos¢- +js;hd>:{

where ¢ > ‘Ti’/z_

eS"é' - &

t Reos¢ ;4 Ksind
e

Since cos d is glways negative and R is large,

@St—-q:.o o3 72"""0 .

Thus, according to Cauchy's integral theorem

st 4
-8 s = e’ ds = o R
,_F' S—h
C gl

o
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Now let's redraw the contour € to include the point s = Py, as shown

in Figure 2k,

o 4

/‘é‘
\ s-plane
R e |
\J C 7

\_\M_

Fig. 2k

Then from Cauchy's integral formula,
st +
S N € _ds = Géﬂ ' :
fﬁﬂ)" 2] s-f : @5?
c

Thus, when the contour C excludes the pole (C £ Re pl) the inverse Laplace
transform vanishes and when the contour includes the pole (C > Re pl), the
function f{t) is defined for t ) 0. Thus the restrietion on ¢ » 0, namely
to the right of the resl part of the singularity, stems from the fact Lhat
when we take the inverse transform we desire to pick up all the poles.

However, by the method of analytic continuation we can remove this restric-

Fig. 25

tion as shown in Figure 25.
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If the Laplace transform is defined for region {1), then by drawing a small
exclusion circle around the pole, p, the function is analytic everywhere
except in the small circle.

Now we will see how all this is involved in determining the inverse
Laplace transform.

Inverse Transforms of Ratios of Polynomials

As was stated in the first lecture, the functions of complex variables
which are of interest to us are ratios of polynomials. We will be concerned

then with functions of the form

P(s) G,s"+ » -+ - +aq,
Feso = Fesy o+ Ges) b, S™+ e - o+ b,

W=}
¥ -t CIM—IS o w @ ‘l"(io
_'Je S -}--:‘i’ko +£msm+..;,+.éo o(?é

We can consider Fl(s) as being only mathematical fiction since it corre-
sponds to multiple impulses which do not arise in physical problems. There-
Tore we concentrate on ratios of polynomials whose numerator is at least

one degree lower than the denominator. We have then

jD(S) tn) (n-1) ) i
! — k] )ei +.¢b+__k'_!_ +...+k2 +'°')(£7/

: = T e T
Fes) @) (s-p) (s-p) s-f 5-f

and we have to find inverse transforms of terms of the form k/(s-p),

n
k/(s-p) , etc. In order to determine the inverse transform of F(s) then
we need only to find the inverse transform of each term in the expansion

and add them up.
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Let's consider the term K

Then

“t({ k __J___ l st ‘
L [S‘P} = T {Mﬁw__ds (88)
¢

S~p )

Applying Cauchy's integral formula where for the contour C the radius

R-»e0, then the iimits of integration are from ¢~y Zo 0ﬁ+JCD.;a*°d

ijd%, k G?jd>
ket _ st Ft
zerJS,'F 4 = 2915 Jgéif ds = kftp =ke ™ )
g-jw a”—\j'd)

' k
For the term (Ej§72 s

R Uﬁdd’t
TR B et
of {(vf)l} = Z'n’jf < ds

(<-¢)® . (1)

g —yoL

Equation (90} is of the same form as Equation (34) of the first lecture

' ] - G(s)
_ = ) R 34
G'¢s0) P j(sﬁso)z (34

Then

cf”{cgk,pf} = ke = kte’

By Equation {36) this reasoning can be extended such that in general,

r h—1
- _k _ ke _ k rt
o {(sﬂ”} ” Z?TJJ ds / t e

(s~p)" (n-1;

. (72)
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We see therefore that implementation of the inverse laplace transform
requires means for finding the k's in the partial fraction expansion and
means for finding the roots of the polynomials. Let's assume that we know
how to find the roots of a polynomial (a suggested reference is "Highschool
Algebra', Ginn Publishing Co., 1910). OQur problem then will be concerned
with finding values for the k's which are called "residues" of the function
F(s) at the poles.

Let's consider the function

I

k: (n-1)
/:[S) = n +Hk_ﬂu—1—f i
(s-¢) ($-p,) S-f S 2

LI I + 2

For the multiple pole pq, which 1ls of order n, we have the following
procedure.

Multiply F(s) by (s—pl)n and find
" k' o are
- fous - = —_ hich @r
G(s) = (s-¢g) Fts) , +(s-p£) M#ﬁrszﬁ] v

Therefore

kf - [(S“ﬁ)ﬂ F(S)] .

S=F
Similariy

n=1) d n |
k;( | = . [ - ;) FC )
ds (15 F ’ :]S :f% ’

p L dE [ o
k, - 2‘1 C}S‘L[(S ia[) F(S)\]S:ﬂ j

—_— — —.— e

_ _j_._ CIM-—F .
kl - (nvi)j R (s-p) F(S)]S

L]

(43)

(44)

(55)
(49¢)

(97)
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This is a useful formula for the residue of F(z) at an nth order pole.

For a simple pole (1% order) n = 1 and Equation (93) gives

Gr) = by = |G Feo] . (%)
s=:f1-
Since we can write the function as
Ps)
Fesy = ——— 3
Q(s)

Equation {98) can also be written as

PJ(S)

k_, = d Os) , (79)
C’ s S:PL.

We see then that if Fo(s) has onty simple poles

fp'gFo(sJ} = ]C(%) = Zk; eﬂ'f ,(100)

where
k [(S"ﬂ‘) o (SJJ .
5= ¢
Example
Suppose
N a,s + Qo
F, (8D (s+o; s+ Xs+3) 3

where o, dp, and 45 are real numbers, all different. Then

f"{ﬁ,(s)} ket etk e
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where

a,s + a,
{(S_}'O{ )(s+o{ )CS-?Q;)(S-FC{E-,)]S.; ~

_ 00 —0<1Q‘
i (4’7_—“{1)(0{3“0{') ’
o, 5 + Q.
k., = [(s td, )(sm X+, X s4ely) ] Az
&o - d?. @,
(d,~dy Yoz~ d,) j
Q,S +ao
’Qg - {(3*43)654_0{,15.}0{2){54—43)]5'-_-;—0{3

&o ‘0(3 a
(41“43 )(0(3‘0(3)

Note that for complex roots the poles appear in pairs which are conju-

gates. In this case the k;'s for each pair of poles are alsc conjugates.

Then

PR = fo < ke ik et

where the bar denotes & conjugate quantity and p; = o+ jw. Then

f(_f) !]@il €3¢rea—f€dw{ n ]’{1, -—.chi' O"ZL -—Jw'i—

i\

ZJk,! @chox(w% F )t e

It Fo(s) has n order poles,

{l-ts) = ft4) = Z Z(ijd\;)i "Vt J

-f—- & & %

(102
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where
’ -1
= — S - (s) °
k“ej (n-§)! o s” e ( f‘) F ]g:f‘
Example

A
a,s +a,3 +4a,

Suppose Fo(s) = s Py where ¢ is a real number.
Then
v . - k ktz kr3 k
L ;E’(S)} - f {'(S’H)g (s+4e)* ! (S+e) 4__2”‘2— +'k*“‘“—151 }
2 —d?
:(kznl t 4}€zzf +}€’¢3 & —f/ez;z[ +%2_7_ 3
‘ (103
ﬁhére
o [lesitas ta _ QA -0+
oo s* e o> 7

__[ (dﬁi+@s+@j] - _R4 -a.d ]
/gll - dS P O<3

b _ d? (ﬁ;s +£?,s+0) 2 —f' £ 5
o ds* = - !
é QZS‘L-J»Q,S 4’00 - ao
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and

b = ﬁl_(‘kzszw*a;swo a4 -3
22 s ( s+d)3 B o

$= 0

Assuming we now know how to determine the inverse lLaplace transform

of a given function, let's discuss the complete response of a linesr system.
COMPLETE RESPONSE OF A LINFAR SYSTEM

From the general expression

Fo(s) = Hesy Fes) R

where H(s) is the transfer function of the system and F(s) is the Laplace

transform of the input signal, we know that, in the time domain

o fernts u}uo/'wn'g Lerms f;fw&/w};;
020 F;CS)} = ]Co({’) = [Poles of H(s) ] -+ ,ﬂofes of Fesy
~—

¥W,___/
Tramsiont Cerm S'Afaa/y -Sta te Lerm

and that the time response is a function of both the system and the input
signal. Usually, it is desirable that the time response %) follow
directly the input function f(t). However, in mogt systems this is not
the case for all time because distortion is introduced through the system
function H(s) which gives rise to a transient term in the time response.
After the transient term has died out, the system settles down to the
steady-state response. We see then that the time response of a linear
system is composed of two parts; a steady-state response and a transient
responses ‘Before discussing these components further, let's examine the

solution of a general linear gecond-prder differential equation with
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wonstant coefficients. 3By doing this, we can explicitly point out the
salient features of the solution which are common to the solutions of
problems in which we will be interested.

Consider the equation
2 A
Ajfz*8ﬁ46} = ](C%) . (o

The solution of this equation in terms of Iaplace transforms is

N

f{&?c%)] - Y = m[}? +%¢coj(}4s+8)+;fc>)ﬁ]

(105)

where /:: = f {)[(‘é)} and yL'O), "7’(0) are the initial values

of. ?_ and its. derivativé respectively. The ,,timé dependent Selution is:

P GV Fes) +l}c0)(}43 +53) +#’(0)8 ]
;{(f):f {Y}:‘f Hs*+ Bs + C (106)

Assume that the driving function f(t) is a sinusoid. More specifically B

£(t) =F, cos{ew,t +Y), in which Fp» Wy, and ‘\// are real constants. Then

Fes) = &2 e (17

S'L+ w"?_

where

3:/—;6‘057,& awd }1:“/7:.5"-’11& -
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Substituting Equationi(107) into Y(8) gives

gs +i£zw, + [f,i(o)(}éls—fB) ‘Fﬁ;lff?)ﬁ](sl—rwf*)

- {108
Y(S) (51+w,1)(}451+ Bs +0C) '

Note that the numerator has been cleared of fractions so that Y(s) is a
ratio of polynomials.

In order to determine y(t) we must specify the poles and the correspond-
ing residues of Y¥(s). To this effect, note that the Tactor 52%-0012 in the

denominator is introduced by the driving function and can be written
z » ®
s*rw® = (s-5,Ws~s.) 3 5,8, =Frjw, -
The other factor (A52-+ Bs + C) is introduced by the system described by the
second order differential Equation (104) and depends solely on the parameters

of the system. This factor is usually called the characteristic function of

the gystem and can te written as:

/j51+Bs +( 1’/4(3'53)[3"54J = }4[(5_!,0()1 + wdz] ] (fDQ)

where
—_ B 2. z z FS C
O( =~ ;ﬁ“— ; Cdd = Iy — o ; Wy = 74-'—
Sz ,%; = - ¢ + \;wﬂ, = clarac%@r;:gllfé nﬂo?,zs »

The form of y(t) depends upon whether ﬁJdg is positive, zero, or negative.
Let us assume Tor this example that A, B, C ) 0 and &Jd? > 0 so that the

characteristic roots (roots of the characteristic function) are complex and
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in the 1left<half-plane. Thus:

) Lo ~ ol +dewy )t ;
gty <2 R [l 2@, [l T 00

where
-4
(s-gw,) Y8 - I
[ J ]S J“-" 2#[(&)‘,?—_&)’1) + ZJ.D(&JIJ
__ . RICED)
2)4[(“’ 0)44"“’0]%
_J‘(U/_Q) P
] C' o ( 9) ZL z —-CJ,:_ ’(Hf)
k, = [(S+°("dw‘{)Y(SJJS‘ -« F g

/ 1 "'J'I’i
2hey A3~ wf —25 dwy

_ / 1+ n* Ve A
2Hwy | (w,-e07) 4o*e? <

i '_ ,
C‘;_ ed : )\:llaw—{— ) Z{ﬁn—’(“d%),?
(113

i
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m o= ey [9" +}4?(o)(3 ql*wlz‘wf} -2 o (By(o) +)4}'(on] 4

n o= lflw, ~g;0( rﬂd?(o) (o(:t w,* - 3wdl) + (B:}(o) +)4?)(D)Xo(z+wf

Tn terms of these shorthand notations the final result is:

o
JW%) =2Gcos(wot+y-0) +20, € dCQS(&)g‘fJ—}{)

L3

for t+ 2 O.

This example brings out several interesting points which are more
or less applicable to all linear systems no matter how complicated they
are. The first term of y(t) has the same sinusoidal form as the driving
function, but for a difference in magnitude and phase. This term is called
the steady-state portion of the response. Notlce that the magnitude differs
from that of the foreing fumction by a factor equal to the magnitude of the
transfer funcition 'l/(Asg-f Bs +C) evalvated at s = jw;. In addition,
the phase differs from that of the forcing function by an angle equal to the
phase of the transfer function for s = ijﬁ“

The second term in Equation (113) depends on the characteristics of
the system and the initial conditions, and is called the fransient portion
of the response. It arises from the two terms of the partial fraction
expangion, corresponding to the two complex roots of the characteristic
Tunction. The shape of the transient depends only on the characteristic

roots, namely the damping constant ¢ and the angular frequency wgqg (@

1s the resonant frequency of the system and is the limit value of Wy as

).

(113
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the damping goes to zero). The initial values affect only the amplitude
and phase of the transient and therefore do not play any important role
in the behavior of the transient.

The transient in this example is an exponentially decaying sinusoidal
Tunction. The time congtant is the inverse of the damping constant and the
frequency is equal to &Jg.

Of course 1if ‘*32 were negative, the two characteristic roots of the
characteristic function would be real and the transient would consist of
two decaylng exponentials. ITf Cbﬁg = 0 the transient would consist of an
exponential multiplied by the time variable.

Now that we bave gome idea of how a linear system could behave, we
realize that there are three main guestions to ask ourselves when analyz-
ing the system:

1. Is the transient response bounded? By asking this question we
are referring to the stability of the system.

2. If the answef.to question (1) is yes, then we ask, "Is the
transient well behaved?" We need to know what maximum values the tran=
slent term may obtain and the time constant involved in the disappearance
of the transient response.

3. If the answers to questlons {1) and (2) are yes, then we want
to examine the steady-state portion of the response to establish how well

the system follows the input commands.
STEADY STATE RESPONSE

For our discussion let's consider the last guestion first; i.e.,

"What is the steady-state response?’ Let's specify the excitation
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function to be a sinusoid of unit amplitude

jcf-f) = S w% . (//’7LJ

Then
&

Fes) = . (115)

sT+ tw®

There are two main reasons for choosing the input function to be a sinusoid.
First, 1f we determine the response of the system for one sinusold we can
do it for many sinuscids by superposition. Second, we can always expand
—any functlion in terms of sinusolds and therefore we can determine the
response of a linear system for any input function.

With the sinusoidal excitation we want to examine the steady-state

response of a linear system described by the following diagram;

&
* = S
st His) YL ); .

Denoting the steady-state portion of ¥(s) by ¥Y(s) then according to the

85?2

previous discussion:
NE ki le
(s) } T el -
f {Y 3 S-jw * S 4w J (11&)

where

b= | (s-jew) Hes) o L:,

(gad'wxs-{»jw)

(| eo
= kj 22 .) 3 ( /i'7)
J
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and
= | (s + (s o
}fz [( "i’\] L«\J)H )(S-U’LQXS'!’J'LU)]S: __\;w
- k}("jb))
2z
fand Je] . (}}8)
Thus:

4 (8= k, o't

—i UJT?

+ ke

C WG L ot i) 4 oemiwt
2] 2J

- )H(jw-)} sin (wt + g,é/(iw)) . (”q)

Therefore, as was pointed out in the previous example, the steady-state
response is & sinusold of the same frequency although it has differeﬁt
amplitude, |H(jw)| and phase [H(jw) than the input function.
The quantity H(jw) is the transfer function of the system for

s = jw. The interesting implication of Equation (119) is that we can
measure this transfer functlon experimentaliy. Indeed if we excite é
linear system by & sinusold and measure the amplitude and phase of the
output for different frequencies we have all the information needed for
Hjw). In fact, we also have all the necessary information about the
steady-state response of the system to any input which we visualize as
a sum of sinusolds. Usually this information is presented in terms of

magnitude and phase plots of H(jes). Thase are called Bode diagrams.
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Later we wiil see that Bode diagrams are alsc useful in determining
stability characteristics of the system.
Let's now consider a method of plotting the magnitude and phase of

the transfer function, namely the "Bode diagrams™.
BODE DIAGRAMS

Aggume the transfer function os of the general form

Hes) = k (1+5sX1+2 3’,%} +~3)—;)<» .. )

A . (120)
5(’*’5"25)(/1*32_5; +£_1)( .. ,)

Llet 5 = Jw and determine the operator

Dz 20l09, . Uz

Taking 20 logy, of Fguation (120) results in:

T wD(14%5) +D (1423, 5, + Z=x o+ , (122)
- - $ Sz o .
-PDs —D(/‘fZ;S)“D(f*rl'c%z{-ﬁ?).}aeo)

In other words, this operation results in an algébraic sum of similar
logarithmic terms, a fact that greatly facilitates the calculation.
To see this clearly,let us first define the unit of decibel. If the

magnitude of a gquantity is 10 then
20/0910(/0) = ] R

This unli we call the decibel and denote by db. Next consider a typlcal
term of Equation (122) such as D(1+Zys), s = jew and make a plot of its

magnitude as a function of &Jl. The plot is shown in Figure 26.



- 80 =

45 A
24 slepe = bdb _ zodb
occtave decede
2ir
-
«w 18y
‘\;‘ !51
+
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e
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<: i 3 [} 2
I 10° o' (o 190 Zw

Fig. 26

Notice that for @ very small |+ T3 = 1. Therefore D(1) = 0 db. For

w very large I+ 2,52 Z,8. Therefore
[)} JE;QJ} = E)’ G, a)}

implying that the magnitude plot is linear with a slope of 20 db/decade
or 6 db/octave on seimleg paper-

Por intermediate frequencies;

e Gew = 1 thew DlCi+§1)] = 3db
If Liw = 2 then DJ(}—N‘ZJ\ = Tdb
If i o = 0.5 thew pltr+jos)l= 1db

Thus from these few freguencles we can describe a curve which indicates
the behavior of 20 J.og;:LO of (1+ ng) as & function of frequency over a
large freqguency range.

ITf it is necessary to congider terms such as "DI (1 + 2:25)‘ , then

this is merely an inversion on the db axis as shown in Figure 27.
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-*-D‘(Hz‘zs)

- db

Fig. 27

For the phase of the transfer funciien we note that

[HGw) = fk + [(1328) 4+« +« — /S — JU+ZS)=e-s (123

Then for a typical first order term

if =jw and V1+Z,5 = |+ w ,
for small 2, /a/;ase oF ([+5’;s) = fan—’(%)—')
~ ©°
for large t Squ:iooh r?,aase - fan"' (wT)
=~ Gp°
for @ = }o}rase = Zfamdl(f)
. e 45-0
for tu = M. S -
Iormse = fav '(0.¢)
= 2[00
Tor tu = 2

‘ojatxs e = fam~' (2.)
& 4°

fe
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The plot of the phase of (14 Zis) for 8 = jl) as a function of Zi&)

is shown in Figure 28.

—~ Ol e e — &
KL o
5
X
- I
o 45t h-—— —— g
@ | 1
4 I
o L
_= o
2 i | ]
| | I ; t >
-1 - ©
10 0.5 1° 2 L e 10° Z,w
Fig. 28
A similar procedure can be applied to seccnd order terms,
i { .
s = i 4
l+2 :f, Y, + sz'/w,z er J

The results of the plot of the magnitude of this kind of function versus

&)ﬂu)l with g;l as & parameter i1s shown in Figure 29.

20

10 F

R 2k
2
S o
+
3 J=te
~[a for '
o
N
+ -20¢
L
- -30
A
L] 1 i 1 1 bt
jo~ 2 3 4 §FLi1vy,

Fig. 29
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Tor very small e the function is asymptotic with zero slope and Tor

large &) the glope is - =™ = - =22, Incidentally the parameter
Octave Decade

¥, is called the damping factor.

The phase shift for the function . ! — is shown in
I+2%, 3, v55
1

Figure 30.
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Fig. 30

H

Similar pliots can be derived for terms of the form

'l+ 2 Sz. S/w,_"' 57w§:
Well, since any ratio of polynomials can be written in the Torm of

Bouation (120), it is evident how the universal normalized plots 26 - 30

can be used to plot the magnitude and phase of any complicated transfer

function. Specifically, one can un-normalize the plois of magnitude and

phase for each first and second order term and then add all terms algebra-

ically. {Un-normalize of course means to reduce the plots to plots v§ w

rather than Z:% or “w;.)
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Quite often plotting is greatly facilitated by using the ssymptotes
of the magnitude plots only. The asymptotes meet (for first order terms
{1+ Zis)) at the point w = ‘/2."5» For second order terms they meet at

= e . This is called the break point.
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STABTLITY

Let us now examine the first question: “Is the transient response
bounded?" Before considering some specific techniques which are extremely
helpful in answering this guestion, let's look at the problem in some
generality.

Assume that the Laplace transform of a time dependent function f£(t) is

" v~
.S + o a2 -f-aa
F(s) = anSM-f‘auJ - . ({Z"f)
bms +L’m-ls 1—.00-{- LO

The question is whether f(t) is bounded. To this effect, given F(s) we

know that
il . ' () Pt _
fo = X {Ro) = R (125)
L'
where ki(n) is the residue at the n® order pole p; of F(s). OFf course

ki(n is a constant, independent of time. Then the question that we have
may be phrased as,”'What would make f(t) unbounded?" Evidently, if the
Re p; of any pole is positive or if Re pj = 0 but n % 1 then f(t) is un-
bounded. The implication of this agsertion isg that the boundedness of
any time function depends only on the sign of the real part of the poles
of its Laplace transform. Consequently, for stability considerations it
iéxgécessary to actually find the time dependent function. A1l that is
needed 1s to examine the Iocation of the poles of the laplace transform
in question. Specifically, if the poles are in the left-hall-plane or
they are single and on the j-axis the time function is bounded. If the
poles are on the j-axis but are multiple or they are in the right-half-

plane, the function is unbounded.
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Returning again to the question of boundedness of the transient response,
it is obvious that since the transient response is solely dependent on the
poles of the transfer function of the system all that is needed to answer
question number one is to examine the location of the poles of the transfer

function. All stability criteria do exactly that by different but entirely

egquivalent means.

For example, if the transfer function is a ratio of two polynomials with
unspecified poles there are Hurwitz's and Routh's criteria which estabiish
the location of the poles without actually Tinding their actual value. These
criteria will not be discussed here.

Instead we will start the discussion of stability with Nyquist's Criterion

of Stability.
NYQUIST STABILITY CRITERION

From the second leeture we have some idea of what a feedback system 1s.
The Nyquist criterion will be applied to feedback systems only. Consider the

gystem shown in Figure 31.

/45%0&7%;1? 7 Coﬁ‘f‘u:o//ec/
F{fs) + Ervor ECS) Va-rm.é/f_’
——>'®~*-~_——-> G, (sD > > |5 (S}
Reference ~ :
Inpvt - 4

Feedbock Control elemeﬂfg
Bs) Cbn“far:!feo/ system Y Fee)

R G,(s)
F%ez/é&cé-reﬂﬂuaw% )

Fig. 31
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We want to determine the stability of this system.

Considering the individual gaing of the system we have;
Fols) = Gy(s)E(s)

where G,(s) is called the "forward gain” j

and

B(s) = kCy()Fy(e) !
where kGe(s) is the "feedback gain", k being an adjustable constant. Com-

bining these three equations gives

Gi(s) Fes)
|+ k G 8 Gy(S)

sy =

or

fo (s) G, (s)
FLsy [+ k Gs) G, (5)

where H(s) is the system transfer Tunction and ngl(s)Gé§s) is called
the "loop gain". Assuming that the input function itself does not blow
up, we need be concerned, as already indicated, only with the system

function H{s) to determine if the system output is stable. Thus, we want
Gy(s)
1

to Investligate whether —
© TF KG,(5)0a(5)

has poles in the right or left-
half-planes or both.
To this effect, notice that both Gy(s) and Gp(s) may, in general,

be ratios of polynomials.

{1z 6)

(121)

{/2.8)

(129)
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Let us write these functions as

NS _ No(s) (130)
G%CS.) s m &V!(J C—’L(_S) - DL ('SJ h]

where i (s) and Di(s) are polynomials of s. Thus the transfer function

Eguation (129) becomes

N9/ p,cs) )

N.(s) Na(s)
...}—
1 k D,(s) D Cs)

H(sy =

The problem then of finding the location of the poles of H(s)} is identical
with the problem of finding the zeros of the denominator of H{s), namely

the zeros of the Tunection

g g MO NGs) Di€s) Dals) + k Ni($) No(s) , (133
D,(s) Da(s) Di(s) D, (5)

or more simply, the zeros of the function

D,(s) D,(s) + e N(SIN,.(s) = © . (133

One way of answering this problem is to ask whether knowledge of the loca-
tion of the roots of the function Di(s)Do(s) - as weli as knowledge of the
functional relationship of the loop gain 'kGl(s)Gggs}3 for different values
of s can help in establishing the location of the poles of H(s) or the
zeros of Di(s)Da(s) -+ kN, (s)l5(s) .. The answer is yes and the Nyquist
criterion does just that. In order to prove this assertion let us divert
for a while and consider some simple examples illustrative of this roint.

Suppose that we have a simple function

G(sy = s-—5, NIE
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where 81 is given. Consgider the contour C (Figure 32a) on the s-plane

Jw A s-xo\one

Figy 32a

and point 57 on the same plane. Assume that sy is outside the arbitrary
contour C, and suppose that G(s) is evaluated for all values of s on the
contour. It is evident that, as s varies clockwise on the contour, the
vector G{s) = s - 5, changes its phase angle by 0°. In fact,if we plot
G{s) on the G(s)-plane for the values of s along the contour C, the plot

will Ilook as in Figure 32b.

G(s)-Plane

Fig. 32
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The way Figure 32f is drawn, the plot in the G(s)-plane does not encircle the
origin because there is one zero and one vpole inside the contour C.

This is the end of our diversion. Let us now examine our original
problem of finding the zeros of the function ﬁl-+kkGlG2 that lie in the
right-half-plane using the méthod of Nyquist.

Suppose that we know the zerds of l-+;kGlG2 as well as 1ts poles.
Furthermore, suppose that these poles, namely the roots of Dy(s)Do(s), are-
all in the left-half-plane. Then make & pole-zero plot of 1+ kGG

(Figure 33). According to our previous discussion, if we choose a centour C

Jw
S-fiame
o X A . -
b4
% -
s
x o
o P
Fig. 33

such that it covers the entire right-half-plane (i.e., 2 contour defined
by the jw -axis and a semicircle of infinite radius) and make a plot of

14 kGlGé; for all values of s along this contour, then this plet will
encircle the origin clockwise as many times as there are zeros of l&%ikGng
inside the contour C. If the number of encirclements is zero, then there
are no zeros in the right<half-plane; that is, there are no poles of H(s)
in the right-half-plane and the system is stable. If the number of encir-
clementé is different than zero, then the system is unstable. At long last

this is the Nyquist Criterion Stability.
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Of course if the roots of D9{s)Ds{s)) do lie in the right-half-plane
then the number of clockwise encirclements of the origin of the 5flrkﬁkGlG2)-
plane is equal to the zeros and the poles. If the number of the roots of
Dl(s)DéLs}\ in the right-nalf«plane is known then Nyquist's criterion is
fairly easy to implement. However, if this number is not known, the cri-
terion is ambiguous.

In actual fact, the infinite semicircle of the C-contour necessary for
Nyquist's eriterion of stability is not needed. The reason is that for all
physical systems the loop gain .kGGp approaches zero or & constant for
s~% 00 ., Therefore, knowledge of the values of the loop gain for s = jw
for all values of ) is adequate to examine the stability of the feedback
system.

There is even another way of presenting the Nyguist criterion of
stability. MNotice that in plotting the function ll-kkkGlGQ for wvalues of
& along the contour C of Tigure 33, we add the constant unity vector to the
complex number 'kG;Go. Thus we might as well plot kG Go directly and,
instead of considering encirclements of the origin of the (1 kGng)aplane
we consider encirclements of the point (~1,0) of the kGyGo-plane and inter-
. pret the encirclements in an identical fashion. Actually this 1s the way
that Nygquist's criterion is used in practice.

In summary then, in order to apply the Wyquist criterion of stability
do the following:

First, consider the loop gain kGyGo.

Second, make a plot of this gain for s = jw (in other words, plot
on a plane the values of kGGp for all s = jw).

In making this plot it is convenlent to assume k = 1 and consider

encirclements of the point (= %,O);
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Third, examine the number of clockwise encirclements of the point
(= i,oj by the contour G{G,. If the number of peles of GG, in the right-
half-planc is zero and the number of clockwise encirclements is zero then
the system is stable. If the number of poles of G1Go in the right-half-
plane is different than zero the system is stable only when the number of
encirclements countercloskwise is equal to the nuwber of poles of GiGs in
the right-=halfsplane.

Frequently we need to consider systems where the term kG;(s)Gy{s) has

g8 = 0 as a root of the denominator. As an example, congider the loop gain

b{(/+2,5)
s(1+Zs X 1+2;s)

k G ts) G, (s) . (135)

i

Tor s equal to jw, as toapproaches zero from both the positive and nega-
tive values of w we would expect to get infinite values of kG1(8)Cs(s) -
Plotting kG (jw)Gy(Jw) on the complex plane we would get a plot as shown
in Figure'3h. It is important to deﬁermine how this plot is Jolned

w—= - 0]
K

] W = - od
~1+j0 = + ob

qv

i )
/w iMmeréag {ﬂ?

tw — + 0§

Fig. 3L
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from e ="0j to @w =+0j ginde, ¥f the kG (jw)G(jw} contour is closed
around the point =1 + jO, the system is unstable. This follows from the
fact that a counterclockwise rotation of the -1 point would be realized
as w changed from - o to + @@, whereas Equation (135) shows that there
are no poles with positive real paris.

The nature of the plot in the neighborhood of tww = 0 may be resolved
by considering the contour C to be along the negative imaginary axis from
8 = =jo° until 8 = =JO0 getls very close to zero. Then let the path be a

semicircle in the positive-hglf-planse of a very small radius until it reaches

the positive Imaginary axie at a very small value of s + jO; after which

it continues along the positive imaginary axis until s

it

+ J oo,
For the semicircular portion of the path
Je
S = & s (’3{0)

where d >0 and - j{ <6< . n expanded plot of this portion of the

contour C-is shown in Figure 35.

Jwh to +jeo

Wa.

5= J‘e¢9

W

t from "J oo

Fig- 35
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Now consider the plot of kGl(s)Gg(s} for s—>0.

b G (s G(s) =~ R N GEY)

S

Substituting Equation (136) in Equation (137) gives

-~ Lo )
[
S — o - (159

2

- k-6
k (;](S) C;Z(S) = :}: e

From this then, the magnitude of kGl(s)Gg(s) ~—= o0 as J-= ¢, and the
angle of Fquation (138) goes from /2 to - /2 as & goes through values of
~W/o to W2, 1In Figure 3L this means that the points for w-> -0j and
w —+0] are joined by means of a semiclircle of infinite radius in the
first and fourth quadrants. The plot of kGl(s)GE(s) would then finally

look as shown in Figure 36 which indicates the system to be stable.

™ — —
I’J ~
AN
;f
s
, a!
\ \
\
. ~ = — o ‘
..-’-].io Lo = 4 oD [A% 18- 4]

w iwareas;n?

w—+0J

Fig. 36
By similar reasoning, the complex plane plot for other cases where
s" oceurs in the denominator of kG1(e)Go(s) can be determined to show that

when ¢ passes through zero, the k(;(s)U,(s) plot makes n clockwise semi-
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cireles of infinite radius about the origin.

The conjugate nature of the Gl(+jm)G2(+jw) and Gp{ =jw)Go( =j@) means
that the plot of Gy(s)Go(s) for values of ~0<w Lo and +=0)>w > 0is
symmetrical about the real axis. Hence, if the shape of the plot is knowm
for the range of values of O W 4o , it is not necessary to calculate

the data for the range —o0 (v (O .

EXAMPLES
Example |
6 * :
5+ 1
¥
‘ k
s+3
For this system
|
S+ 1

H(s) =

i"{’k(s-,ti)(s-:S) ’

and

R

(s+1X553)

k Ges) G, (s) <

A pole-zerc plot of the loop gain on the complex s-plane ig shown in

Figure 37. Shown in Figure 38 is the plot on the complex plane of the

1

function G]_(S)GQ(S) = M)

as 5 = jw goes clockwise from -jo0 to

4 joo.
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Mot

Fig. 37 ' Fig. 38

Figure 38 is obtained from a few frequencies in the following manner:

At s = jw =0, G(Jw)Gs(je) = 1/3 with zero angle.

Ag 5 approaches +jw = 4 jeo, the angles « and ‘5 assoclated with
s + 1 a.nd s 4 3, respectively, are always positive, making the angle asso-
ciated with Gi(s)Gy(s) negative. Also as s = jw approaches s = 4 joo,
Gl(S)Gg(S) approaches zéro and the angle approaches ~180°. Actually, if
the contour C in the s-plane included the infinite semicircle in the
positive plane, the plot of G«l(s)(}g(s) does not pass through zero but
rather encircles the origin by & small circle of infinitely small radius.
Since the point (nl/k,jO) is never encircled, the system of this example
is always stable, regardless of the value of k.

Example 2

Y

+ k
@ (s+2)s+8)

-—




For this system

k

His) = (s+2)(s +8) ;
|+ k

s{s+2)(s+8)

and

e sy ; _
k Gits) G (s) s(s+2)(s+8)

Since there is a pole at the origin s = 0, we can resolve the difficulties
involved by lettipg the contour C have a small semicircle around s = Jw =0,
as explained previously. The pole=-zero plot then is as shown in Figure 39,
and the complex plot of kGq(s)Gs(s) is shown in Figure 40. Depending on the

value of k, the system may or may not be stable.

' 454 §o0

1
L3
1
N

Fig. 39 Fig. Lo
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As shown in Figure hO, for one value of k the system ig stable and
for another it igs unstable. For this example, 1f 0 { k £ 160 the system
is stable. If k <'O the systém is unstable since for negative values of
k therplot is the reflection in the left-half-plane and the point -1 + jO

is always encircled. If k > 160, there is also instability.
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LECTURE NO. IV

As a means of orientation, let's review what was covered in the third
lecture. |

Having described a physical system in terms of physical processes by
writing integrodifferential equations, the Laplace transform method was
used to obtain algebraic eguations in the frequency domain. The behavior
of a linear system was then described in the time domain by teking the inverse
Laplace transform of the respeonse transform in the freguency domain. From the
inverse laplace transform we couid identify a steady-state term and a tran-
sient term. |

In order to aralyze a linear system then, we determined that we need to
be able to answer the following three guestions:

1. Is the system stable?

2. If the system 1s stable, what is the form of the transient response
term? _

3. What is the steady-state response term; i.e., how does the response
of the system cémpare with the input functior after the transient ferm has
died out?

We discussed the gquestion of the steady-state behavior first and found
that it can be described by wmeans of the transfer function of the system,
H(s), for values of s = jw along the jew -axisiover thelrange =0 { W (+o.
Thus, by determining the magnitude and the phase of the traﬁsfer function
for a sinusoldal input, we can analyze the system for any input since any
input can be described by sinuscids. Bode diagrams were developed [plots of
20 loglo IH(juﬁl and {H(jaD versus ai for determining the steady-state
response and some simple exampies of Bode diagrams were described. The

steady-state study {Bode disgrams) led us to a simple means of determining
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the transfer function of a linear system experimentally since all that we
have to do is excite the system with ginusolds of varicus frequencies and
plot the amplitude and phase of the output of the system &g a function of
these frequencies.

We next discussed the stablility of a linear systemr and determined that
it is net necessary to know the time behavior teo determine stability dbut that
we need only to invéstigate the sign of the real part of the poles of the
transfer function. IT the real part of any pole ig pesitive the system is
unstable and if the real parts of all the poles are negative or zero {(but
then the poles are single} the system is stable.

There are several methods available for investigatiang the problem of
stability and some may be more suitable for a given system than others. The
methods of Hurwitz and Routh are particularly applicable when it is desired
only to determine the sign of the real part of the roots of a function given
in the form of a high erder polynomial. The Nygulst criterion is useful hoth
analytically and experimentally, provided certain conditions are fulfilled.

Analytically the system must be described as a feedback system consist-
ing of a forward gain, feedback gain and an adjustable parameter k. Then the
Nygquist criterion is applicable as described in Lecture ITT.

Experimentally one needs to be able to break the feedback loop in order
to determine the open-loop galn since now the gain is just kGyGn. We can
meagure this gain by exciting the system with sinusoids of different fre-
guencies.

An example of an experiment of ithis sort would be possible with a nuclear
reactor. For a reactor we can measure the forward gain by operating at low
povwer where the feedback mechanisms do not interact. We can also determine
the overall system transfer function by coperating at high power. From these

two conditions then we can determine the feedback gain, and therefore deduce
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the loop gain. To the derived loop galn we could then apply the Nyquist
criterion and establish the range of stable operation of the reactor.

We will now discuss a method of déterwining the behavior of the poles

of the transfer Tunction known as the "Root-Tocus’ method.
ROOT ~LOCUS

The problem we are concerned with is that for the equation 1 + kGp(s)Go(s)=0;
we want to determine the sign of the real parts of its roots. Let's rewrite the
equation in the Torm
Gy(8)Go(8) = -1/k . (139)
Since G1(s)Go(s) is a complex number, for Equation (139) to be valid
the following two conditions must be satigfled.
1o |Gy(s)apls)| = [1/% | 5 (x>0) (1 40a)

2 /Gl(S)GE(S) = fA/k = 180°+ 2410 (140b)

where n is an integer.

For different values of k, there will be different values of s which
satisfy conditions (140a, b). In fact, as k varies from 0 —oe, the values of
s that satisfy Equations {140a, b) move continuously along certain paths which
constitute the root-locus of the equation

14 kGiGp=0 3 0<k<ee
The continuity of the paths of the root-locus stems from the fact that GG
is a continuous function.

Regardless of the particular value of k, it turns out that the phase
equality {149b) is adequate to plot the locus. To see this point in a simple
way, consider first a simple example such as:

s(s+2) +k =0 .
Tor a given value of k we can easily solve for the values of 8. However, we

will approach the problem differentiy.
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The angle assoclated with a complex number 1s called the argument of the

complex number; i.e., ZE“: arg s, ete. We have then |
arg s + arg(:s-i—E) = arg{-k) = 180°+ 27n

For k = 0 we notice that the solutions of the previous eguation are
s =0, s = -2 (Figure 41). For other values of k the solutions will be some-
where on the s-plane. Where they are exactly can be determined with the help
of the phase condition. Indeed, let us first ask, "Is any value of s between
g =0 and s = -2 & solution for some undefined values of k?" In Figure 4l
Asew

S -glane
pitrory) f

glo¥

Y

Fig. b1

let 8 be any value on the real axis between s = 0 and g8 = -2, then the vector
s is in the direction from s = 0 to s with an angle of 180° as shown. Also,
the vector 8 4+ 2 18 in the direction from s = -2 to 8 with zero angle as shown.
Then the sum of the angles for these two vectors glves

arg s+ arg(s+2) = 180°+ 0 = 180°
and satisfies the phase conditlon. Thus, values of s on the real axis be-
tween s = 0 and s = -2 are possible roots of the eguation s(s4+2)+k = 0.

Let 8 be an arbitrary éomplex number. Then the vectors s and s+ 2 are
those drawn from s = O to s and from s = -2 to s, respectively, as shown in
Figure 1. The angles involved are ¢ for the vector s ami/? for the vector
{s+2). Now:

arg s+ arg(s+2) = ¢ + 3 )
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and only the values of s which give ¢+ /B = 180 + n27 are possible solutions.
But ¢ = 180 ~Y¥. Consequently only points s for whickl/3:= Y are possible
solutions. This iwmplies that only points s which lie on the vertical drawn
through the mid-point of the interval (0, -2) are possible solutions of the
given equation for positive wvalues of k.

Thus the root-locus ig ak shown in Figure 12 where it is seen that the
tocus goes in from s = 0 and s = =2 to 8 = =1 and then splits up and down
perpendicular to the real axis. From Figure 42 we see that the roots have
always negative real parts. If this equation were the dencminator of some

transfer functicn, the system would.be stable for all positive values of k.

.'rw ¥
k=2 .
¥——Td
k=0 k=) k=o
L4 S N
B SYRA (° Cn
- ——F=]
L
)
Fig. b2

Kow, since we know what values of s are possible solutions (determined
entirely from the phase requirement) we can determine what values of k

correspond to each point of the locus s from the magnitude condition,

[s(s+-2)| [k'
For example; for the double root § = =1, k = 1. For ¢ = -1+ j, k = 2, etc.
For ancther example, let us find the root<locus of:

k

ST 08

k>0 ,

which may be visvalized as the denominator of the transfer function of a feed-
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back system. Accordingly, for k = G, the poles of the loop gain are the
solutiors of the equation. These are s =0, =1, -k. Now for the values of
s on the real axis for s<-k4, from Figure 43, which is a pole-zero plot of

the loop gain, we have

180 4 180 + 180

arg s+ arg(s+1) 4 arg(s+1)

Bo+aom

and these values of s are possible solutions. Tor values of

w4

Q¥

Fig. 43

5 between 8 = 0 and g = =1 we have
arg s 4 arg(s+1) + arg(s+4) =180 4+ 0+ 0 = 180°,
and these values of s are also possible solutionsg. The other segments of
the meal axis do not satisfy the phase condition and therefpre cannot possibly
contain - values of s which satisfy the given equation for any value of kX. In
Figure 43 the regions of the real axis which contain possible solutions are
indicated by the heavier lines.
If s is an arbitrary complex number, in order for it <o be a sclution
we must again have (Figure U3)
arg s + arg(s+1) + argles+ 1) =o{ +B+Y = 180° + 2m.
In order to see which éomplex numbers satlisfy the phase condition it is

hHelpful to consider the following steps. TFirst, let's consider what happens



- 107 -

when k—> s . From the equation

. k
1+ s(sFL)(s+5) 0
we get s(s+1)(s+h) + k=0

and, if s is large compared to 1 and L,

5321 -k

sx & -k
Thus, if k-, 4%Ek—*coémmi s is also infinite. From the phase condition
though, we see that

[Ei - 3[}i== [ = 180 4 2nT .

If s—> s the vectors s, s+ 1 and s+ 4 appear ag if they all originate at the
origin and the angles of d,,B and ¥ are all equal. Thus, the phase require-
ment imposes that s must have associated with it an angle of 60°, 180°, or
300°. This follows from the fact that we can write
Aej¢

130338

S

3

B

1l

and for the phase condition to be satisfied 3¢ must equal 180° <+ 2¥n. This
will be true only if ¢ = 60°, 180° of 300°.

Thus we see that for large k and large complex s, the values of s approach

those which lie on asymptotes at 60° and 300°. These asymptotes are shown
'AY

in Pigure 44.
-—ﬁxﬂp(,ug of s for larse valves of £

b 4

to,0} a-

Fig. 4h
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The point of intersection of the asymptotes with the real axis can be
found in the following manner. From the equation s(s+ 1)(s+L4) + k =0, it
is seen that the sum of the roots 1s always -5, regardless of the value of k.
The sum of the roots is the negative of the coefficient of the second highest
order term in s; i.e., the negative of the coefficient of the 52 term above.

If there is no second highest order term tge sum is zero. Thisz ig true for

any polynomial. Since the sum of the roots is always the same, the asymptotes
must meet at the point determined by the sum of the roots divided by the number
of roots. In this case, the point is -5/3. This is the "center of gravity" of
the roots.

From continuity considerations, we can show that on the real axis as k
increases from zero to infinity, the rdot s = <=4 moves to infinity while the
roots 5 = -1 and s = 0 move toward each other, meet somewhere between (0, =-1)
and then split toward the two asymptotes at 60° and 300°. We can find the
break point analytically from geometric considerations and from the phase

requiremeﬁf. Figure 45 is an expanded pole-zero plot of the poles of the loop

gain. 10 A
5
|
|
|
h|
I
i
4 4 o G
X e—

Let the point s be compliex but very close to the real axis so that we know
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it is & possible root. Then we know that

o +4+¥ =160° . (141)
Also we know that

o =180 - ¢ . (142)
Substituting this into Equation (141)

180° - g+ B+ ¥ =18
or d=p+¥ : (143)
Taking the tangent of both sides, since ¥ and ﬁ%are very small angles, we have
that tan(/3+‘z() = tan B+ tan ¥ , and
tan @ = tan(f+¥ ) = tanB + tan ¥

Thus, for this example,

h h h
x IT=xthx
Selving for x we get
x>~ 0.5 .
Thus; the poles at s = -1 and s = 0 move toward each other, meet at the point

s = =0.5 and split perpendicular to the real axis. This is called the break-
point. The fact that the roots gplit perpendicularly to the real axis can be
seen as follows: Rewrite the given equation sc that

s{s4+1)(s+h) + &y + kp =0
where k; is such that the roots of the equation

s(s+l)(s+)+)-|-kl =0
are: A double root at the break-point, one root on the real axis (smalier
than -4). Thus, the given equation can be written as

(s4+0.5)%(s +9) + & =0
where g { 4. Then cénsidering the root-locus of this equation it is

immediately seen that the escape angle from s = -0.5 for ky~0, is 90°, 270°.
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We also know that eventuallylthe values of s must approach the asymptotes,
but what happens between the real axis and the asyﬁptotes? This can be
determined by picking values of s, applying the phase criteria and thus ob-
taining values of s between the two extremes. Tt way also be done with a
protractor if it 1s not cenvenient analytically. At any rate, the locus of

the values of s will be a half-hyperbola approaching the values of large s

k
s(s+41)(s+k)

asymptotically. The complete root«locus for 1 + = (0 is shown

in Figure 46. ju’///

Y

Fig. 46

(Note: See Insert A, Page 110a)
Now we can generalize the root-locus method to apply to any linear system

in general. As has been previously pointed out, we can write the loop gain

as KGyG, = k (s-21)(5-2p) (s=53) -~ - (oot

: ;s—and the problem is to determine
(s-p1)(s-pp)(s-p3g} ----- {s-pp)

how the zeros of the function one plus the loop gain vary as k varies. The
steps to..followiare:

TI. For k)()

A, Make a pole-zero plot of the loop gain.
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Insert A
An important point which can be easily established is the point (A)
at which the locus crosses the imaginary axis. This 1s called the crosse-

over point. From the angle condition we have

f+ /B +¥=180°=90" +B +Y¥
pB+¥

I

90° .

Therefore (Figure 46)

] b
5 |

This point corresponds to a value of k given by

k= 2V a1 ) (V 1641 ) = 20.

We can find other values of k for different points of the locus by a pro-
cedure similar to the one used in the previous example. In addition, it is
evident that if the previous eguation were the denominator of a transfer
function, the system would become unstable for k } 20, because then the roots

move in the right-half-plane.
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B. Consider extreme values of k;
1. For k = 0, the pi‘s are the sclutions of 1 + kGlG2 =0
2. TFor k =00, the z;'s are the solutions of 14 kGG =0
Usually there are more poles than zeros, thusg there are n-m
values of & at infinity for k = o0.
3. For values of k between these extremes, the solutions move
continucusly from the poles to the zeros of the loop gain.
C. Determine the slopes of the asymptotes. To this effect, note that:
For s ~»o00 , the equation reduces to ..
1

l-!'kg'ﬁ'::ﬁ]'z@,

i L
AR

therefore

and [s = 180+ enw
n-m

If n-m = 1 there is only one direction (180°) by which s can approach infinity.

Ju A s -‘:,lcxne

PN

o

If n-m = 2, the possible directions are two (90° and 270°) as shown.
Jw §

gmf)ane
e

If n-m =3, there are three directions,

oy

gw ff

PN
=Y

and so on.
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D. Determine the intersection of the asymptotes. The equation can be

written as:

Lk s+ ;s e e .. N k
Sn + b;sn—l oo s e Sn-m—f-(b“'"at')sn—m-'-g—o . s
~ | + k 3
SM'W-+(b;*Q;)S"-M_I
where 'a; = - Ejzeros and. bi = - Z?poles. For s large, we may retain only the

first two terms in the denominator and have that

k. (/¢Q

Thus, the sum of the large solutions is a; « by, = E:;poles —j[:zeros.

n-m
5 + (bi

_ a.)sn-m-l -
1

Then the asymptotes will meet at the point defined by

~-(b; - a1) Ejpoles - ijeros
S: p=4

, (147)

n=nl I =m

IT. Tor k £ O, the statements are similar but the directicns of the asymptotes

are given by

b omd |
E - — b , (/5[9
where_ﬂ is an integer.

Now let's examine a couple more examples.

Assume we have

3
L+ k(s+2)= o,

s -1

as the denominator of a transfer function and wish to find the values of k
for which the system is stable. The pole-zerc plot of the loop gain, Figure
L7, ehows there is a triple pole at s = 1.4+ JO corresponding to k = 0 and a
triple zero at s = -2 corresponding to k =oo. There are no solutions at

infinity; in other words, the roci-locus has no asymptotes.
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Jio 4

ngﬂ.r‘ldec{ Fofe—zero)rooi‘-—.’ocus
ploet ot the lsop Gain

Fig. Ly

For k ) 0 let us define the escape angles from the triple root at s =1

as k increases from zero. We consider the phase requirement for a point of
the locus which is very close to s = 1. The phase angle of the vector (s+2)
is fg(Figure L7} and is extremely small so that it can be assumed equal to
zero. On the other hand, let us call the angle of the vector (s - 1) &
Thus

3 = 180 + 2n

o = 60°, 180°, 300°.
Consequently, one of the poles moves toward one of tThe zeros along the real

axis and the other two escape from the real axis at angles of 60° and 300°.
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The actual shape of the root-iocus isg the straight line between s = 1
and 8 = -2 and two circular ares as shown in Figure 47. The reason for the
circular arcs is the following. Considér an arbitrary point s (Figure L48).
The phase requirement is

3B-3d = -180°
d -3 =60°

¥ . Therefore, all points of the locus see the segment between

il

But o -/3
s =1 and s = -2 with a constant angle of 60° which is possible only if the

locus is a circular arc.

Y

]
¥
9

Fig. 48
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We would 1like tc know the points on the jw-axis where the locus

crosses. In Figure L48a the angle ¥ is

¥ = 60°

9y

Fig. 48a

Knowing that ¥ = 60%, we can determine the value of w for s = jlW
where the locus crosses the jW-axis in the following manner:

From Figure 48a we have

and

tan @

Rt}
ct
&
]

=N

il

]

>

2
X

tan 60° = RO+ tn § - 3x N[5
1-tan~@ tan:§ x2-2
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Thus we have

and
x =2.53
Therefore the locus crosses the jl-axis at s = +J2.53 and -32.53, and also
at s = 0.
Since we know the values ©f s at which the poles cross the jW-axis,

we can determine the values of k for which the system is stable from the

| g - 1 3 B
s 42 B

For the cress-over point at the origin

relationship

-k

For the cross-over point at s = +jl = +j2.53,

] - (2P Los

Thus for k ) 0.6 the system is stable. TIn a similar mammer it can be shown
that for k { ¢ the system is always unstable.

We will consider cne last example which will illustrate better the
applicabllity of the root-locus method in determining stability. We consider
a4 system with a loop gain given as

k T8y T8

3 -+

S+Ey s+g2

s0 that the denominator of the overall transfer funciion is

1818 + roapg)
T8 + Ipao
{s+g)) (step)

5+

2

kira r
181 282 | _ 1
1+ _ I =1+ k(rya, 4 rpas) =
S | 8487 S+Ep 1L 2%’ 5
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where 815 8, 85 and a, are positive constants and rq and r, are variables
which can pe either positive or negative. We want to find the possible
valueg of kX for which the system is5 stable.

Since ry and f2 can be positlive or negative, there are four possible
locations of the zero of the loop gain which we must consider. The values
of g1 and g, are positive, therefore there are three poles, s =0, 8 = g,
and 8 = -gpo. Figure 49 is a pole~-zero plot showing the location of the poles

and the relative possible locations of the zerc of the loop gain.

Jw
e # & % 3 & >
Zeroll® - 32_ Fere® —9, Zero®@ Zere O d
Fig. k4o
» TFor convenience let's define
ri8q + Tpdp = Ry
T1818) + Todngy = Ry

N

T1818p + Tp8ngy =

because, ag 1t will be shown shortly, the different possibilities for the
ipcation of the zerc of the loop gain depend on the sign of these quantities.
Indeed, consider the following:
I. Bp40. Then if Ry) 0, the zero (-Rp/Ry) is in the right-half-plane
(position(j). The constant multiplier of the loop gain kRg» 0 (for k)-0).
Since there are three pcoles and one zero, there are two asymptotes for

the locus of ithe poles of the transfer function and they are perpendicular

Ezpoles - E:zeros
n-m

to the real axis. Also, from we see that the intersection
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with the real axis must be to the left of the poles at the polnt
' R

2

z:poles - ) zeros _ "(31*52)'(ﬂ§§)

n-m 2

5 =

‘which is a negative number with magnitude greater than the magnitude of any
of the poles (Figure 50).
To determine the possible locus of the poles on the real axis, the phase

condition is applied. To this effect, for the region between the origin and

i

the zero we have arg(Zero(D)) - arg{stg) - arg s =180° -0 -0 - 0 = 180°.

Therefore this isg part of the locus.

For the interval between s = 0 and s <21

1

arg(zero @) - arg s - arg(s+4g;) - arg(s+ey) =180 - 180 -0 -0 =0,
and this interval is not a possible part of the locusg. Fipally, by the same
procedure we determine that the region -go{ s ¢(-g, is part of the locus while
the region s-{ -g, is not. As k increases from zero the roots (-gl) and (ngg)

move toward each other, meet and then split continuing thelir motion ioward

the asymptotes. The root-locus for this case is as shown in Figure 50.

Alw
G09.)- (-2
=z .
¥ omcnSy S 3 r 2
-(-37_ —"}r (o,0) Zero @ T
Asrptope
Fig. 50

IT so desired, the point on the real axis at which the two roots meet
and split can be found from a relationship similar to Fquation {1kk). At

any rate, for R;<0, RO} 0, and k)0 the system is always unstable because
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the transfer function has always a pole in the right-half-plane, regardless
of the magnitude of k.
IT1. Another case for which the zero can be in the right-half-plane is
when Ry7)'0 and Rd<%3. Then kRO<1O for k)0 and the phase condition now is
that
Gl(s)Gg(s) =2mwh , (]46])

and for the asymptotes

[s = 27:{ . (150)

n

where,j is an integer. The asymptotes are at 0° and 180°.

To determine the possible locus of the poles on the real axis we now
apply the new phase condition. For the region to the right of the zeroc

arg(Zero(@)) - arg s - arg(s%—gl) - arg(s—#gg) =0 -0=-0-0=0
Thus J = 0 in Equation (149) and this region is a possible locus of the roots.

For the interval between s = C and the Zero (D:

arg(Zero () - arg s - arg(s%—gl) - arg(sﬂ-gg) =180 - Q=0 =0 -
which cannot ve satisfied for any interger value of [ in Eguation (149). Thus
the interval is not a possible locus of the roots.

For the interval between s = -27; and s = 0,

arg(Zero Q) - arg s - arg(s+gy) - arg(s+g) = 180 - 180 -0 -0 =0,
and this interval is a possible locusg of roots. In a similar manner it can
e shown that the only other region of possible locus is for Sf(—gz-

Tollowing the procedure through as for the first case, we would find that
the root-locus would finally look as shown in Figure 51. For this case then
the system ig stable uatil the value of k = Ky where the locus intersects the

Jed-axis. TFor values of k)J%)tﬁmasystem becomes unstable.,
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J» A
k= ko
k=0 ko Y=o
ol Yool et £ S——
“Ya “% k=T
k=k,
Fig. 51

I1IT. Por the conditions RE)»O and RO)—O the zero is in the left-half-

plane in one of the three possible positions.

A. Tet's assume first that the zero is in the interval from s = -8

to & = 0 as shown in Figure 52.

Jw g
—%1 “%  Zero® a
Fig. 52

For this case k(rlal-+ rgag) Y O and the phase condition

Gl(s)Gg(s) = 180°+ 27n

applies. Going through the standard procedure then it can be shown that

the root-iocus would be that of Figure 53 and the system is always stable.
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w
[Fe— &Sy ,Oi'ofe
> §ie O=EX >
- (ﬂ’z -%l
Fig. 53
B. Assume the zero to be in the interval from s = -g» to s = ~gy. Then

Figure 54 shows the root-locus for this case and the system is again always

; y |
stable (kRy)0). 4 W

Qs,,,.,,,{afe/f

N b
ral -

E
V
/A
S
\

Fig. Sk

C. Assume the zero is to the left of all the poles, but to the right of

the point ¢ = -(gl+-g2). Then the root-locus ig as shown in Figure 55 and the

system is again always stable. W
i Wr SR Y} LY - rd
. A WA a4 "y X >
%) -9, -4, T

Fig. 55
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Notice that as the location of the zero moves to the left the asymptotes
move to the right and approach the jl-axis. The significance of the point
a(gl+-g2) is that when the zero is at this point the asymptotes coincide with
the jl-axis.

D. One last possibility for the conditions of Rg>~o and RO)-O is that
the zero lies to the left of the point a(gl4-g2). If this occurs, the asymp-
totes will be to the right of the jlJ-axis and, Tor certsin values of .
k(rlal+-r2a2), the gystem will become unstable. For this case the reoot-locus

is as shown in Figure 56.

Jw |
/ L —asymptote
ko
~(3:+9>) :
= S Feprapeeecit >
“ta ._%' \
Fig. 56

2. '
Thus the system can be unstable when R—g}(gl + gg)- This means that

Qr

Ry = rjajg; + roapgp £ 0, and k7Y L

IV. The last possible case to consider is when R,{ 0 and Ré-(O, Again
the zero is in the left-half-plane in one of three possible loecations, but
k(rlal-+ rgag) is negative for k)'o. Thus -we have to apply the phase condi-

tions for negative k.
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A. If the zero is in the interval beiween s = 0 and s = -85 the root-

locus will be as in Figure 57.

&w A
;. NS > >
&?')_ _'%' -
Fig. 57

The system is aliways unstable since the pole at s = 0 moves to the right

half -plane.
B. If the zero is in the interval hetween s = =) and 5 = -g; the

root-locus is as shown in Figure 58 and the system is again always unstable.

iw A
<K Ot 7 2 >
—-%7_ -‘ni] a
Fig. 58

C. For the position of the zero to the left of the poles, the root-locus

is as shown in Figure 59 and again the system is always unstable.



Fig. 59

Thus, for the conditions R2< 0 and R{5< 0, the system is always unsitable.

The four cases just investigated exhaust the possibilities for all
variations of RO’ Rl’ and R,. BSince ry and r, are the only variables, we can
conslder locking at the possibility of stability or instability by identifying
these regions on a plane of ry and ro.

I. Assume g > g ) 0.

Consider the (ry,r,)-plane diagram of Figure 60. Irn this diagram the
lines in the fourth quadrant emanating from the origin represent the values
of Ty and s for which the Ri's are zero. The regions above and below a
particular Ri—line indicate whether Ri is positive or negative for different
combinations of values of il and LN in that region.

A.. Now assume that rq, v,y 0. Thed Ryi Ry,

R
(gl+ gg)) 1% 3

{this ine vality is egquivalent to R, )»0). According to the preceding dis-
q 1

R, Ry } 0, and

cussion, the system is always stable. That is, the system is stable in the

first quadrant of the (rj,rp)-plane.
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B. Assure r3»0 and r;<O0.

1. If Ry=0; Ror)-o, and Ry~ 0, thus the condition ii mcél—l—gz)is
satisfied and the system is stable (everywhere above the line R.2 = (; Figure
60) .

2. If RO}O bﬁt R2-<O then the system 1s unstable as .degcribed for:
Case 1 above.

3. If Ry>-0 and Ry< 0, this corresponds to Casé IV above and the

system is always unstable (Ry€0).-

L. TIf R

5 Rl’ and R2*< 0 the system is also always unstable {case

V).
From these considerations then we can label the régions as shown in

Figure 61.



Fig. 61
ITI. Assume Clégﬁs(gén Following the same procedure we would obitain the

diagram shown in Figure 62.

A

R
" stable \
\\

R0
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Thus we have considered all possible variations. The value of k beyond which
the conditionally stable system becomes unstable can be easily determined.

It turns out that in all cases

. glgg(gl‘*”ge);
o Ry

L 3

(Note that R;< 0 in these cases.)
The preceding example 1s pertinent to a nuclegr reactor with two tempera-

ture coefficients of reactivity rq, rs.

Suggested References

1. H. Chestnut and R. W Mayer, Servomechanisms and Regulating System
Deslgn, Velume 1. New York: Jehn Wiley & Sens, 1953.

2. Johm G. Truxal, Automatic Feedback Contrel System Synthesis. New York:
McGraw=Hill Bogk Company, 195%5. o
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LECTURE NQ. V
STATISTICS

In the previous lectures we have considered systems with deterministic
inputs and outputs. The value of the input was always known; i.e., the
probability of knowing the value of the input at any given time was always
100 percent. For most practical systems however, this is not the case.
Rather than beling an exact known function of time the input may be random in
nature. In the case of a nuclear feactor the figsion process itself is a
random variable. Other examples of processes involving random variables would
be boiling; in communication systems wave propogation through the atmosphere
is random because of interference by cloud formations and other cbstacles.

One way to handle random processes is to sample a large number of
identical processes at the same time. In this way one could determine the
provability that the varisble will have a given value at that time. This
method of énalysis results in what might be calied "ensemble statistics”.

The word "ensemble" is associated with the identity of the processes, and

the word "statistics" wmeans that the number of identical processes consldered
is large enough such that considering more ldentical processes would not
change the values of the regults. Analytically we determine ensemble
statistics in the following manner:

Consider Figure 63 which is an ensemble of the outputs of three identical
systems Tor the same input. Since the input is random the outputs will also
be random. At the present there 1s no correlation between the putputs of the
three systems; i.e., there is no way of determining the value of the output
for one system, knowing the value of the output for another system. However,
assume that at time t; we arbitrarily choose a value from f£(t) = f; to £(t) =

fI+Zkfl, as shown on Figure 63. Then the number of ensemble members that
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have yalues between £ and f1+ATF) at time ty is given by ZXNl(fl,Zkfl, s )
where N is the total number of the wmembers in the ensemble.
If N is a large number then we can define the probability of the output

having a value of f; at time T, by

ANy . . . )
Pl(fi’tl) = TAT; = first probability density (/d)}

as N—c0and ZSfl——ao.

Now let's assume that we perform another sampling at two vglues of time,
tl and t2 and wish to determine the probability of a mewmber of the ensemble
having & value between f| and fl+13fl at time t; and also having a value
between f5 and fg%iﬁfe at time t2. This is the second probability density
and, in a manner analogous to defining the first probability density, is
given by

ANp(f1, Afy, by, To, Afy, 4o,N)
NAF(AT

Pg(fla fg) tls tg) = (/52)

2

as N-—— 00, Zlfl, élfé——ﬁo.
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We could continue this process of defining higher-crder probability
distributions and would finally be able to assign the probability that the
function would have a given value of any time ©. All probability density
functions must exist 1f the ensemble of functions is to constitute a random
process.

The first and second probablility density functionms are related by the
equation

oo
P, (f1,t) mng(fl,tl,fE,tg) df, . (/5"3)
— o0

So far, we have defined Pl and PE as functlons of time. However, if
the statistics measured are the same at different measuring times, the
statistics are independent of time and the processes are called "stationary”.
Thus, if in determiriang the probabiiity density P1 we get the same valus
regardless of whether we take the time to be Ty s tg, or t3 say, then the

process is sald to be stailonary in time. We can redefine the above prob-

ability density for statisnary processes to cobtain

_ANy(fy, Afy, N) (/5;9
a NAT, d

Pl( fl)

For the sccond probability density and stationary systems the time dependence
1s not on tl and t2 separately, but rather on the differgnce of t1 and bo e

Then

ANp(Fy, fo, T,N)
- d /35
pg(fly fg, Z“) - NAflAfg 3 ( )

where 7 = tl = tp. In this respect, the second probability density is a

function only of the time increment Z , net of time itself.
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Probabllity densities are useful in establishing average values for

the ensemble. For example the ensemble average is

o0

r~ o4+ fon+ 0t o o+ F
11 iz 13 In _ .
-0
and the second average
— ST ~O0 N )
14 =j ffl £5 ppolfy,f,, T) aff dfipi, (/5—7)
Loo loo

where the ~ means average over all memwbers of the ensemble.
Another method of dealing with random processes is to conslider only one
member of the ensemble over a long period of time. Then the probability that

the member has a value between £y and £+ éﬁfl over a given time T, is

AT{(F, &T, T) g
Pipl(fy) = — T AT (158)

as T—» 00, Z&fl——;o, where AT is the time over which the function has values
between f and £ +Af.

The average value estimated from one member of the ensemble is:

T
-f_xé]—IT—.ff(t) dt ; T-—oo (/5-7)'
=T
where the bar denotes the average of one member rather than an ensemble.

Most physical stationary processes provide identical results under these
two methods of measurement. Such procegses, in which the statistics of one
system over a long period of time are the same as the statlstics of an ensemble
of systems at one instant of time, are defined to be "ergodic® processes. 'An
ergodic process will always be stationary, but a stationary process is not

necegsarily ergodic. We will be concerned only with ergedic processes.
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CORREIATION FUNCTICNS

To make use of the above principles we wili now consider correlation
functions. These functions are related to the second probability density
as we will scon see.

Auvtocorrelation Function

The autecorrelation function is concerned with the Jjoint statistics of
two successive values of a given signal gpaced ¥ seconds apart in time. For

an ensemble, consider the products

£(t) £(t+ )
fe(tl) fg(tl—l— z)

£ () £, (6 7)

where fi(tl) is the value of each member at the time t, and fi(ti%-Z’) is
the value at a time tl-p Z - This Z interval can be taken anywhere on the
records since the processes are agsumed statlenary. The average over the

entire ensemble ig then the autecorrelation funetion and is given by

palE) = ffflfg po(fs, £y, Z) dfy dr,. (/éOJ

fBguation {160) then is a measure of the dependence of the value of the
Tunetion in the future on the value of the function ai the present.
For a single member over a long'yeriod‘of time
T
G407 = & ffl(t) t(t-+Z) at, (16
T
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as T—¥o<w, and Tor ergodic processes

() = B (T

Properties of Autocorreiation Functions

Certain properties of the autocorrelation functicn are readily deduced

from the definition

7
7’9-‘511(2”) = Lim é}fﬁf £1(t) £1(t+2) at .

T—oo oy

(1) The autocorrelation funetion is an even function of Z 3 that is,
$1(%) = C,’sl}_(wZ') . ¢11( T ) is measured by shifting the function Z
Seconds ahead and averaging the product of the original and shifted
functionss ¢11(=Zﬁ is measured by shifting the function backward by

& seconds and averaging in the same way. Since the functions are
averaged over a doubly infinite interval, the time corigin is incegnse-
guential and the averaged product is independent of the directlon of
the shif't.

(2} The autocorrelation funetion of zero argument, ¢11(O), ig the average

of the square of the time function, since ¢11(O) is given by

T

———

. . 2
#.(0) = %ﬂm%{i £1(t} £1(t) av = £°(t} > 0.

{3) The value of the autocorrelation funcilon never exceeds the value fer

zero argument; that is

|#12(2)]< #1a(0)

Again, this is apparent from the definition of autocerrelation since the

maximum value inevitably occurs when the function is multiplied by itself
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without shifting. Mathematically, since fl(t) # fl(t-+ Z’).in'general, we can

write
e () £ (64 zf 2 o.
1
Then,
— —_—
£7(8) + ff(t+z*) T e (s) £,(t+ T ) 2o0.
But flg(t)‘a ¢17(0) and flg(t*k )= ¢ll(o) since the time involved is

inconsequential. Therefore,

2¢,,(0) + 26,,(Z) % 0.
Thus
L

4,,(0) >,'_| ¢,,(2) |

— 2
(L) TFor large & the value of the autocorrelation funcltion becomes (fl(ta .
This is apparent from the fact that for large & the probability functiens

p(fl) and p(f.) are independent and

¢11( z) fp(fl)flf}fl fp(fé)fedfe

[fl(t)] [fl(t)] .

il

(5) If the signal contains periodic componenis {or a d-c value), the auto-
correlation function contains components of the same periods (of a d-c
component) .

Thig pfoperty can be proved as follows: Assume
ﬂ(t) =r{t) + sin W

where r{t) is random.
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Then:

H

éH(ZJ G{ﬁ)-+5;na)é)(rﬁf'+3? +'wacuﬁt+zj)

- = Cb,rta‘) -+ r(t)szﬂmw(f+z*)i +
\_\_____v_‘____,_/

o

+ rit+r)simwt  + smw T Sfyfwi%frT
\_w_,__/

&

= r,,[27) + E% CosSwd

One significant fact concerning periodic cemponents should be noted. Since
the origin of time is lrrelevant in: autocgrrelation functions, the latter de
net contain any information about the phase of the periedic comppnent.

We will now consider some examples of autecerrelatien functiens.
Example T

Consider the random wave form shown in Figure 64. Por this functien, an
event 1s equally likely to be peositive or negative, and en the average over

A £

° | i«A{—;I t

Fig. 64
a long period of time there are just as many positive as negative values.
The function can, but does not necessarily, change sign, discontinueusly,

every /\t seconds.
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Experimentally, the autocorrelation function can be determined by per-
forming three operations:

(1) Replot and shift the waveform by an interval Z . This is shown in
waveform (2) of Figure 65.

(2) Multiply the original, unshifted waveform by the shifted waveform.
The product of the two is shown in waveform (3) of Figure 65.

(3} Integrate the area under the waveform (3) and divide by the time
aver which the integral is taken.

ﬁwﬁ }

| - kot — ("

(z2)

ChV

ACZLAD),

' : : - : > (3)
&

7

Fig. 65
If the shift'z‘l is greater than the time interval At, then the prob-
abllity that f, has the same sign as fl is one-half. This is independent of
the sign of f7, thus there is no correlation between present and future values
of £{t). Since there is no correlation, the autocorrelation function is

> AL

always zero for l[
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IT the shift {Z’lis less than O\, there is at most one positive or
negative value in a At interval. The probability of getiing a change in
the sign of £(t) in one £ interval is —Z:-u Then the autocgrrelation

PANY

function is given as

12(1-Tpe) 3 lTlcot
¢, (r) = o : 1zl >at

A plot of the autocorrelation function for Example 1 is shown in Flgure

66. Thus, the values of fy(t) are correlated for IZ‘l AN R

I Ny
ﬂL
-At At ;:
Fig. 66
vut there 1s no correlation if Z" ) JA

Analytically, if the distribution function of the éagnitudes of £(t) is
known, the probability that f(t) will have a certain value at a given time
is known. Hence, the probability that £(t) will have a value between f, and
flﬁ-KXfl at & given time and then, Z seconds later, having a value belween
fo and fp+ /Af, is also known and is given as po(fy, fp, Z ) 4fy df,. The

autocorrelation function is then determined from

1107 = f f 15, pp(fy, Ty 77) ALy 4f5

as previously defined.
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Example 2

Suppose the function f(t) is given by

fid) < F sin(wot + )

Then the autocorrelation function is given by
T

@, (v) = /;j_‘:oo o fz?s;n (ont+y) Esinlwltsz) + V] J¢
=T

Since the integrand is periodic, the integration and limiting procedure can be

replaced by the integral over one period and dividing by the pericd. Then

2@4%

S;J’L (Wo'ﬁ'-{—?}) S/'}'L[C{Jo£f+z_) +¢j CJ%

LIy =
¢h(z:) - 2 E jz

-

The integration is simplified by the change of variable

wof‘f‘;b'—"li
After substitution of the new variable we get

. 2T+ P
¢, () = 2[; smusm (w+ w,T) du .
¥

By expanding the integrand and performing the integration, the final result is

2.
¢ (v) = S COSW,T

The form of ¢ll(5‘) ig shown in Pigure 67.
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Fig. 67

Cresscorrelation Function

The autocorrelation function, as we have discussed it, has been concerned
with a single kind of signal. However, many times we would like to consider
two different signals. This method of correlation is called "cresscorrelation'.

Consider a system with & statistical input fl(t) and an output time
function f(t), as shown in Figure 68. The system does not necessarily have to

be linear. If no perturbing influences appear in the system, fg(t) will be

statistical Sta zl/'! Zl/'ca/
,f'n/aul" auffu%
S Syede ,
Tig. 68

uniquely related to fl(t) by the system function. If noise and other random
disturbances are introduced by the system, however, Tp(t) and f1(t) will be
only partially related. The statistical relationship between f(t) and fo(t)
could be given by the joint probabiiity distribution function p(fy, fp, Z),

if 1t were known. On an ensemble basis then the crosscorrelation function
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for the two signals would be
¢, (2) = /%(%}ﬁf%)ﬁ(-fjlfhzjd-ﬂ(:)7(,_ s (/63

where ) and f» are stationary processes. On a single member basis, the time

average is

-
= [im na
$.(2) = 1 ZT[{;CHMHZ‘) de¢ . (163

For ergodic precesses, the ensemble average is equal to the time average.
The following properties of the crosscorrelation function are determined from
the definition.

(1) The crosscorrelation function @ ,(Z ) is not an even function. In
general, shifting fb(t) ahead by Z seconds yields a different result than
retarding f,(t) by - Z seconds. [¢ab(3') # ¢ab(‘z—)]

(2) @ (7)) # $a{T). Tt is not immateriali which variable is shifted
ahead, as 1%t was for the autocorrelation function.

(3) Qab(Z') = ¢baﬁ-=z). A shift in fb(t) must yield the same result as
a shift in fa(t) by the same amount in the opposite direction.

(4) Since the origin of time is important, the erosscorrelation function
yields some information sbout the phase shift involved with periodic functions.
Ag an application of the crosscorrelation function to random inputs

consider the following procedure:

The crosscorrelation between input and output for a system is given as

) T
¢, (7)) = i l /76;(74))’5,(51&5)0/6 )
-7

e 2T
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If the system is linear the output function fo( t4Z ) can be expressed as the

convolution integral
j&(f+é’) = ILCUﬁ—(f+a——-A)C}/’k 5 (164,

where h{ ) is the system function. Substituting this into the equation for

¢io( z) gives

gbc'o (z)

it

7 20
i_’:oo g’;.[f;(ﬂ ot //u)ﬂ(ﬂzuz)m

3]

< , T
fl(A)JA g? é;ufﬂi%)ﬂ(f+z~))d{, (165
o -0 -T

The limiting funetion on the right is just the auteceorrelation function of

the input signal with a shift of Z— A. Thus

Pip(T) = [A(A) G, (z-2) d2 (166

and the crosscorrelation function between the input and output for a linear
system with a statistical input is egual te the convolution integral of the
autocorrelation function of the input and the system function.

Assume that the function h{ A) is as shown in Figure 69. And that the
A RV

Fig. 69
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autocorrelation function of the input is as shown in Figure 79, which may be
considered as a good approximation to a unit impulse, (if the width At is

ver 11},
ery sma ) A d)‘:;f.?‘\

1 1p $pelTN

° Z;h A
—pt At , f-at

Fig. 70

Then multiplying the two values at each value of A and integrating gives

$. () = [A(z)qbic.(z—a)d)\ ~ h(myat . (&)
&

This says thern that if the autocoerrelation function of the input is a unit
impulse, the crosscorrelation function of the input and output is approximately
n{Z ); i.e., the system function.

This suggests an experimental method of obtaining the linear pertion of
the time response of & linear system. Consider that we have a nuclear reactor
and oscilliate a contrel rod in and out in a statistical manner with At say
20 msec. If we delay the input by various times ¢ ;, we can multiply the out-
put and the delayed input and integrate, obtaining values of h(Z’i)n Doing
thls for many values of Z?i would give the crosscorrelation function of the

input and output. We would thus obtain the system function.
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The block diagram for such an experiment is shown in Figure T1.

l ‘—U—U‘ stotistica
] ovtput
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Fig. TL

Autocorrelation Function in the Frequency Domain (Pewer-Density Spectra)

In essence then, correlation functions describe the signals in terms
of time-domain characteristics. For many purposes it ls convenient, on the
other hand, to describe certain signals in terms of frequency-domain character-
istics.

Consider a linear system with a statistical input f;(t) and an output

fo(t)o Then

f(e) = [Am%;w—mw . (1)
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The autocorrelation functior of the cutput is

b0 () = /;_"“oo 2Tf~ﬁ(£)-[(%+z—)g/f , (/(;9)

as previously defined. Bubstituting Equation (168) inte (169) for f£4(t) and

the similar expression

7(0(%1“5) = f/z(cr) 7C; (t+7-0) Jo

for fo(t+7), we get

b ey = I [afﬂmm D 4 ﬂlm rr-g) o,
oo T =<0 ZT

(170
Changing the order of integration

$ (T) /A(A)JA/AC@")JO‘ /’”" fyf (¢-2) F (t+T-0) d4.
(171)

But the lipit function is just the auteocorrelation function, ¢il(r4-) o),
of the lnput where the shift is Z+ A-0,

Therefore

b,.(2) :/}:(A)a’hj/};[o")afa' g.(cer-a) . (173

Taking the Fourier transform of both sides of Eguation (172) gives

$,(iw) :/e—deJZ/A(A)f/A/Aw)c/f b (Tir-0) . (173
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—yw (A+a)
Changing the order of integration and multiplying oy e and

rew A +o) .
e gives

, Jw —w —sw( ) -
Booliw) = [AlN) e a/)/lfar)e ?a“/qi.&.[f%)t-f)@ # (3;9 (74

In Bquation (174) the first integral on the right-hand side is the complex
conjugate of the transfer function of the system, HTJCO); the second integral
is the transfer function of the system, H{j(J); and the third integral is the

Fourier transform of the autocorrelation function of the input. Thus,

Poo () = HT(jw) « Hjw) - d’{f (jew)

= [Hew)| " G () , (175)

Equation (175) indicates then that the Fourier transform of the autocorrelation
function of the output ig related to the Fourler transform of the autocorrela-
tion function of the input by the square of the absclute value of the system
transfer fuaction.

The Fourier transform of the autocorrelation function of a random signal
f(t) is referred to as the power=density spectrum of £(1).

Characteristics of Power-Density Spectra

There are several Important characteristics assoclated with power-density-
spectra functions. These are:

(1) #.(Jt) measures the power-density spectrum rather than the ampli-
tude or phase spectra of the signal fa(t}. Consequently, the relative phase
of the varlous frequency components is lest when the signal is described by

means of a power-denslty spectrum.
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{2} As a result of discarding the phase information , 4 given power-
density spectrum may correspond to a large number of different time functiens.
(33 ¢aa(jw) is an even function of freguency,
¢aa(«]w) = ¢a'.a.( -3 W) . 6/76)
This characieristic folleows directly from the criginal definition of

Pan(jW) as the Fourier transform of @ss( Z) and the fact that the autocerrels-

tion functien, gfaa(t') is an even function of 7 . The defining integral for
Fan(IW) is
o
] — "‘le r
Poa (j) = ﬁbaaff)e dz . [/77)
-

The expeonential can be replaced by the trigonemeirie form:

<0 s
Fra (fw) = ¢Mf2’)cosw1‘c/z - J géaa(z)szlrwz‘a/r .
— oD o

Since the second integrand is an odd function of £ , the integral is zerg and

[+ o)
?éaa (jw) = /Ql’aaff) coseo T dE
-0

which is an even function of .

(%) @y, JO) is nounegative at all frequencies. A negative Qfaa( Jw)
would indicate power belng taken from the system.

(53) If the signal contains a periodic component such that the Fourier
series for the compenent contains terms representing frequenciles, (.{)l, &)2,

© c Wy, Paa(JjW) contains impulses at Wy, =Wy, Wy, Wy, -+ - Wy, -W .
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This characteristic ig apparent from the equation

- 00
gﬁaa(jw) = o (T)COSewT dT
—
If f5(t) contains a periodic component of frequency W,, ¢aa(z‘) will contain

a term of the form ajcos W, Z. The corresponding part of . ,(jW) is

fa’2)

%Q(JWJJ = Gy [0S ew, T cosSwT a/a*

&

-t

The right~hand side of this equation is zero for all W cther than (W4
or =UJ1 {vy orthogonality) and is infinite at these two frequencies. The area
under ¢aa(JCU); however, is finite and equal to the power contalned in the

sinusoidal component. This infinite spike of finite area is just the defini-

tign of an impulse.

Crosscerrelation Functien in the Frequency Demain

By the definitien given abeve, the cresscerrelation function 1s given as

o0
G, () = [hex) g, (T-2) d A . (17¢)
-]
Taking the Fourier transform of Equation (178) gives
boliw) = Hejw) @4 (Jo) ; (179)

which is similar to Equation {175) for the power-density spectrum, however,

in this case the phase of the transfer function is included.
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LECTURES NOS. VI AND VII
APPIICATIONS OF GECOMETRIC THECRY TC NONLINEAER REACTOR DYNAMICS

For the first five lectures we assumed that linear systems were of
primary concern. Although many systems can be analyzed by the linear methods
Just described, in the fieid of dynamics, and particularly in nuclear reactor
gystems, Tthe equations involved in attempting to describe the systems are non-
linear. The linear approach i1s not completely useless Tor these systems how-
ever since, as we will see later, under certain conditions there may be a
relationship between the general sclution of & set of nonlinear differential
equations and the selution of its linear approximation.

Nuclear reactor dynamics can be falrly well represented by a set of first
order, space independent nonlinear differential eguations with respect to time
(}j gj, The complete solution of this set of equations is in general a for=
midable, if not impessible task. However, under various simplifying assumptions
explicit selutions of different reactor dynamles problems have been Tound and
have been reported (3 - 5).

One of the most promlnent simplifications that 1s repeatedliy used 1s
the linearization of the dynamic equations, which immediately leads to ciosed
form solutions. ©Such solutions have the important property that they afford
experimental verification by means of oscillation or other "small signal"
tests, without any hazards (6, 7).

In view of the nonlinear character of the dynamic equations the justified
guestion is often raised about the resl value of the linearized or transfer
function appreoach to the problem of reactor dynamics analysis, or, stated
differently, about the connection between the "exact" solution and the one

derived from the linearized model.
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Mathematically speaking this question has a well defined answer. How=
ever, there seems to be some misunderstanding in the nuclesr reactor field.
Conflicting and ungqualified statements like "the linearized equations are a
very good approximation” and "the linearized equatians are an inadequate
representation™ appear very often in the nuclear literature.

The purpose of the discussion today is twefold. First, it gives a brief
summary of seme basic n@tioﬁs of the geometric theeory of differential equations
vhich unambiguously answer the previeous question. This thecry is well known
in the mathematical literature (8) and various of its aspects pertaining te
nuclear reactor dynamics have already been presented (9 - 11). However, it
is felt that the pewer of the geometric theory is not yet fully appreclated.
The power of the methed lies in the fact that the properties of the solutions
of a system of ngnlinear differential ewuations can be visualized 1n terms of
stralghtforward geometric or tepelogical relationships which yield infermation
about the existence of critical points, the boundedness and stability of the
selutions, the existencé of periodic solutipns and the gross interrelated
features of the solutions (maxima, minima, directions of variation, etc.).

Second, we will discuss the dynamic behavior of two reactors describable
by third order nonlinear differential equations by mesns of purelylgeometric
methods. The first is a xenon controlled reactor. This reacter has been
analyzed by Chernick (;g) by means of numeriecal and "clagssieal" precedures
but the present approach does not require lengthy computations or simplifying
approximations. The second is a heterogeneous reactor with two temperature
coefficients of reaciivity which way have opposite signs. This problem had
not been treated so far in full detail.

The investigation of these two reactors brings out the felleowing imper-
tant points:

8. It clearly indicabes the elegance and simplicity of the geowetric
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theory by means of which conditions for boundedness and stability in the large
and existence of periodic solutions are establiished.

L. It definitely shows that the linearized model of a reactor dees not
necessarily contain all the information required for the large signal per-
formance.

c. It implies that even though the solutions may be bounded or periedic
under certain conditiens, this does not necessarily mean that the upper bgunds

are tolerable.

A, GEGMETRIC THEQRY OF AUTONOMOUS DIFFERENTTAIL EQUATIONS

1. The Problem in General

Consider that we wish to investligate a system for which X1, X, " 7, X
are variables of the system; i.e., they could represent temperature, reactivity,

coplant flow rates, etc. Let's define X to be the column matrix (vector)

T
%
L

X
: : (139
X

>
I

n

We will also assume that the x{'s are related in some way on the basis of
fundamental principles of physics; i.e., censervatioen laws, etc. This means
that the variables are interrelated and we may write
Xy : (151)
A4t
where X is a matrix (function of X) and Equation (181) is a sherthand netation

for the set of equations
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—— T a,)(i +a2x2,+& *obi')_'xllx'b-l' » .t!Olt’Xl’f'boo

Let's assume that we can write Equation (181) as a sum of linear and non-
linear terms

C’C,—f = X.(F) + X, (%) : (v

where the firgt term Xl(ﬁ) contains only the lowest order powers of x; and

the second term XQ(E) contains all higher powers of xi. Then there are
values, ,Emi { A, such that the wagnitude of the nonlinear part of Equation
{182) is less than the magnitude of the linear part. As an example, cgnsider

X;(x) = x +y and Xg(E) = xy. Then

Lyl <Pxl+ 1yl .

which ig true if x 6r y or both are legs than unity.
If we consider only the first term of Eguation (182) and form the equa-

tion
d% _ |
P ), (%) , (1 ¢3
this is known as the first approximation. IT Xl(E) contains enly powers of
¥X; to the first order, then a lot of informatlon about the solutien ef Equa-
tion (181) can be obtained from a detailed study of its first approximation.
However, 1T Xl(i) contains pewers of x; equal to ror greater than two, very

little is known about the relatieonship or if one even exists.
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Asguming then that Xl(i} is a linear function, there are two types of
rroblems to be consgidered;

(1) The first approximation is linesr with time dependent ceefficients;
i.e., the elements of the X, matrix are time dependent, and

(2) The first approximation is lirear but the coeflficients are constants
with respect to time.
Both problems have been extensively treated, the first by Picard (1),
?ein&rél(gi), and others, and the second by Tiapunov (13). We will investigate
only the problem with censtant coefflcients and will fellow Iiapunsv's treat-

ment, as described by Lefschetz (8).

2. Stability in the Swall of a System with Linear First Approximatien
The problem of stability for small amplitude displacements is treated by
what is known as Liapunev's first method and is as follows:

We are concerned with the solution ef the system of eguations
%—% = X (%) , (191)
which have eonstant coefficients. Systems of equations with these character-
istics are called autenompus sysiems of equations. Autonomous systems are
particularly applicable to the types of experiments performed here at Spert.
The intreductien of a step change in reactivity means that the external
disturbance is essentially independent of time and the reactor is autonemous .
The questlon of primary importance is stability. Let's rewrite Equation
(181) in the form
i—é = P + Q%) ; (18%)
where P 1s a constant matrix made up of the coefficients of first order terms

only, and has characteristic roots hjj and Q(E) is some function of the vector

X and contains second and higher order terms.
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Consider only the linear first approximation

J ¥ _
*C'/?rpx .

Assume that ¥ = 0 is a solution of both Equation {184) and Equation (185);

i.e.
Q(X) = 0O a el PX = o
X =0 X = o0
therefore
(efi - 0
), '

We then call X = 0 a "critical point™ or "equilibrium point”. Thus, we can
consider x = Q0 as the origin of an n-Gimensienal gpace. In reactor experi-
ments if we introduce a small step change in reactivity, the reactor will
Tfinaily settle out at some fairly constant pewer level. The reacteor is then
eritical at this power level and the value of the power is called a critical
voint for the existing conditions of temperature, flow, ete., in the system
at that time. It would appear that for a reacter the critical peint invelves
a value of x different from zero since the power and other variables are not
zero at the critical peint. This can be taken care of very easily by shift-
ing the coordinates; i.e., by making the varlables be the sum of the critiecal
value and some ircremental value. Ags an examplie, let x| = Al and Xy = Ay
Then we can write

¥ = Mtx

Aot xp

1]

X

and the reactor has a critical point when Xi = 0 and Xé = (., Deing this for

all the variables, we would have

(1$5)

(1§6)
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X,
2
Ys
X = - 5
&
&
/
Xn
and a critical peint weuld be for X = 0, since xi, xé, xé, c e s e, x =0,

We will now censider some theorems from ILiaspunov's first method.
Theorem T

From Eguation (185) if the characteristic roots of the matrix P have
negative real parts, then there is a range iﬁ“g(.A, guch that iQ(Z),<,|§W
and in this range the system described by Hquation (184) is stable.

Here is the first statement of a relationship between the selution of
Equation (185) and the solution of Equatien (184). This says that, if from
the linear firsi approximatien ef a nonlinear system we determine that the
characteristic roots are in the left-half-plane, there is always a small range
of values of X gsuch that, if the lincar approximation is stable in this range.
the nenlinear system is alse stable in this range.

Thus we have found & means of determining if & complicated, nopiinear
system 1s stable merely by examining the behavier of the simpler linear
approximation te the system.

Thg@rem IT

i
Agsume that Q(x) = Z a;x" and that
Z
N#Zmzhg ;o mp 20 ;ome = 1,
[4

Then if all the characteristic rects of the matrix P have negative real parts,
there is a spheroid region R(A), |al X P, in which the solution of Equation
(184) is asymptotically stable at the origin. If all the characteristiec roots

have positive real parts, the selution is unstable {which implies that the
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equilibrium point is & point of unstable equilibrium) and if some of the
characteristic roots have pesitive and some negative real parts, the seolution
is cenditionally stable. For all practical purposes, however, since the
behavior for this latter condition is usually peculiar,'the gystem may be
considered unstable.

The important conclusion that theorems I and IT bring cut is that the
study of the linear equation

&m . —_—
I =P (155)

yields useful information about the sclution of Equation (18k) provided that
one uses this informatien within the amplitude range for which it is estab-
lished. It is exactly this range which gualifies the validity or insuffi-
ciency of the linear approximation and one should not expect the resultis
derived from an investigation of Bguation (185) to have any meaning for large
amplitude displacements.

3. Boundedness and Stability in the Large for Analytical Systems with Idinear
First Approximation ' - ' S R

Consider again Equation (195) with @§(x) an analytic functien. The
boundedness and stability eof the selutions for large amplitude displacements
can be inferred frem a geometric interpretailon of Liapunov's secend methed
which consists in the following (13, 8):

Theorem I1T

Given the set of Equations {184), where Q(x) is analytic, if there
exists a scalar function V(X)} which is definite positive (i.e., is positive
for all values of x in the range of interest) and if the derivaiive gg%i)
is negative, then in a region R(A) of the phase space, the origin is stable.

Furthermore, if V(%D«—ao for x ~—=0, the origin is asymptotically stable.
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Theorem IV

If a scalar function V(x) is defined (not necessarily definite) and

— av(x
appreaches zere for ¥ —=0 and such that di ) is definite positive and for
— - av
{x, < n-, no matter hew small ’q is, ¥{x) may take the sign of diﬁj, then

the origin is unstable.

These theorems are equivalent to theorem IT. However, they afford a
simple geemetric interpretation extremely useful for the purpeses of this
discussion. Suppose theorem III ig applicable; i.e., V(X)) > 0. Let V(X) =€
be & constant greater than zerp and small at a given time. Then € = V{X)

is a closed surface which feor different values ef € , represent coneentric

_ . i av(x) de
ovals which tend to the eorigin as € —0. .If Ty < 0, the vecter

ax=
aE.__.;Lzacy.‘i‘n*i:s inward aleng every point of V(x) = € , and hence the surface

collapses toward the origin. This is the meaning of stability.

A surface collapsing means that the trajecteries xi(t) must have a nega=
tive slope; l1.e., the tangent te the trajectories must point inwardly toward
the origin. If the surface were te expand, the tangént to the trajeetgries
would point cutwardly. When theorem IV is applicable the vector gzé-paints
sometimes putward and sometimes inward. Thusz, the system is maniféstly N~
stable.

Reversing the argument, one might state that if there exists a surface
surreunding the critiecal peint which is large enough te enclose all pessible
displacemenis, and is such that the vecter field.dEYdt crgsses 1t every-~
vhere inwardly, then the solutions of Eguation (184) are bounded. If the
eritieal polnt is stable in the seuse of Liapunov, the trajectories xi(t}
coalesce to the critical poini. If the critical point is unstable, the

gystem may admit periodic solutiaens.
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The power and elegance of this interpretation will become more evident
when the preblem of boundedness and stability of the xenon contrelied reacter
and the dynamics of reacters with two temperature coefficients are discussed.

In summary, if the selution of the linear approximatien of Equation {184)
is stable and the sclution of Eguation (184) is bounded, then the selution of
the latiter is also stable. If the solution of the first approximation is
unstable, this does not necessarily mean that the solution of Eguation (18k4)
is unbounded vr lacking periedic closed paths. These results are self-evident
since itwe nonlinear systems may have identical linear appreoximations bmt
different nonlinear terms, aand the large amplitude behavieor 1s determined by
the nénlinear terms and not the linear approximatiens.

L. TFExistence of Periodic Sglutions of Analytical Systems with Linear First
Approximation ' ' -

Conditiong for the existence of pericdic selutions of autonomous systems
have been established by Liapunoy (%g), Malkin (;é),fand-Pgincaré'(}Zjﬁ They
are based on the principle of analytic continuetion and are extremely diffi-
cult to implement in any practical case. These conditions will net be dis-
cussed here, but are presented in Reference (8). Suffice to note only that
the existence of periedic solutions is based on some characteristic proper-
ties of the coefficlient matrix of the linear approximaifion and bpundedness
of the seolutions. This indicates that the linear approximation er transfer
function approach is useful in determining the existence of peri@dic solutions
but not adeguate by itself.

As a substitute fer the general conditioungs for the existence of perigdic
solutions, Poincaré's method of sections and Brguwer’'s fixed pgint thesrem
will be considered because they are most pertinent to the purpeses of this

discussion.
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Consider a closed regicn, topologically equivalent to a solid torus,
free of critical points and such that the vector field dxi/dt points inwardly
at every point of the surface enclosing the region. In opther words, con-
sider a tereidal trap feor trajectories xi(t) that lie inside it. Assume
that the trajectories intersect a certain crosg section Sl.of the tgrus
without centact, that is without ever being tangent to it. This wmeans that
the vector field dxifdt intersects Sl at points Q, Q' . « . and defines a
topological mapping Q-H»Q'of 5, into itself. TIF the cross sectlen Sy has a
fixed point P, nemely if P ig mapped inte itself, then the particular tra-
Jectory that cerresponds to P—P is closed and therefore periedic. This
is Poinearé’'s method of sections.

In additien, 1f a simply connected section 8¢ is wmapped into itself by
means of a continupus function, the mwapping possesses at least one fixed
point and consequently it admits at least eone closed er pefiodic path.

This is Brouwer's fixed point theorem (18).

Poincaré's method of gections and Brouwer's fixed peint theorem prove

very useful in the geometric analysis of nonlinear differential equations

ag will be emphasized in the subsequent examples.

B. DYNAMICS OF XENON CONTROLLED REACTORS
1. The Model
The reactor model is the same as the one considered by Chernick (12)

and is describable by the following set of equations:

o -
St e (194)

(1%7)

>4

;o= 45

¢ G




A1l symbols are defined

= ;‘43 - An Ca (188)
= Y0 - Xd + AT - X (18%)
= 409 - A T . (190)

in Reference (12). The system of Equations (186-190)

admits a critical point (excluding the one at the grigin):

b

Cdo Ay C Jo 0p
X =
0}(‘}-" Cgo) G;C

%5'6; dkﬂ | (?n(w = Eiﬂufgfi

jias = }\(' )\hZ‘

provided that y =y, + ;3 > ¢d,. No eritical point existis when y ( cd .-
X 1> ) o

IT the delayed neutrons are considered gnly through their effects on

the neutron mean lifetime (%@) and the other wariables are meaguréd in terms

of their eguilibrium values, the system {186-190) reduces to:

3¢

Qg‘ﬁ, Q'Q_ Q,l
Rl e L S P

where:

R
il

NS

o[ 1 -x] ¢ (1a)
A LAG +BT -¥dx -X] (192)

A Ld-T ] (163)

Zé = equivalent neutron lifetime
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% x . 5
0{___ i . - t _ Coo
prod R = Sk
o TR ¥ = |

2. Stability of the Critical Point

The type of stability at the critical point can be investigated by con-
sidering the linear approximation of Equations (191-193).
The characteristic eguation of the linear approximation is:
% FIN LY 0 ]8T + Ay D (448 +0, (*=0)] s + )¢ Dy t0=0
(fﬁ@
or, what is egulvalent:

PR Lo
of - ¥

IF e (d—XJSESH«x(oHﬁ)][M);] =0 L 099

The roots of Equation (195) can be determined by means of the root locus

method. Consider two cases:

& A>Y (yx>c&0

The root locus 1s shown in Figure 72. The critical point is stable
when the asymptote is in the left-half s-plane (Figure 72a). This is true

when:

T CEDORDY . (199

Equation (196) is fulfilled when:

_ %x : Af
Y SERT TR "
a= CT o (1HA)Y -] (14%)

Ty -+ A "
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(b)

L), —Ai / . o‘

/
(ilfff

(¢)

Fig. T2
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If condition {196) is not %true, the asymptote ig in the right-half-plane and

the critical point becomes unstable when (Figure 72b):

y (194)

CA! T Pt A — A
¢ =AY W =P

. (200)

Equations (198) and {200) are plotted in Figure 73 for A

L =2.09 x 1077 sec™t,

')1 = 2.87 x 1077 secml, y = 6.4 x 10'2, Z, =0.1 sec., ¢ =1.5. Notice

that the two plots are practically identical.
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The root locus is shown in Figure T2c. The conditions for instability
are given agaln by Egquations {199) and (200)}. Simple inspection of Figure T3
indicates that since the critical A{ Y, the critical point is always un-
stable when o Y.

In summary, the linear approximation yields arn unstablie critical point
when the reactivity coniroiled by xXenon is greater than what is given by
Equation (200) (Figure 73) and in particular when it is greatér than the prompt
xenon ylield. Most of these results are also given in Reference (1@).

3. Boundedness and Stability in the Large

The boundedness of the selutions for very ldarge displacements can be
found using the geemetric interpretation ef Liapunov's second method. More
precisely, one investigates the existence of a closed surface in the phase
gpace (¢, I, X} which encloses the critical point (1, 1, 1) and is intersected
by the trajectorigs inwardly.

Consider first the case when ¢ > ¥ and the: surface shown in Figure Tha.
Thig surface consists of eight mutually intersecting piane surfaces defined
as follows:

Take the arbitrary point Ala,a,a) with a > 1. Define the plane surfaces:

ABCDFGA - Plane E1//I = 0 through point A

ABKA: Plane E, defined by § - I =0 (X2 a)

ATXKA: Plane By defined by X = a (¢ > 1)

ATMGA: Plane F), defined by ¢ =a (2 2 X 21, ¢ 2 I)

BXCB: Plane Bg defined by « $+BI - X = -a (X< a, I £
CDFONKC : Plane By defined by § = 0

KIMONK: Plane E7 defined by I =0

FOMOF ¢ Plane Fg defined by ¢

aX (x£ 1)
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Fig. Tha
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It is evident that this surface does enclose the criiical point E(1, 1, 1).

A1l the trajectories cross the surface inwardly because:

ar
at

ag

dt

dx
at

ag

dt

§€(¢2+ Fr12) £ ©

s
ar _
<O;a_E 0

{0

{0

¢=o§£¢i=o

aT
at

Finally

crogses:

dt

> 0

on El

8143 E2

on E3 provided that a is large
on Ek

on E5

on Eg. The trajectories come only arbitrarily
close to Bg, because o} ¢ 0 has no physical

meaning.

on ET

on Eg observe the following: ‘The surface S5:

the line:
the line:

the line:

0<¢+[3I -~ ¥Y0X -X = O

I

¢
¢

=0,X=1 at¢=1/(a -¥) > 0
=T =X at f =1 =X=1
=0,X=1 atI=21/ > 1

If a is chosen large, the plane Eg lies to the left of the surface S and

therefore:

ax
It > 0 on EB‘

(zo1)



- 166 -

In addition, the projection of the vector ég, QE, ex on the normal of Eg is:
dt” dt’ dt

o= we(1-x)d —aly[de +8T - v ox ~X]

:<1[(Axa¥~a%)xlw(hxda-wo—)x)x~)wpI]<o
(2109)
provided that of >y and a large. Consequently the trajectories cross kg
inwardly.

In view of the fact that the only regquirement for the existence of the
surface of Figure Tha is that a be large, it is evident that such a surface
can be made o inelude all trajectories and since 1t is intersected inwardly
by all trajectories it censtitutes a trajectory trap. Conseguently, when
4 >Y , the soclutions of the system of Equations (191-193) are bounded.
Furthermore, if the critiecal point is stablie the solutigns are asymptotically
stable while if the eritical point is unstable; the system admits, in general,
periodic seolutions as it will be shown in the next section.

Next, consider the case when o] ¢ ¥ and distinguish the follewing ranges:

a. &)o(X'O() '
'hg'x < (%)((Cd; <'jx+CA£Z_e)

Consider the closed surface shown in Figure 74t which consists of seven
mutbually intersecting plane surfaces defined as follows:
Take the arbitrary point A{(@ =b, I =Db, X =p b) with b ) 1. Define

the plane surfaces:

i

ABCDA ¢ Plane Ey defined by X

B

ADFGHA:  Plane B, defined by I =1b in the region I > ¢

CDFOC : Plane E;  defined by ¢ =0

CBKIOC : Plane Ej  defined by I =0
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FCIOF:  Plane Fg  defined by ¢ =aX (a < b, X <-%)
GHKLG: Plane Eg defined by X =d < é%
ABKHA: Plane E;  defined by g - E%% I =

This surface does enclose the critical point E(1,1,1). All the tra-

Jectories cross the surface inwardly because:

To o =®

To see this clearly consider again the ruled hyperboleid S:

(201 a)

L3

af +pI - ¥PX - X

0
A
.

plane I = 0 along the hyperbolic branch Omn and the plane I = b along the

This hyperboloid has an asymptotic plane at X £ 1 and intersects the
hyperbolic branch Dpg. For all points te the right of this surface dX/dt £ 0
and therefore the same is true for plane Eqe

dl

it {0 on B,

ag . A . .

i o, ¢ =0 on BEy. The trajectories come only arbltrarily close
to Eq because # ¢ O has no physical meaning

dT

I » 0 on ky

dg ¢l dX

The prajection of the vector (& &L & on the normal of plane E- is
projectio So W normal of p 5
negative procided that a is large enocugh and a range of X smaller but arbi-
trarily close to d/x is considered (see Bquation (202). Consequently, the

trajectories cross E5 inwardly.

dX

T >0 on Eg since it 1s to the lef't of the hyperboloid S.
Finally, the projection of the vector (gg, dI, Qﬁ) on the normal of plane
dt dt dt '
ET is:
: b -a 202a
Py = W(1-X)F - —5— M -T) o (2020)
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provided that:

aJo(l - X) b -a

X7 4 = {1 forX>ad . (ZOZB)

In view of the fact that the range of values ¢ ,f3 , ¥ under consideration
are such that:
two (¥ - o)
Aoy

and d can be taken arbitrarily close to %/¥ , conditions (202a,b) are readily
satisfied, and thé trajectories cross plane ET inwardly.

Since the only requirements for the existence of the surface of Figure Thb
are that a and b » a be large, it can be immediately concluded that the reactor
power is bounded for ¢ d_ £ ¥y + ¢ 7&'3;

b. top { ¥-d)
Ay 2V (ChorYx e NTe)

In this case the reacter power is unbounded because no closed surface
surrounding the critical point can be found. In faect, the power diverges

either monotonically or in an escillatory manner.

i a1 ax
dat’ dt’ 4t
positive or zero components asymptetically. Inspection of Equations (191-193)

Monotenic divergence is possible only when the vector ( ) has
reveals that the only possibility is:

X = constant { 1 —_— =
at

The solulion X = constant is admissible when the cross.:section of the ruled
hyperboloid S (Fquation 201a) by the plane X = constant < 1 has a slope equal

to the asymptotic value of dﬁ/dl. Consequently:

W (1 -%) g -y+A(F -1) B =0
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or XL-X[} +‘%i +'d] + Eiiﬁiﬁl — Al %

o oY i

For ¢ —»=o0 this equation admits positive seolutions smaller thsn unity enly whens
Cdy =RJTATI tyx e T,

When y.+c Ay T, < e d <2 m + Yy =-¢A; T , monotonic divergence is not
consistent with the set of Equations (191~193) and all variables @,X,I diverge in
an gscillatory manner.

It should be emphasized that all the previeus resulis have been derived with-
oult any approximaiiens or tedious computatlons, as opposed to other appreaches to
the problem. Furthermere, the existence of bounds dees net necessarily imply that
the bounds are telerable. In faect, they may be extremely large.

4. Existence of Periodic Solutions

The guestion of existence of periodic splutipgns can be established by means
of Poincaré's method of sectiens and Breuwer fixed point theorem. Tg this effect
investigate the existence of a toroidal region, not containing the critical peint,
whose bounding surface is intersected inwardly by the trajectories.

Consider first d.>‘¥- Notiee that feor all values of o > ¥ one of the
characteristic roots of Equation (195) is always real negative {Figure 72a,b),
say “Sl(sl_> 0). This implies that no cleosed surface can be found in the neigh=-
borhood of the critical point which is crossed outwardly by the trajectories
because, for =51 { 0, there are always two trajectories approaching the critical
point. However, a small open ended cylindrical surface around the critical poiﬁt,
intersected outwardly by the tréjectories does exist when the former is unstable.

To prove this, proceed as follows.
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Consider the system of Equations (191-193) and transfer the origin of the

phase space toe the critieal point. Thus find:

"

gr - "Wk - wo $X - (203)
%‘XJ Ax[(d—k’)(b +BT —(Y+1) X = ¥X] (204)
E= NIo-T] (205)

If the critical point is unstable, the characteristic reots of the linear approxi-
mation are in general:

B = =8y s =ukxjv 81> u, ¥ >0 (206)

A linear itransiermation of ¢, I, X into-¢l, Il, X1, by means of the medal matrix
that corresponds to the characteristic roets reduces the linear appreximation to

its normal form and Equations (203-205) to:

dgy
- mhth (207)
dXy
= =gk, + vL o+ T
dt 1 1 e (2087)
di .
—2 =% + uly + B3 (209)
at
are ) . R
where f; second order polynomials in (@, I X0
Define the cylinder
ol
C:-X"}Z_-f-ll)O (2_’0)
Notice that:
ac _ 2 2
€ = ouxg % 2uT] + 2(X f, + I7f3) > O (z )

because XqIp + Ilf3 is of third order in ¢l’ Il’ %, and fer sufficiently small
values of the latter, the first two terms in the right hand side of Equation (211)

dominate. The meaning of Equations (210} and (211) is that there is a small
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neighborhood arpund the critical point in which the cylinder C is intersected
outwardly by the trajectories.

The direction of the axis of the cylinder is determined by the directienal
cosines with respect to d, I, X of the principal axis ¢l’ which corresponds to

the characteristiec root =57 . These cosines are:

[5i - e (d+p)]0s - ne ]

CosSwl, =
) s nlas@) 50 14 N2l -l p) 1o A D s (a-¥)]*
- [51'"}\)((0(‘1'/3)-_5[5!‘-)\5] (Qla)
O
Cos o, = "Xi[sf"gx(d+ﬁ)]
cos oy, = )x[k"_;f(d"‘w:[

From Figure f2b it is evident that when the critical point is unstable:

Ax(d‘*ﬁ)(Sa(%“ (213

Therefore, the principal axis ¢l and the cylinder are oriented as shown in
Figure 75.

Next, extend the cylinder by two funnel-like surfaces beyond the equilibrium
point as shovn in Figure 75. The funnels consist of three mulually intersecting
planes:

EPQE and EP1Q E: Plane E9 defined by @ = I

ZQRE and EQyR{E: Plane ElO defined by DI+ X =b + 1 (b > 0)

ERRE and EP{R1E: Plane Eq; defined by =-cf +X =1 - c (c > 0)

Require that the slopes of planes E1n and Eq; be such that the principal

direction ¢l is inside the funnels, a condition that is easily fulfilled.
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Now, all trajecteries cross the funnels outwardly because:

ag
dt

AN

< af .
0O for X >_l and FEy 0 on E9

dx ag £

T %O and. = %O for X3 1 on E10

aX d e £ .
T %() and é% 2(3 for X$ 1 on E;;, however the slope of Ey; can be

decreased as in the case of Eg (Figure Tha) to have the trajectories intersecting
outwardly. This does not conflict with the reguirement of the directienal cosines.
Superpesition &f the surfaces shewn In Figures Tha and 75 results in the
eritical point free toreidal regien that was-sought, if the velumes of Figure Tha
falling inte the funnels and the cylinder as well as the origin are excluded.
The exclusion of the origin is straightforward because one of the characteristic
roots there is positive. Simple review of the behavior ef the trajecteries on
the planes E; through E;| and the cylinder C immediately reveals that the bound-
ing surface of the torus is crossed by the trajectories inwardly everywhere.
Therefore the topelegical torus censtitutes @ trajectory trap.
A typical cross section of the toreidal reglon by the plane I = 1 is shewn
in Figure 76. Two simply connected sections 8; and S, result. Observe that
any trajectory that ié originally in the torus is {rapped there. Furthermere,
it intersects the section 8, towards the plare of the figure, along the positive
I direction, (dI/dt > O en Sy) and the section S, away from the plane of the
figure along the negative I direction (dI/dt ¢ 0 en Sp). This implies that a

trajectory starting from a point (@

or I =1, X} on 8, moves away and cannot

return to S along the negative I direction, ete. Similar congiderations of

. . af dar ax, |
the signs of the vector field (3%, FF, gt) in the various regions of the torus
lead to the overall cenclusien that the trajectories circulate around the toruas.

Therefere, the simply connected section 51 is topolegically mapped inte itself

by a continuous vector field which circulates in a region free of critical peints.
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Acecrding to Brouwer's fixed point thecrem, the wapping possesses a fixed point,
or, the reactor admits periodic solutions.

Similar arguments apply when yyx { cdgy (¥x + C Ay T and 1t is concluded
that the reactor admits periodic solutions.

In summary, when c &5 < yx + ¢ At T and the critical point is unsiable,
the wenon controlled reactor oscillates. The oscillations may be sinuscidal
or of the relaxation type as discussed in (%g)u It should be pointed out that
the existence of the solid torus is not adequate topology to guarantce elther
the unigueness or the stability of the periodic solutions. Such gquestions can
be examined by means of the general theorem of existence of perlodic solutions
which is beyond the scope of this communication. Also 1% should be noted that
the existence of a negative characteristic root implies that some exceptional
trajectories may indeed converge to the critical point even when the latter is
unstable.

On the other hand, when Yy t C Ai Ze {c J;, no clesed surface surrounds
the critical point and the reactor power is always unbounded {Figure 73). The
unboundedness manifests itself elther by diverging oscillations or by a monecteon-
ically increasing power with a bounded xenon concentration as already discussed

in section B.3.

C. DYNAMICS OF REACTORS WITH TWO TEMPERATURE COFFFICIENTS

1. The Reactor Meodel

Two~-region reactors with two temperature coefficients of redetivity have
been already analyzed (9) by means of Liapunov's second method. However the
requirement of existencé of a Liapunov function may be over restricting. Here

the problem is treated in all generality.
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The reactor model is assumed independent of spatial coordinates and
delayed neutrons are neglected. The reactor dynamics, with respect to step

changes of reactivity, are describable by:

%% Y (214

1]
dry _ X , S
& 7= T8 - 4,) - n(Ty - 1p) (21%)
t
dT
2 t 1 1
&, = L - gy) +n(Ty - T,) - (216)
1 4 !_ 13 i
PL= Po+ Ty + 750, (277)
whetre:
EiA = heat capacity of ith region
h = overall heat transfer coefficient between regions (1) and (2)
N; = fractional power delivered to 1P region (M1 + 5 =1)
!
rq = temperature coefficient of reactivity over neutron lifetime
PC> = step input over neutron lifetime
Ti = average Lemperature increment of ith region
wTé = power removal
(5 = DPower
¢0 = steady state power before step (30 is applied .

A simple change of variable:

N 1 1] Q)S)
T, = Ty + byTp [218)

where:
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reduces the system of Equations (214 - 217) into the form:

% - o

(220)
aTy
at

i

al(‘{?s - ¢O) - ngl (2,2-})

dT2

dt

il

aplf - 9;) - el “ ; (222)

PL = 0o+ 7T+ 5T
(223)

with:

B S :
1 El i 52 7 i EZL

Ry No
1"*b{5—
2

1 1
r2 - rlb2 rlbl - r2

L by =Dy 2 by =Dy

The coefficlients g; are always positive. The coefficients a; can also be
assumed positive because, if a; were not, a simple change of variable T; —> - Ty

would result in & system with positive coefficients.

The system of Equations (220 - 223) admite a critical point:

£.g
¢0-0 = ¢O - o t< ()= 0O
) _ al(¢°° - FEEo) 0 N a’g(¢ao = ¢O) ,
oD ' 200
1 &, &
If the variables are measured in terms of their equilibrium values,
Equations (220 = 223) reduce %o:
d e —
é%“ ¢ (z2%)
ar ¢
L 0
—==g{f -1y) + gL (f - 1)
Frai! A (226)
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P
T gl - Tn) + & b - 8, (¢ - 1) ¢ 7)

.8,

222 (T2 = l)] (Qw = QSO) (QQ’B)

181 |
P‘J —g;‘(’l'l « 1) =

For the purposes of the subsequent discussion ¢o 1s agsumed equal to zers.
This is done for mathematical expediency and dees not involve any less of
generallty.

2. Stability of the Critical Point

Proceeding as in the case of the xenon econtrelled reactor, it 1s found
that the characteristic equation of the linear approximation of Bguatiens

(225 - 228) is (g, = 0):

r.ag. +r.a.g
1187 _2..1}2 o (229)

s(ste))(ev8) - fog (7187 1p)) {Eﬁ T8+ T8,

The root loci of this equéatien are shown in Figure T7a, b, ¢, which indicates
thats

a. The critical point is sitable when

: : g)
r1818) T ToaxE, < 0 r188 + Tpdsg; 0 (230)
b. The critical point is conditionally stable when
ria18y + rp8sgy > 0 | r1818y + Thfsgy L0
g < 81808y + &) (22/)
g 7 & o e

818 T TpBalp
(& + 52)(1"18*132,1~ To8s8y)
Po < r8q81 + Toloto
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I IESLO Jw}l
i
- 19,9, * 1180, - Nt + R4 q,
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c. No eritical point exists when:

T1848, + T58,8) > 0 ( 232)

In summary, when ry, ry are positive, the linear approximation admits

- unstable solutions, when fl, r, are negative.it-admits stable solutions and
when f1_> 0, T ¢ d: if condifions (230)_are‘9atisfied, the linear appfoxima-
tion admits stable solutions for all values of7¢cm (viz: PO); while if condi-
tions (231) are true the linear approximation admits stable solutions only for
a limited range of values ¢oo . These results have‘also been presented in (gg).
In an actual case the previous consitions can of course be expressed in terms
of the temperature coefficients of reactiwity, etec.

3. Boundedness and Stability in the Large

The boundedness and stability of some solutions have already been iﬁvesti-
gated. More precisely, when ry, 7, { O or canditidns {230) are sétisfiéd the
-reactor 1s asymptotically stable (2). —Hoﬁever; nothing has been reported on
boundedness and stability when cenditiéns (231) are satisfiea. In this case
geometric theory is very helpful.

Assume r{ ) O, Iy ¢ 0. Consider the phase space (¢5‘T15 T,) and the
arbitrary point A(b,b,b) with b % 1, shown in Figure 78. Define a closed
region by the surfaces:

0 through point A.

il

ABCDA: Plane E,//T,

ABFGNA : Plane E,//¢§ =0 through point A

ATMINA:  Plane E3//Tl 0 through point A

0

i

BCOHEB: Plane Eh defined by Tl
KIMOHK: Plane E5 defined by T, = 0
CDMOC & Plane Eg defired by § = 0

KINGK: Ruled paraboleid Ey defined by:

18 Folo o
b-1~-1Inb z[ﬁ -1 =1n ¢ a'ég—g(‘l'lﬂl)g - 27(g Tpy~1) j (233)
1 )

b=
Pl
t
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FGKHF: Plane E8 to be determined.

Notice that this region dees enclese the critical point and is intersected

by the trajectories inwardly because:

fﬁ%-(o E
it on Eq
§%< <0 on E2 because the boundaries GN and GF of this plane are to
the right of the plane PGQQ, G PP defined by:

r.a Tr'na.

1%1 272
——éI“-(Tl—-l)‘}- (T2=1)=O ‘_ ng_?,‘,l)
arT

1
— {0 on B
& ¢ 3
ar
L >0 on E
dt
4T

2
— >0 on
e 2

ag _

¢ = 0, ac - 0 on E6. The trajectofies come onity arbitrarily close to
¢ = 0, , because ¢ < 0 has no physical meaning.

The ruled paraboloid E7 is intersected inwardly if the fTollewing conditions

are satisfied:

&.

if:

Ly be positive. Siﬂce-¢ -1 - 1n ¢ is always positive, this is fulfilled

Tl - 1

—— ( 235)

2

dLl/dt be negative. It can be easily shown that:

Fodo

(1, - 1 + (T, - 1)° (256)
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This is negative if:

(237)

123 %)

provided thai rlal-l- ro8s 4 ©. The intersections of the parabeleid with the
plane @ = b are the lines:

Ty

L (23%)
T2=l

1t

Conseqguently conditions (235) and (237) are readily satisfied and furthermere
GN and GF do indeed lie to the right of plane PGEQ G PP (see inegualities
(238}).

Finally, for b sufficiently large, the slope of plane Eg can be adjusted
so that the trajectories cross it inwardly. Indeed, the directional cosine

with respect to §, of the vector field (dg/at, ary/at, dT,/at) for large b is:

Jervqr +er

and has & maximum value when P is evaluated at the peint

coS o

& = (240)

A _ 2 ' =0
K(¢ - b) T]_ - l"’_\/-reaggl/rlalgg} T2 - O)‘
the
If the plane E8 fermg an angle wi.thlgéﬁaxis smaller than the one cerresponding to

ces o QS gax’ then E8 is crgused everywhere inwardiy by the trajectories.
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This completes the determination ef the closed region. Taking b as large
as desired, all trajecteries can be Included in the region and cannot escape
from it. That is, all selutions are_bouﬂde&ﬂ

In conclusion, when Ty > 0, rp L0, and_rlalggfprgaggl <0, rya+rs8, L0
the solutions of the system (225 - 228) {(with ¢o = Q) are bounded, regardless
of whether the critical peint is stable or nei. In fact, when the critical
point is stable, the two regilen reactor is agymptotically stable and when the
critical point is unstable periodic solutions may exist. The latter problem
ig discussed in the next sechion.

When ri8q + I'ndy > @ it can be edsily shown that no cleosed surfsce can be
found which is intersected everywhere inwardly by the trajectories, Qonsequentm
1y, the solutiens are unbounded. It is interesting te note that both in the
twe reglon reacter and in the xenon controlled reactor, when the critical point
is unstable and the characteristic loci are as shown in Figures 72¢c and TTe,
the reactors are unstable in the large. This problem seems to be related to
the structural stability of third ¢rder nonlinear systems and will be dig-
cussed in a fubure communication.

h. Existence of Periedic Selutions

The existence of periodic selutiens, when the reactor is bounded in the
large, is again investigated by means of Poincaré's method of sectiens.

Notice again that one of the characteristic roots is always real and
negative, say ”Sl(sl 5> 0). Clearly, the existence of a torcidal region free
of critical peints is to be investigated.

Consider the system of Equations (225 - 228) and transfer the origin to

the critical peint. Thus find:

ag _ S s N |
L -9, 5t Tl D ((2%/)
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ar,

= =g (f -T) (242)
dT2
el - (243)

When the criftical peint is unstable, the characteristic reots are
g8 = =5 g =u ktjv Sl, , ¥ > QG {(2¢44)

The directignal cosines of the prineipal directien corresponding te the

characteristie rogt -5 ares

(51‘"?-1 )(51’9»9.)

Cos 0(¢ =
- Z 2
J(5i-9)7(5,-4,)%+ 9 (51-9,) + 9, (s,-9,)*
(s -9,) s ~.)
4 2¢5)
5 (
'COSO(T‘ - - ﬁ:(S:‘ %2.}
D
5, —
cos dq = - M
! D
Neotice that gince &1 7 & (r2a2g1+ reazgl)/(rflal-?‘ rgag) > 5 > 81+ 8,
this direction, drawn from the critical peint E, lies in the region:
! N y
T 20 (24¢)
2 1818

and is sheown in Figure 79 aleng with seme typical planar cross sections of the

phase space.
Plane (1) // to T, =0
Plane (2) // to T, =0
Plane @ // te 525 =0

r.a T8,
Plane @ // to %l (Tl ~ 1)+——2—§(T2 ~1) =0
&1 &2
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Fig. 79
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These cross-sections indicate the general pattern of direction of the vector
Tield at various regions of the phase gpace. On each planar cross-secition
there is a dividing line (dotted line) which divides the plane inte two regions
intersected in oppeosite directions by the trajectories. The directien of cross-
ing is indicated in the figure. For example cross-section (1) (plane abed) is
crossed along the pesitive Tl direciion over the region abe and aleng the
negative Ty directien along the region acd.

Simple inspection ef the directlenal pattern reveals that no surface can
be found which encircles the principal direction ¢l and 1 cressed outwardly
by the trajectories. Conseguently, no toreoidal surface free of critical peints
can he defined and no pericdic seplutions exist. The boundedness of the sglutiens
implies that they eventually converge te the c¢ritical point aleng the principal
direction ¢l in spite eof the fact that the critieal point is unstable in the
smail.

In summary, when r 8 + TpBy £ 0 and the critical polnt is unstable, the
reactor variables are bounded but ne perigdic splutions exist. When
ria, + ry8, > 0 the selutions are unbounded. The results for the linear and
nonlinear behavier of the reactor both for small and large variations are
shown in Figure 80.

It should be peinted out again that beundedness of solutiens dees net

imply tolerable selutiens.
D.  CONCLUSIONS

A very brief review of the geometric theery of differential eguations
has been presented in an attempt to clarify the relationship that exists
between the "small" and "large" signal behavior of nuclear reactor systems.
The theory is i1llusiraied by two gpecific examples, the xenon contrelled

reactor and a two~region reactor with two temperature coefficients of reactivity.



- 188 -
37 %

Unstoble

>

A% &)
S4able —

Ui bov Mcfecl ‘For

A\ La rge Displacements
\[3 Bovinded

R So'tuHipus
No “\MH: '(',L’c_leg

<G
1]

Ums%able

rl R =TT

la \‘ IEQ
Stable g 28,

5%

/
/ /1
O

Fig. 80.



- 189 -

It is emphasized that the "small” signal or linesr approximation is useful
when uged within a definite range of amplitude wvariations of the dependent
variables, the magnitude of the range being defined by the nonlinear terms.

It is shown that the boundedness of the "large” signal behavior is in
general dependent on the nonlinsar terms while the stability of the selutions
ag well as the existence of periodic gscillatiens depend both en the linear
approximation and the noniinear terms.

In summary, the linear or transfer function approach to reacter dynsmics
does not contain encugh information to predict the performance of reactors
when large power level changes are involved.

Both for the xenen controlled reactor and the reactor with twe temperature
coefficients of reactivity, conditions for boundedness and stability and
existence of periodic solutions are derived by simple geometric considerations
and without any appreoximations or lengthy computations. The entire range of
characteristic parameters and pertinent dependent variables is covered.

The analysis of these two reactor types clearly indicates the usefulness

and elegance of the geometric theory in the fileld of nuclear reactor dynamics.
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One way to perform this transformation is through orthogonal expan-
sions. We consider a complete set of orthonormal functions and denote each
member of the set by Qi(t)n Orthonormality means that if the range of ortho-

normality is from O to T, then

~
fc;é,(%) d)dt = 4, =

{ - = m

where d;m is the Krenecker delta. Completeness mesnsg that if we expand a
function in terms of this set of orthonormal functions, as more terms are
used the error i1s decreased in the least square error sense. As was s3id be-

fere, we want to express a function of the past time in terms of a function of

the preseni time. Then we can write

(42
X(£-2) = > uitd) g @, (248
4

where ui(t} is a function of the present time. Thus we have writien the func-
tion x(ytxxzﬁ as a series, each term of which contains one member of the ortho-
normal set and a coefflcient. The ceefficient ui(t) ig a functien of the
present time, and if we want this expansion to be complete the coefficients
have to be the Fourier coefficients which are given by

e i

H
e () = X(¢t-7) b, () dz . (2¢9)
[#]
Now what have we accomplished? First, we have succeeded in determining
a set of ceeflicients ui(t) which are functions of the present time. Second,
if we do not want to take an infinite number of terms in the series, then

when we truncate the series we have a least squares spproximation and can
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estimate the srror due to truncating the series by

€ =4 - > uww .

NEARER

Third, instead of using values of x(t - 7} we can eguivalenily use the uy

These Tunctions are eguivalent to %x(t = Z°) in the same sense that the Fourier
coefficients are equivalent to a function or in the sense that a logarithm is
equivalent to a number, etc. Finally, we realize that we can reproduce the
coefficients ui(t) experimentalily. As an exasmple, consider the following:
Suppose we have a linear gystem whose system function is one of the members of
the complete orthonormal set. Thus we can bulld up a linear system whose system
function H(t) is a member of the complete set. Suppose we excite this system
by an input x(t). What will be the outpui? We can visualize the system as

shown in the diagram (Figure 81). The ocutput is the coefficient ui(t).. Thisg

XL g ) s i )

Fig. 81

ig %true because the convolution of the input with the system function is the
output, and from Equation (2L9) this is the coefficient ui(t).

To iliustrate that it is possible te reproduce the coefficlents ui(t)
experimentally, consider the orthonormal set to be the Laguerre polynemials,
given by the eqnations

(ol )

- " dtn _
L, 0 = )"t e fjxﬂ(x e ) 5 (n=01,-0)

for each o > —1. Tn Figure 82 diagrams (a), (b), and {c} are electrical
networks whese system functions are the first, second and third order - -

Laguerre polynomials, respectively.
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Fig. 82

In Figure 82, if V is proportional te the input x(t), the output of the
cireuit (b} is the second coefficient ug(t)u The cutput of the circuit (e)
is the third ceefficient u3(t)u Thus, if we bullt up mwany circuits in this
menner, we could reproduce all the coefficients ug{t).

We see then that it is possible to make 2 transformation from x{t - )

to ui(t) and this transforms Equation (247) to a relationship of the form

y(8) =7 [u(), up(e), oo up(e) o] ( 250)

Thus the present values of the output depend on an infinite number of
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coefficients of functiens of the present time. We can represent this situa-

tion by the diagram of Figure 83.

e Gy ) > — Y () ————>

byt ) f——— U () —— ]
I

X(t) I?C%J

@, (4 > Un () —— >

Fig. 83

The diagram of Figure 83 is interpreted in the following mamner: The input
x(t) is fed into an infinite number of linear systems with system functions
¢1 (t), ¢2(t), rese ¢n(t) to produce the u;(t)'s. This part of the diagram
represents a system with memory. Then the functional F takes the u;(t}'s
and combines them in some nonlinear manner to yield the output y(t). This
means then that even though we started with a nenlinear system, the response
of which depended upon the past time, we now have an equivalent system in
which we have separated the nonlinearity and memory.

Now lets forget for the present time about physical systems and consider
only the relationship given by Equation (250). Mathematically we can consider
the output y(t) as being a function of many varisbles; i.e., we can consider
the ui(t)'s as variables. Then, since we know that many times it is helpful
to express functions asg power series, and gince the theory of power series 1s

well established, we might consider the function y{t) as the Tayler series
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expansion

wiE) = G +§ Qe ug(d) Ea;; UL U+ o oot Ea;,...,w Uptdeeruy(td,
s or ci-en (R51)

For the present, let's forget about the restrictions involved and assume that
we know what conditions must exdst for this expansion to be walid. The ui(t)*s

are functions of the input only and do net depend upon the system. The ai’s

characterize the system. Thus, for different physlcal systems the ai's are

different. The output y(t) is then a function of guantities which depend only

cn the input and gquantities which depend enly on the system. If we could deter-

mine the ai's Tor a given physical system then we could describe the system in

terms of a model.

Since we have already required that

-
urid) = X(?.L—‘Z‘)CPL.[Z')C/Z‘

2]

then by writing (fro‘m Equation (251})

T T »T
y(t) = b, + (h.(r)xffvr)dz +f[Lz(z;z;)x(é-z,)x(%-a)c/zjdzz +
o e Jp

T T
+ oo et ---fb,,(z,,-»-,fn)x(f"c’,)---x(f-z,.,)c/z,--oc/é’,,
& o

(252)
we have

h,
h(7)

]

Qe
Za;qb{ (z)
’zagﬂ' ¢ (T,) ¢ (7))

' -
1 £,3
1
1
|

1

ho (E7,

ho (T Th) = Za;,,,,., Gt} -+« G, (Ton) . (2.5‘3)

PRI
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Thus we have expressed the output y(t) as a power series in terms of
the input x{t - Zi). The system is now represented by the kerneis
hn(z;,-~ -, 7, ) which are described in terms of the orthonormal set g.(z).
Although we have been talking in terms of an infinite number of terms, unless
abrupt changes are involved (such as square waves, etc.) it may be possible
to use only a few terms in the expansion.

The method described above suggests one approach toc the problem of analysis
of nonlinear systems. If the integrals of the expansion are orthogonal to each
other, it may be possible to determine the individual kernels by use of the
orthogonality. Thus it would be worthwhile to see if an expansion such as
Hquation (252) could be made in terms of orthogonal functionals. Before we
can investigate further the feasibility of an expansion in terms of orthogonal
functionals, the problem of what kinds of inputs can be used must be answered.

To be able to use a singie input, it should he of such a nature as to
digplay all the properties that any other conceivable input would give. Thus
we need to use an input which can reproduce any other possible input.

This problem has been investigated and the solution is that the mest
desirable signal is a Gaussian white noise input. The reasons for this result
are as follows:

Gaussian distriduted means that the function is not predictable in time
but that there is a finite probability that x will lie between x; and Xii-dxi-
The distribution of these probabilities is the normal probablility distribution.
Wiener has shown that there exlsts a finite probability that a Gaussian signal

will represent any well behaved curve, provided the ILebesgue integral

o

L= x*dt M

-0

exists.
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White noise means that if we take x(tl) for a Gaussian distribution and
x(t2) for ancther Gausgian distribution, there is no correlation between the
two values. Thus the crosscorrelation gives a delta functien at ] = to and
in the frequency dowain the transformation is frequency independent. (Note:
Because of the large errors introduced if the Gaussian signal is not consid-
ered over infinite time, from & practical standpoint we cannot use the Gaussian
input. However, as we will discuss later, efforts are being made o adapt the
principles of this theory for use with other signals.)

How that we knew that theereilcally the most desirsble input signsl sheould
be & Gausslan white noise signal, it remalins te show that 1f we use this signal
we can expand the nonlinear functional in terms of orthonormal functionals

which are functions of the input. Thus, we want te write

g(t) = Gy + G, (K, x,£) + G (Ky X, 4) 4000 (259

where each G, is a functional which depends on a kernel Kﬁ( Z;,C,,0 0 = e Ty},
the input x, ard time. It will be assumed that the kernels are symmetrical.

This means that
kn(EU zz)h'”rn): Kn(znlzin—r;’"Z,JJ ¥ [‘Qgﬁj

for all permutations of [ﬁ° All systems can be considered to have symmetrical
kernels since, if the kernel is not symmetrical we can obtain a corresponding

symmetrical kernel by the fermula

-KM* = Jﬁ'i EK;« /”2“%)

where Kﬁ* is the symmetrical kernel and K, is the original, unsymmetrical
kernel. The term jEKﬁ means that we take all permutations of the variables

;& in K, of which there are n!, and add them up. As an example, if
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Ké( Z}] 72) is not symmetrical, we can write

K* K.(&,, 0.} + K, (z,,73)
| 2! !

which is symmetrical.

Qur next step 1ls io determine the G's. We know that we want the G's to
be ordered; i.e., we want Gy to be a constant, Gl to be a first order funetignal,
ete., and we want the functienals to be orthegonal. For convenience we will

nermalize GO by setlting it equal to unity, that is, the integral of Gg is egual

te unity. Thus,

(257)

We write Gl a8

G, = fKI(Z") x(t-t) de + K, ; (2¢8,

and we want G to be orthogenal to GO. We will assume that the Gauggian input
x(t -~ ) has an average value equal to zero; i.e., both positive and negative
values are egually likely. If we make Gl orthogonal to unity it can be made

orthogonal te all censtants, thus, by the definition of orthogonality we multl-

ply Gl by unity, average over the time and set it equal to zeéero. Then

o = f(f)@,(r) dr fKodJc +/c/éf;<|(z) X(¢-7) dT

Ko f](l[f)c/t’[’)((f»z) At s (259

t

H]

b
since Z—!_—E j}(bd{— = koa Also, since [){[-{;-() dt = o , We have
A :

k0=0 . (200

Thus, for Gl te be orthegonal to a censtant, k, = 0 and we now have
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G, = {K.t T)X(e-z)dT . [,;3@-))

To normalize Gy, we must have

ferdt = 1 (262)

LY

Then, since ky = 0, we have

{th%-zu[d% fh(quff—a)cJa fl;u;)x(f-z;)cfzz - '[zgg

Since the kernels kq( Zi) and kl( Eé} are independent of time, we can rearrange

Equation (263) to get

de. [dr, KoKk () [x(¢-z)x(4-7)d ¢ = | .
f f f (264

Now, because the input is Geussian and x(t - 27) and x(t - Zp) are statisti-
cally independent, J/%({,[h)xcéuz;) Az is just the autocorrelation func-
tion of the input,and for £, # Zé there is no correlation; i.e., the integral
above is zera. However, for &, = Zé the autocorrelation function is a Dirac

delta function and Bquation (264) becomes

ffJ(f,“Z;)i(n(Z:)K,(Zz) de,dz, = | . (263

Integrating over £, glves

fK?mafz _ . (260)

Thus, Gy 1s normalized, and we have two functionals Gp and Gy which are

orthenormal .
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Now let's consider the functional G2 which we write as

G, :ffkl(;)zz)x(f-z;)xcfhz;)cfz,c/a; +[!<,(zr)><(-£ -2)dz + ke 5 (201

where Kl( £ ) is not necessarily the same as was used in Gl , but enly indicates
a Tirst order functional in the input x(t). We want te define G2 so that 1t
is normal te any ceonstant and to any functional of first degree.

To determine orthogonality ito any constant, as for Gl we multiply by unity,

average over time, and set equal to zero. Thus;

0 :/c»@zaf :/’/Kziz,zz)x(f-m)x{{-z;)0/276161 +/}<,m XED) AT +Ks, (208

where the bar denotes averaging over time. As before, X{£t-)= 0O

and X(€-2,)%X(2-5,) = J{z-r;) Thus,

K, = —fK,,(Z,z) dr . (269

Ta be orthogonal to any first degree functional we must multiply by an
arbitrary first degree Tunctiocnal )( Ciz) w({¢-2) (/ Z , average over time,

and set equal to zeroc. Thus,

o :/]fC(Z')K,_(Z',,Z;)x(f-z)x({_,z_,)x({—_z_z) C/Zc/f,d?:“a +

¥ Cok()XE-DIX(E-2.)d e de, + kofCCZ‘) XEDde, (27

which becomes

fcca’) Kirydr = o , (27)

since X(¢-T) x(¢-7;)X(+-Z,} 8nd X{(£-7) wvanish for a Gaussian distribu-

tien and  x(#-z) x(¢-7,) = J¢z-z,} - It can be shown that the average

valua of the preduct of n Gaussian distributed signals;
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lee., YX(t-T)X(Ff-E )=+ X(¢-T,) 1is zero for n odd and reduces to delta
functions for n even. Now, since C(Z ) is arbitrary, to satisfy Equation (271),

K.(7') must be zero. Thus,

K, (v) = o
and

G, = /jl(;(ﬁ,a”(f'ﬂ)){{{'—ﬂ)C/Zra/fz -[Kﬂ:f}f/” , @7

and G, is orthogonal to all constants, any first order functional, and any
compination of the two.

Finally, for normalization we want

Jerde - | J (27}
thus

j@’:d% :fj K}_(Z‘r,rz))((f’z;)Y(f-Zz)/,/KZ (Z‘%)Z;)X[.f_zé)x({,_,z;)a/[} ¢ we C/Z"’[ .
'f_K?_(Z:?:)O[E[ Ko(%,Ty) x(¢-5,) x (£-2,) dt, d Ty -

- fi(zfz})fr)c/@//lgC.?,,E;)Xfff“,)x{iﬂfz)dé?dfz +

+ [KlizancJQ-jkz{Zr)df = 1 a éZWQ

Averaging over time gives

fff Ko (7,5 K (2, 7) X)X (L)X EG )Y ET,) Jr - o - 47y -

- /kztzr)drffkl@;,&) XTI x(¢-234) deydey, -

- ]/kz(a',fr)a’zg- //kzu—”z;) X7 ) 0 (¢-T.) dr dr, +

+ J](ltrf,zs') ojfszjsz(?,c')c/f ~ l . ["275j
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Now, as mentioned above, it can be shown that

4 o for n odd
XE-T ) X(¢-2,) . « « X($-7,,) =
. ZWW ;for n even
T

where Xi X5 is the delta function for all combinations of 1j, and T denotes

the product of pairs of combinations. For example, consider

XL X(E-E,) X (£-23) Y{t-T¢). This is written as

eI E R [WETIR (2] + [T X 1) | [NETIXE )+

+ (Yo [METXEz)]

This may also be written as

[f(a-a)ﬂ&-@ﬁ/(Z,—Zng(z’Vz‘;) + A1) (G- ] -

s Using this notation, Bguation (275) becomes
[{fx@z) “zf”sﬁ)[/“'fz)/fzéﬂ) B BIAE-5) + ST (55| d e eed, -
- [eeakemiriny deaz, 4z,

B f”Kl(’%Z&‘) Kz z,) I (o-t)de. de, dz, +

v [ambeodeds =1 . (27t
Now consider each term of Equation (276) individually. Integrating the second

term on the left with respect to Z‘h gives

- ff}c(z;c)kz(zg,zg)c/zo/rg = - [IJQ(ZTJC/E]Z .

Integrating the third term with respect o ZE gives

’ 2
—[/}Q(Z};Z;)szf,,'c’,)c/zs.g/z', = —[J}g(z;w c/c‘] o
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The fourth term may be written as

+[ Jkltf,r)c/{] ) .

Thus, adding the second, third and fourth terms gives

z
*[sz(cr)dz] - (277)

For the first term on the left-hand side of Eguation (276), we have teo intes
grate four times; i.e., with respect to Z |, T, Zé, snd C ). Censider enly

the integral
] [xaie) iz-e) sz -zyde - - -dey

Integrate first with respect to 31¥amd.then with respect te Zzy This gives

[[xiacokine) de, de, . (275

Consider only the integral

{ff[Kz(fufz)la(fs,ﬁ)J(Z;Z;)/(a-a) Jz - dey -

Integrating first with respect to Zﬁ and then with respect to Zé gives

| [t in ) de de, e
Finally, consider the integral
([ oksr) die Sty de- - - dey

Integrating first with respect to Zl}aﬂd then with respect to Zé gives

fsz(z:,zz)kl(a)z.)c/r,dz . /9250)

But [, (7,%) = K (7,,7,) by symmetry, and Fguations (279) and (280)

are eguivalent.
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From Equations (276}, (277), (278), (279) and (280) then we get

A

J,_sz(a,z,)kz(zg,zg)cfz,c/zg +2 f[i(:_(l',}rl)c/?,a/ra N[sz(z;w Clz] =1, (s

Now kICZLZL)and K. (T,0; ) are equivalent to K.(Z,z). Thus the first integral

on the left of Equation (281) is equivalent to

2
sz(f,,a) c/z’; f!(l(ag,r;) C/Z}, = [JKl(z;r)dr:} .

and Equation (281) becomes
21]‘/’(:(7::,?1)(:/(;(/57_ = l . (Zflil)

This means then that G, is normalized, and we can write G, as in Equation (272)

as
G‘z_ = j’JK;(C,,Z—l)X(f‘”l—;)X(t"ZL) ;/Z',CJIZ'Z _[klcz—,z)C/Z— . (Z‘?\S,/‘
We are now in a positien to write a general formula for G, as
[%]
{(n)
G, = Z a,.,. J - mjkh(z,,r,_,m,a) X(£-2,) -« X(t-7,,,)>
Y=o "
.(/q(g;‘-—?_]}-jrl_-z_ﬂ-—z.l/-l-‘)_)..u J(Z’h—iwz_lq)(/[l'obdz;] J CZ«PéJ
where
A for noeven
noyo_
= ) -1
"——i 'Fcr ¢! DC/C/
and
(v) v nl
n-zy - (=1) ¢

2¥(n-2v)i vl
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And the generalized normalization formula is

f@wzc}% =n! J“M JK:(Z',JZ;)H'Z",,)C/Z’,«vec/Z’n = 1.
n (fQW)

Thus we have shown that we can expand the nonlinear functional F in terms
of erthonormal functionals G, which depend on the kernels Kn, the input x(t -z°)
and time, where the input is Gaussian.

Wiener proved that the set of G's is complete in the fellowing manner:

There is a definite difference in the expansion of a functional in terms
of orthonormal functionals and in the expansion of a function in terms of
ortheogoral funections. To understand this difference, we will use examples.
Suppose we have a fﬁnction of time £(t) and expand it in terms of orthogonal

functions ¢n(t), Then we can write

N
fet) = z Q, o () .
=0

If we liwit the number of terms to deseribe the function, the mean square

error is given by

which approaches zere as N approaches infinity. This defines completeness
of" & set of orthegonal functions.
In the case of functionals as described by Wiener, completeness of the

Tunctionals is defined for the expansion

N
%P&): ZiGM = C%wrg‘q—.. e + QM

if we have

th(f)c/é — i [Qfd%
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where the G's are orthogonal but not normalized. However, if the G's are alseo

normalized

(aﬂ%)d{: -—-—>§ a, J@;A% — i oy

n=o nzeo

where the a's are constants. Thus for functionals expanded in terms of
functionals, the approximation of y{t) by the G's will be complete only in a
statistically average sense.

Now, all this is very nice but hew does 1t relate te our problem of
analyzing specific physical systems? We will now discuss Wiener's applica-
tion of the above theoretical developmwent.

Suppose we have a physical system into which we put a Gaussian white
noise (we will also call this a stochastic function) input and get an output.
The Gaussian input for example may he produced by an electreon itube gince
emission of electrons in a tube is Gaussian. Now let’s put a system, the
characteristics of which are known, in parallel with the unknewn physical
system.

Now feed the outputs of both the unknown physieal system and the known
system inte a multiplier, and feed the ocutput of the multiplier into an
integrator to obtain average values. The diasgram for this system is shown
in Figure 84. Wiener claims that the output of the integrator provides a
means of defining the physical system. We will see how he arrives at this
conclusion.

By Wiener's interpretatlion, the output of the unknown physical system
can be represented by ZE C%ﬂ(;(mlx,{v) . We can also consider the eutput
of the known box in tergé of (for the present unknown} G functicnals as

;{:C;M(]4MJ ¥, + ) where the kernels are of course different since the
sy;%ems are different. Now we can multiply these two outputs and integrate

the product with respect to time To get the average values.



However, 1o completely describe the physical system we also need the nen-
Linear functlonals of second and higher order. These are more difficult to
obtain experimentally although the procedure is gulte similar. Te determine

the second-order functicnal we can define the output of the knewn box &s

D G (M xt) = Jf/(zz—zs)/(a—;~f¢)x(f-z:)x(f-z;)c/z;a’fa .

(293)
Thus, the kernel is :é;?_ = [ (9=~ ?:3) I T5=T)). Integrating the right-hand
side of Equation (293) first with respect to Z,, and then with respect to z,

we get

Z Gu (M0, ) = fﬂ r,-z; )X (42, ) x (£-7,) d

= X(‘é"Z’g)X({'“Z—};) N @?ﬁg

Thus, the known bex consists of twe delay terms and & mulbiplier. A diagram

of the known box is shown in Pigure 85.

-—— —
[ De!aq Ts

Fig. 85

The second order functional for the physical system is given by

Ga(k, X)) = | [k (et ) x (-2 ) X (£-5,) des a’a—fkltc‘,wc/r,
- . (27
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Multiplying Equations (294) and (295) and averaging with respect to time gives

> GG, - jfklfﬂ},fa)X(%-Z}JXG—QJX(%—Z})Y(%—Z?)G/E{JQ -

Weti =2,

- [K?_(ij) X(E-G I (¢ 1y)de

= fﬁg(&,a}[/(z;—mﬂrswz;) +J(Z}—Z@JJ(Q-:4J+J(Z;,~Q)-
R J(z3 —z,,)]d A d ¢, - sz(f,Z”)/(Zg-Z‘L;) dz

The last term on the right side of Equation (296) vanishes since . 3 £ 7y

. (294 .

and the delta function vanishes for these econditiens. Integrating Bguation

(206) with respect to Z5 gives

ZGM Gu = sz(-?%',@)/(zg~f¢)c/z’(, */}(L(Z}) Z_(,)J(Z},‘Z:;)KJQ +
WA, wa

T f|<L(54,fa)/(Z';"QJC/Q ) (297
Integrating Equation (297) with respect to [6 gives
%Gn Guw = O + Ko (&, z,) + K, (T4, Zs)

= 2 K, (o, 7 ) ; (29%,
since Ko is symmetrical. Thus for the Gaussian input x(t) and the known box
as described in Figure 85, the kernel for the second order functional for the
physical system can be determined by experiment. Therefore we can write, for

the physical system,

G, (K0 4) = /kz(Zg,a)x(%@)x(f—za)afz; dzy */ka_(z:er, (299

where Kx( £, C5) can be determined from experiment.
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Theoretically, this method of determining the kernels of the physical
system applies to all higher order kernels also. Experimentally, however,
it is extremely difficult to implement this method because of the necessity
af using a Gaussian sgignal. First, a Gaussian signal requires an infinitely
long time to determine average values and second, if an infinitely long time
is not censidered, the errors invelved are found o be large compared with
the kernel values that are to be measured. The theory dees, however, suggest
a way of studying dynamics and people are trying to find easier ways to

implement the basic principles.
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LECTURE NQ. IX

YURTHER METEODS OF ANALYSIS OF WONLIKNEAR SYSTEMS

Let's review briefly what we discussed in Lecture VIII. We realize that
we are lgnorant about many things, but we are curious about them and we experi-
ment and try to learn. Many devices are conceived and designed by man to per-
form a certain desired function but which are not theroughly understood at the
time they are built. To illustrate this point, consider the concept of a
nuclear reactor. On the basis of the fundamental principle of "fission”,
tremendous devices have been deslgned and construcied to preduce heat. Butl as
yet we cannot describe compléidly the detailed processes eceurring in the reactor
under all possible conditions. Because of our insatiable desire to better
understand what we have created, however, we experiment with these devices in

an effort to determine their behavior when subjected to various operating cendi-

“tions with the specific object in mind that the experimental results will assist

us in obtaining fundamental information about the system.

We know from our experiences with simple (linear) physical systems that if
we disturb the system with an input of some kind, the relationship between the
input and the resulting cutput centalins information about the system. This is
illustrated by the fact that if we put the same ipput inte two different physi-
cal systems we get different outputs. Applying this method to the more compli-
cated (nonlinear) systems and admitting that all the pertinent information is
contained in the input appiied and the output observed, we need to determine
how to extract this Infermation. The effort to extract this information is
called "analysis" of the physical system.

We begin our analysis in a qualitative manner by expressing the relation-

ship between input and ouiput in the following abstract form: -

v(t) = Flx(t —Z)] ;
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where y{t) is the output, x(t) is the input, and the relationship says that
the output of the system depends on the input at all past times 7 (but not
at future times). This means that the system has a memory. Since the input
ig a Tunction of time itself, we eall the relationship between input and gut-
put a functignal relationship. Thus F.repfeéents g functional.

Qur second effert is to expand this funcilenal in an infinite series
because we know how to work with series. In so doing we shall attempt also
to compartmentalize the effects of Lhe system memgry and of the system non=-

iinearity. Thus we write

?(é) = ho "L/}/l.(ZJX(f«I)C/Z +f/;sz;,r,,)x(£»a)x(f-a)c/a di teee

which, in general, invelves an infinite number of terms. However, for practi-
cal gpplicatlion we shall wish to be able te use enly two or three terms; any
larger number would make the effort invelved almest prohlbitive.

wa,_whenever we expand & function in a series we like te impose the pro-
perty of erthegenality. This is very impeortant for the fellewlng reasons:
First, by so doing we make the error inﬁolved en truncating the series at any
point a2 minimum in the least wean square sense. OSecond, the erreor decreases as
the number of terms in the series increages. And third, for an expansion in
terms of orthogonal functions, each term is independent of the ethers. Thus
we like to expand in terms of orthogonal fumciionsg.

To better illustrate what we mean by orthegonal functions, consider the
output of the system as a vector in an n-dimensional space. In this sgpace
(as in 3-dimensional space) the axes or vectors deseribing the system are all
orthegonal or perpendicular %o esch other. Then a series expansion eof the
eutput vector is nething mere than expressing the vecter in terms of its
projections aleng the directions of the n-dimensional space. For each set of

erthogenal functions there corresponds a set of vectors in the n-dimensiegnal
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space. Therefore, which axes are applicable depends upon which orthogonal
set we wish to expand the vector in terms of.

As was mentioned in the first lecture, one must be discreet in choosing
which set of orthogonal functions to use in describing the output of a particu-
lar system for a particular inmput. In the expansion above, we expressed the
output as a series of functionals invelving the input. The next step then is

to determine if we can make this expansion in terms of orthogonal functignals

which are functions of the input.

In Tecture No. VIII we discussed the feagibility of delng this and de-
scribed how it could be done for a CGaussian. white neise input function. We
realized, however, that the required Gaussian input was not particularly useful
from a practical standpoint. Thus, the need still exists to be able ta perform
the desired expansion in terms of a mere practical input function. Teday's
lecture (the last in this series) will describe several methods of attempting
to implement the theory of Lecture No. VIII.

The fact that the Gaussian. white-nolse signal is the best signal to use
(to permit the required expansion mentioned above) is a result of some special
Teatures of the Gaussian signal. First, the Gausslan signal has a finite
probability of reproducing any conceivable signal (provided the Lebesgue inte-~
gral of that signal exists). Second, it makes sense to talk about stechastic
processes for many systems. Third, and perhaps the most convenient property
of the Gaussian signai, is that when terms involving products of the input
function by itself involve an odd number of factors, x(t - Ki), the average
value of such terms is zero. This greatly simplifies the possibility of imple-
menting the theory and alsc results in the fact that the terms of the expansion
are homogeneous. Homogeneity in this case means that for each orthogonal func-
tional in the expansion, the terms in that functional are all of the same order

in the input x{t), so to speak. This property is not always possible to
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achieve with other signals.

Today we will approach the problem of determining the G functionals in a
slightly different mamner . This approach will emphasize the importance of the
Gaussian signal and will also indicate what requirements are necessary if we

attempt to use a signal other than Gaussian.
I, OBRTHOGONAL POLYNOMIALS

Instead of talking about orthogonal functicnals in general, let's talk
about orthogonal pelynoemials. We approach this problem in the follewing

manners 1f we have the sequence of variables 1, Z, 22, ceee zn, we can build

up a set of erthogenal pelynomials P,(z) where P (z) is a polynomial of o1
pover -in z, and such that Pn(z) is orthogonal te all other polynemials in the

set. The expression for this type of pelynemial is

-V
Plz) = (Dn,_, D,,,) . ; (300)

211

with
3

Cu = T = LN rda , (30))
#

where the interval from A to B is the region of interest, and Dn ié a deterwmi-
nant with elements Cyiu glven by

Dh = ‘ Cvtu
From the orthogonality condition

VM= 0,0, -1 » KBG%)

AN )

il

B
/B(%)Pm(z)di O 5#»:» h4 .(5@3)
M
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As an example.of how we can make the polynomials orthogonal, consider the set

Py =1

Pl(z) =y =% =7 = dl
where ¢y is a censtant, and

PE(Z) = az®+ bz +o

Then to make P-(z) orthogonal to Py, we multiply P,(z) by unity, integrate from

- +
A to B and set equal to zere. This gives z = AziB =

Gl, Thus

To make PE(Z) orthogenal te both P_0 and Pl(z), perform the same operatigns by
miltiplying Po(z) by unity and integrating, and then multiplying Pp(z} by Py(z2)
and integrating. This will give two.eqpations in three unknowns. We can solve
these equations for twe of the unknowns in terms of the ether, and then, by
normalization, selve for the third unknown. Thus the procedure is guite similar
te that we followed feor the G functionals and the kernels. If we agsume that
7z is a random variable with some specified prebability distributier, we ean
generalize the above procedure by multiplying by a weighting function wiz) to
glve

3

/PH(E)PM(ZJWCE) 6/2 - O 4 (304J
#

Depending on the form eof the weighting function, we can determine varigus sels
of orthegonal polynomials, such as Legendre polynomials, Bessel functions,
Jacobl polynomials, Hermite polynomials, Laguerre polynomials, etc. Thus, from
a given sequence there is no difficulty in defining a sel of orthogonal poly-

nemials.
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Suppose we have a different sequence which has many variables; for example ,
b2, 2y oo 2n, 20, 2,2, , BBy, e E 2 R R, e
Followling & similar procedure te that oullined asbove, we can determine a set of
orthogonal polynomials which are functions of the variables. Here we took
discrete variables, buti suppose we .don't consider discrete varisbles but

variabies which are determined from a function of time. That is, suppose we

have an i(t) and let x(tl) = 7 x(tg) = Do ete. We can therefore bulld up
the above sequence in this manner and the sequence is made up of time dependent
functions evaluated at different times.

In the case of a Gaussian signal with a white noise spectrum, Grad :,f

has shown that the following polynomials are abtained:
o=
P = x(¢)

Pr = X(£-2)X(£-7,) - X(¢-7, )X (E-12)
= XWltE-Thx(t-20) - Sir, -7,)

Py = Y-z (-0 )X (t-5) - x(¢-2,) I(T,-13) -

- XE-T) Sle - ) - x(4-13) S(To-T;)

By multiplying each successive expression by the previous ones and integrating
according to the definition of orthogonality, it is easy to show that all the

terms are orthogonal. Actually, this is a way of defining the G functionals

we spoke of in Lecture No. VIII. To show this, suppose we take a kernel Kn

and eperate on the nth polynemial, P,. Then we postulate

GV?: - KH(Z;,ZZJH'Z;‘)RC[Z}C/Z:'..OJZ.“ - [505)

»1
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We will now prove that this is the G, functional.
It is evident that KOPO = Ky, thus we generate the GO functional,
GO = KC which can be normalized to glive GO = 1. TFor the first order functienal

Gy (from Equation (305), we have

JK,E?)X({:)C/Z’ = G,

which is the same relationship obtained before. Continuing, we have

G, = fjki(a:,m [xttmxttn) -Ja-n)]drdz

Integrating the secend integral on the right with respect to Zé gives

G, = [(klw,,rz)x(%-r.)xwzz)c/z,a/a —fl%(fuf:)d?f ;

which is also the same as was gbtained in Lecture Ne. VIII. We could continue
this precess and build up all of the G functionals, hewever, we can already
recognize certain implications. Instead of generating the G functionals, we
can leave the results in the form KnPno All the peolynomials Pn are grthogenal

te each other; thus, let's define an n® order functional to be

[De.f,(hphdqj°‘*0/?7ﬂ

which has an nth order kernel operating on an nth

order polynomial, as yet
unspeclfied, and alse has the property of being orthogonal to all other pely-
nomials of the same characier. We can shew that the functionals are alse

orthogenal and we obtain the relationship

[Cl"é/voa/kMKM]DMPWc{F,,%"C[Z:r!fm:O _;M:#M
o

. Kolz,r,) x(¢-7) xtt-z,) d &, d z, “[fkl((f,,Z’z)J(Z“pz;)c/E,a/Zz.

(304 )
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since the kernels are independent of time and we have already specified that
the polynomials are orthogonal. Thug, if we want fto use a signal other than
the Taussian signal, the signal we use must have the followlng properties:

L. It is easily produced

2. It can be shifted easgily (i.e., delayed)

3. It must lend itself to the creation of orthogonal polynemials

which are relatively simple.
We gee then that we are now in the same position as we were with Wiener's
method where the speclfied signal was the Gaussian white-nolise signal. However,
we now have the advantage that the polynomials describing our signal need be
orthoganal enly over & limited time range. This latter property is very
desirable since for practical application, any experiment must be performed
during a finite time interval, and all that 1s required is that the polynomials
be orthegonal over this period of time. Of course the time interval must be
lorig enough to obtain all the information about the system.

In principle, regardless of what signal we use we can always determine
the required polynomials describing the signal. IHowever, if some forethought
and judgment 1s not used in selection of the signal, we may wind up having to
solve very invelved equations. As an example, suppose we have a signal x{t),
the average value of which is zero; i.e., x(t) = 0. Then let

Ro=
P, = X(#-z)

Ps

1§

X{(£-2;)x(4-7,) —j,_(r,,a) X{(2-T.) - X{(4-7,) X (¢-72)

where gQ( Zi, Zé) ig & kernel which is a function of the signal, not of the
system. Then for orthogonality, it is readily seen that P, is orthogonal to

P, since J%(t - Z3}dt = O by definition. For P, to be orthogonal to Py
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fcfffx(f-f,)-swfzz)~3L(r“z'z)x({——z:) -X(ET Xtz ] = o .

FPerforming the integration glves

X(t-7,) x(+-7,) - %Z(ﬁ,fz)f)((‘i"l'o)cff -XHEZOXUL) =o.

Since .[x{t - Zb)dt = 0, this eorthogonality ceondition is satisfied. For P2

to be orthegonal %o Py, performing the integration with respect tg time glves

x(Bw)xltz ) w7 -9, (0,0 )x(E-2)x(¥-T) - (X(%»r,m%-z;))ﬂ%%) =0

and since x(t - z) is zere, the last term on the left vanishes and

(C]t (5.7.) = Y-8 X (-7, )X +-12)
1 ra
ROE=t) ¥ E-20)

. (307,

Thus, for an arbitrary inmput xz(t) with x(t) = 0, it is possible to satisfy the
orthegonality conditiens, but the eguations te be solved are unduly cgmplicated,
and the second and higher order kernels invelved in the polynomials may be gulte

difficult te determine. In principle, heowever, gn(zf , T, &

, €,) can be evalu~-

ated Trom the average values of products of the input signal, as indicated by
Equation (307). Thus, for any input it is conceptually pessible to make an
expansion of the eutput in terms of orthogeonal functionals Invelving erthogenal
polynomials which gre functions of the input.

We will now discuss seme experiments which have been performed with nuclear
reactor systems. There are five main experimental methpds used in conjunction
with nuclear reacters; crosscorrelation and autccerreiation measurements,
oscillation experiments (where the driving source varies sinusoidly), ramp
tests (where reactivity is added to the system linearly with time), and step
tests {where execess reactivity insertions approximate a step function). As a
firgt attempt to use the principles of the theeries discussed in Lectures VIIT
and IX, we will try to cempare what one measures in a reactor by using each of
the three methods; cresscerrelatieon using a bineary signal, autecerrelation,

and crosscorrelation using an eosclllatory signal. We will first discuss
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crosgcorrelation by describing an experiment that was performed using a binary
signal; i.e., the signal consisted of positive and negative values of equal
amplitude. The crosscorrelation technique was of course applied to the binary
input and the output of the reactor. We will show that the crosscorrelation
method reveals only the linear response of the nonlinear system.

The second approach describes application of the autocorrelation technique
to nonlinear systems. No external signal is required for this applicatien.
Autocorrelation is applied to the gutput of a critical reactor. The internal
sgurce is consldered Gaussian white neise, although this assumption may net
be entirely valid. It will be shown that the autocerrelation techmigue applied
in this manner involves not only the linear functienals, but alsc the higher-
erder functienals.

Finally, we will show that the oscillatien technique describes the response
in terms of the odd kernels only.

Crosscorrelation Methad

The input signal used in this experiment was a binary signal, the charac-

teristics of which are shown in Figure 86. The interpretation of Figure 86 is

x4) | atfe-

-H

-1

Fig. 86
as follows: the signal has positive and negative values of equal magnitude
after the start of time; a time interval is denoted by At and for this pictorial
example there are 19 time intervals for a period T; it is possible for the

signal to change sign after each At, although it may not necessarily do so.
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This special signal also has a special sutocorrelatien property. The auto-
correlation function of the signal x(t) is as shown in Pigure 87. When

=4t ¢ & LA, ¢Xx( 7)) varies linearly , having a maximum value of unity

Gyxl T
I -
N=19
: F=af [ aFl : >
-T “In ~Yn T ¢
z =z
%
Fig. 87

when Z equals Z,. It is zero after an interval At and then for lsrger values
of time it is ml/N where N is the number of intervals in one period T. Because
it is a specially designed signal it is not & purely randem signal, although if
N is large it approaches a random signal. Not all binary signals have this
particular autpcporrelation preperty. One requirement of this property is that
N is primary and ¥ = 4K = 1. Some values of N which work are 19, 251, and
1019. Thus the autocorrelatien function for this particular input x{t) is very
close to a delta functieng i.e., the bandwldth of the sigpal is very broad. In
fact, for this particular case the half-amplitude values of the bandwidth are
0.56  0.33

from T to PYRE

Now guppese that we take a physical system (such as a nuclear reactor),
excite 1t with this input and measure the cutput. According to what we dis-
cussed before, it is always possible to make an erthegonal power geries expan=-

gion of the gutput in terms of the input. Then we can express the cutput ef
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the reactor, or whatever the physical system is, as

n

YWit) = Z G [ H, xt) . (308)

L= O

where Gn is an arbitrary funectional depending on the kernel Hn’ the input x(t),
and time. We have already discussed how to eresscorrelate the input and output
for this system. In Lecture No. V, in the section on crosscerrelation, the
experiment described in Figure Tl 1s exactly the same experiment we wish to
describe here. Thus, the diagram of our experiment 1s just a repeat of

Figure 71 and is shown in Figure 88. By analyses incorperating the principles

of Lecture No. VIII, we will determine what the output z( ) of the integrator

is.
1459 PL]D}S;CQ! . l}({—) = z G’m{[Hn,X,‘E)
qu’i'em | i
{Ts)
II l X fﬂi"e?raﬁr ____..L
i
Delay 19 Y(£75,) 'LI)
t
[ 2o l q
[ |
E' ey E(Z)
; I @’"‘""Tnt/’egyaﬁ,,— P 2
L _J Pelag | _El(f__@tu
Lo, i

r
|
o
o —

] .?.{Z'an}
Ga = Lulegrator ——>

Delay | X2 |

M

Fig. 88
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Ags we discussed in Lecture No. VIII, by feeding the same input to a known
box which iz in parsllel with the reactor, multiplying the outputs of the two
systems and averaging, we can conceptually determine experimentally the kernels
assoclated with the unknown physical system. This infermation is then the ocut-
put of the integratgrs. We will new see if we can de this.

We have chosen the known box to be a simple delay line with sutput
x(t - Zbl)° Since we can express this output as a Tirsi order functional
which is eorthogenal te all constants and all higher order polynemials invelved

in describing the input, we can write

T T
Z{z,) = _%__[O/é/gica—) X(4-z) Xt -to)d
[ 0

——

. T
= {F )(y,(r)cfz’fx(bw x(f*zol)c/i— , (309)

where it is assumed that it is %ecessary to consider integration only gver one

L
T

tion function P () of the igput x(t). Thus, we can rewrite Equation (309} as

peried T. Now the integral J-x(tﬂ ) x(t~ Zbl)dt is simply the autecorrela«

-
Z2(z5) = jH,(t) ¢ (z)dr ) Gio)
il

From Figure 87 and the fact that the interval 24t is small compared with T

for large Ny we can effectively divide the integral eof Equatien (310) into two
parts. The first part considers @ (7} bas the value -1/N over the interval
from 0 to T, and the secend part invelves the product of Hl(Z‘) and the triangle
of Figure 87 with height @y(Z) = 1 and base 2At. Assuming By(Z") does not

vary much over the 2 At interval, we can call it Hy( Zkﬁ) over this interval,
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and ws have

+

-

Z (%) = _-ATJH,(z)dr + H () st | (311)

The first term on the right-hand side of Eguation (311} arises because ¢XX( Z}
is egqual to -1/N, and the second term is explained in the following manner:
Since Hl( 7 ) is considered a constant over the 2 At interval, its value 1is

Hl( Z.'ol) - Bince the spike in the autecorrelation function is very sharp, the
value of {éxx( Z) in the ZAt interval is effectively the height of the iriangle.
Integrating from O to T then merely results in multiplying Hi{ Z Ol) by the area
of the triangle which is %(2At)(1) or At. In order for this to be valid the
interval At must be appropriately chosen. That is, if Hi(Z) is a fast
changing function then 4% must be very small.

Equation (311) is to be interpreted so that the term Hy( Z’Ol}At is the
system functien at the value of the de]+ay Z_Oland is the major centribution te
the value of z( fol)o The term « %— {o H1(Z)AT is a correction term and is a
constant. We can evaluate the correction in the following menner. The variable
Z-Oi is at our disposal; i.e., we can put it anywhere we 1ike. Thus, let's

shift Z-O;L by -at. Thus pur autocorrelation function, which is multiplied by

H1(T), looks as shown in Figure 89. TFor an autocorrelation function with the

by Ly Pyr (T-21)
ZOI
T _ At 1 ——
< T >

Fig. 89
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shape shown in Figure 89, when we form the output z of the integrator we obtain

crly the correction term. This glves

+
Fl-at) = -— -/—I\]- IH[(?T)CI'C . (31'2_]
o

Thus; the output of the integrator is a measure of the-éorrection term. As was
stated before, for a given N the value of the carrection term is a consiant.
From Equation (3;2) we see that increasing the value of N decreases the magni-
tude of the correciion term.

In reviewing what we have done analytically, we see that fer a known box
which is a delay line we have gbtained the value of the kernel Hl(Z}}) of the
physical system, plus a correctien term. By performing only one more experi~
ment we can evaluate the magnitude of the cerrection term. Thus, we determine
the linear portion of the response of the physical system for a particular delay
time in the known system. Repeating this precedure for different delay times
would glve us values of the linear system function as a function of time. We
gee then that we get only the linear portion of the response by the miehed of
crosscorrelation.

An experiment of this type was actually performed with the XKIWI A3 reactor.
With this reactor, the time available for the experiment was only one minute.

A block diagram of the experimental set-up i1s shown in Figure G0.

Ccm"irai_ Kiwt A3

Fig. 90
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The input signal was fed to the system by mesns of a paper tape. ‘A represents -
tive diagram of the tape is shown in Figure 91 for a value of N equal to. 19,
although in the actual experiment, N was 251 and 1019. In Pigure 91 only the
input signal and the signal repeated fer a shift of 341 are shown. Thus, in

this representative case, ft,is egqual to 3At. The heles in the tape indicate

T [} 6 0 O o [o] - B - e o
|
,, o 6 o o o o o) o ©
l —{atl—
Rmfeer lLape
Fig. gl

+1 and each At where there is ne hole indicates ~1. During the experiment,

the paper tape moves through a reader which centains a light source. As the "
tape passes through, if light passes threugh a heles in the input signal channel
a signal ig fed, via a photomultiplier tube, o the contrel rod. This moves

the centrel rod into the reacter. When no light passes through the input sig~
nal channel of the tapg, the centrel red ls sctwated te be pulled gut of the
reactar,l Thus, the motien of the control rod changes the neutren level of the
reactor. The delayed signal is also monitered, but by a separate photo=
multiplier tube. When light passes through the delayed signal channel the
switeh Sp is in position +1 and the output of the reactor n(t) goes directly
into the integrator. When light does not pass through the delay§d signal
channel, the switch 3, goes to position -1. The output n{t) of the féactor

is then fed into an amplifier which inverts the sign of the signal. The out-
put of the inverter is then fed to the integrator which averages over the time T.
During the time T +the switch 51 is closed. After T; i.e., when 251 or 1019
time increments have elapsed, Sl opens and no signal is fed to the integrator.

For this experiment then, the outlput of the integrator is~H( Zb), with
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- gt
—2jw 2w
- e #s(“w)%—w)";iééf%—w,—w)—/ée Moo= -co) =
_zjwt ot
- /I(; 6 /0/3{""(_‘)"1‘.{) "C—J) * l e ' éf} ("'{d/'—bﬁé"{.{))'f' #oe e ¢ (3‘2-——19

Averaging over one period (or any integral number of periods) glves

?’,11’ Z'Tr 'ler
- "
o “ nJ'w"f / rrjw’l: o e ! —
| € dt = e - = 0o
adetl 0 inar

for n an integer equal to or greater than unity. Thus, all terms involving

+ njwt
e ! vanish and the time average of y(t) sin w+t is given by
?CHS‘J‘Mwl{' = :,;-lly,vlw) + i,{;{é—w}- —!—?é [,/3 (~ w, w) +?é ,Ug(_cu;-w, ew )

+ ;téjgc—w,”“&w) + /'ib‘lg(fav; w,——w) +/_é é/;(—ou,wj——w) +

1
1 Hs ey ey mw) e e . e (3 23)
By Bquation (323) and the forms of the previous equations, it is easily
seen that if this method were carrded eut even further, ene would obtain an
expression involving only the odd kernels. Therefore, 2ll orders of the odd

harmoniecs would appear.
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