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Stability of Nonlinear Systems.

by
E.P. Gyitopoulos

1. INFRCDUCTION

The question of stability of nonlinear systems, from the analytical
standpoint, is very inveolved. In contrast to linear systems, there is no
unique necessary and sufficient criterion of stability for nonlinear systems

and each class of nonlinear problems must be examined separately.

The purpose of these notes is to present some of the analytical
techniques that are particularly applicable to systems whose dynamic behaviour
is described by a set of ordinary nonlinear differential equations. Such
techniques are of interest to nuclear engineers because many problems of
nuclear reactor dynamics can be representéd by nonlinear ordinary differential

equations.

The following section presents the theory of Liapunov's direct method

for stability (1). This theory has proved very fruitful particularly in

the USSR where it is considered as the most general method for the investi-
gation of problems of stability of nonlinear systems. The third section
describes Lur/e's technique (2) for the implementation of Liapunov's theory

in the case cof a very general class of nonlinear systems which are similar

to nuclear reactors. The fourth section discusses several applications of
Liapunov's method in nuclear reactor problems and shows that Welton's eriterion
of stability (3) can be considered as a special case of Liapunov's direct
method. The last section discusses the question of Lagrange stability of

nonlinear systems.

2. STABILITY BY LIAPUNOV'S DIRECT METHOD
2.1 The Problem

A dynamical system, be it eleetrical, mechanical,; nuclear ete. or
any combination of these, can be described by a certain number of n para-
meters Xya X ,...xh. These parameters may be visualized as the coordinates
of a point M in an n-dimensional space or egquivalently, as the components of

a vector x in the same space. Thus, each point of the n~-dimensional space




represents a state of the physical system.

Without loss of generality it may be assumed that the point x = O

is an equilibrium or steady state. One of the fundamental questions of
the theory of control is the type of stability of the equilibrium state.
Specifically, if at time t = 0 the system is perturbed from its equi-
librium state (x(t=0)#0) the question arises as to whether for t— ® the
parameters of the system resume theéir equilibrium values {the system is
asymptotically stable) are bounded (the system is stable) or diverge (the
system is unstable).

This question can be elegantly answered by means of Idapunov’s direct
method, if the dynamics of the system are adeguately represented by a set
of ordinary nonlinear differential equations. A large number of problems
of engineering interest fall into this category. The literature and particu~
larly the Russian literature are abundant in problems whose stability has
been investigated by means of Liapunov's method (4 - 10).

To make ideas specific, assume that the dynamic behaviour of an

autonomous™ system is represented by the set of n ordinary differential

equations
ol xk = Xk(xl,...xn) k=1,2,...0 (J.)

or by the equivalent vector equation
% = X(x) (2)

where Xk is a nonlinear funciion of xl""xnf In addition, suppose that
x =0 is an equilibrium state i.e. X(0) = 0. Geometrically speaking the
meaning of éq. {2) is that the state of the system is represented by the
point M(xl,...xn) and the velocity of the point M is i(Xl,...Xn). In
Liapunov's terminology €gs. (1) or (2) are called the equations of the
disturbed motion.

x
Similar procedures have been developed for non-autonomous systems {2).



Iet the quantities xl peesX denote the initial values of
O -

the parameters xl ,.,.xn at time t = 0, Corresponding to each set

of initial values, assume that there exists a unique solution of

eq. (2).
X = xk('r,xlo ,..._xno) kK =1,2,...0 (3)

The solutions given by «i. (3) describe the disturbed motion of the
system.

As already mentioned, an important question that must be answeread
with regard to the disturbed motion is its behaviour at t —= *. If it
were possible to actually solve e3. (2), then all the information about
the disturbed motion would be known. In general, however, this is a
difficult task. Therefore, it is necessary to resort to qualitative
techniques which survey the entire family of the disturbed motions and,
without integration of 3. (2), permit to ascertain whether these motions
tend to the quilibrium state or not as t = ®, regardless of the initial
values ot Such a technigue is Liapunov's direct method which is sub-
sequently described,

2.2 ILiapunov's Direct Method.

Liapunov's direct method of stability is based on the existence
of a positive definite scalar function V(x) with the following properties.

a. V(x) is continucus together with its first partial derivatives
in a certain open region {} about the origin x = 0.

b. v{0)} = 0, V(®) ~ =,
c. Outside the origin (and always in ) V(x) is positive.

Tn other words V(x) is non-negative and vanishes only at the origin.
The origin is an isolated minimum of V(x). If in addition, V =0
in § , then V{x) is called a Iiapunov function.

Thus, Liapunov's main stability theorems may be summarized as
follows:




I. Stablility Theorems; If there exists in some neighbourhmmi€30fﬁ
the origin a Iiapunov function V{x), then the origin is stable.

. Asymptotic Stability Theorem. If in addition to the requirements
of theorem I, -% is likewisspositive definite then the stability
is asymptotic.

11T, Instability Theorem. Let V(x) with V(0) = O have continuous first

partials in Q. let é be positive definite and V(x) be able to
assume positive values arbitrarily near the origin. Then the

-
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origin is unstable.

There are other variations and generalizations of Liapunov's
theorems. For these, however, as well as the proof and geometric inter-
pretation of theorems I-ITI the reader is referred to the iiterature
(11-12). For the purposes of these notes suffice to note that the existence
of a Liapunov function guarantees the stabllity of the origin or what-

has been assumed as the equilibrium state of the system described by
eq. {2).

It must be emphasized that stability, asymptotic stability ete.,
of an equilibrium state of a physical system, do not necessarily imply
the existence of Liaspunov functions. However, from a practical stand-
point this 1s not important. A particular Liapunov function yields
certain sufficient conditions for stabiiity which is what one wants in
practice, Of course, it is also desirable to select the ILiapunov func-

tion which results in the least restrictive conditions possible.

Having available a technique to investigate the stability of
disturbed motions, the next question is "given a specific system of
equations of the disturbed motion, how does one construct a [iapunov
funetion ?" This problem has been dealt with by many authors. In
particular, Iur'e has developed a general procdedure which is the

subjeect of discussion of the next sectlon.

2. THE IUR'E THEOREM ON THE STABILITY OF CONTROL SYSTEMS.

The purpose of this section is to summarize the Lur'e theorem
for the construction of ILiapunov functions for a large class of non-
linear equations which are representative of many practical control
problems,




Specifically, consider control systems whose equations of
disturbed motion are of the form:

J'rk-- z bmxa+nlé.1. k¥ =1,2...m (4)

=1

where X seseX, are the éystem parameters
b is the coordinate of the regulating organ
bka’nk are constant coefficients

The coordinate of the regulating organ obeys the equation

Vi +p o+ S = £(0)
n

¢ = 2; Ppfg = Tk (5)
a"'ﬁ.

where V° ,S,pa,r' are constants and f(o) belongs to either of the
following two classes:

Class (A) £(g) = 0 lo} = &
af(s) > 0 lo] > &
Class (8*) & =0 -g-g 2 h>0
g=0
08 (g} > 0 s{a) = £(g) - ho

In summary, the collective equations of the disturbed motion of the
system under consideration are:

X =Bx + N&

Vi o+ 3 + 8 = £{a) (6)
m

g = Z paxa-r'ib




where B is the mxm-matrix of the coefficients bmx

N is the m~element column matrix of the coefficients nk

Next consider the equilibrium states of (6) given by the

solution of the system of algebraic equations:
BXx + MNe = O

Su = £{o) (7).

m

o= E pdxa-r'u-

O=1

For the purposes of this discussion it is algebraically expedient and
by no means restrictive to assume that £(o) is of class (A') and that
the equilibrium state is

xl:--ixam..,:“::g:c) (8)

The construction of a ILiapunov function for the study of the
stability of the equilibrium state is greatly facilitated if the
system of equations (6) is transformed into a canonical.form. The
transformation is achieved by means of appropriate linear combinations

of the parameters xk. o see this, consider the following two cases:

a. All the characteristic roots o, of the matrix B are distinet
and have the property Repk < 0. In other words, assume that the con-
trolled system, with the regulating organ disconnected, has all its
poles in the left half complex plane, namely that it is inherently
stable. Thus, admit with Iur'e that equations (6) can be readily

transformed into the cancnical form:

-
*

e =.kak + £(o) k=1l,2,...nsn=m+ 2
n
g ==:£ 7kxk
k=3
n (9)
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where X is used again to denote the transformed parameters
Bk,yk,r are constants derived from the original coefficients

4] s pm+a are the roots of the equation

m
Vp? +p +5=0 (10)
Notice that Rep . ., Rep < 0 (5>0). ILur'e gives explicit formulas

m+1 * m+-2
for the transformation matrix and the coefficients ﬁk,rk,r in terms of

the original coefficients and the characteristic roots ().

A simple Liapunov function can now be constructed for the
canonical system (9). To prove this assertlon assume, that among
the n characteristic roots pk there are s real (p s p } and
(n-s)/2 complex conjugate pairs (ps seeePy ) Consider the function
0. _
V(x) =F + & + f £{o) do (11)
o
where F and § are quadratic forms. The quadratic form F is defined

as:

F(alx1 see ,é.nxn) Z Z +p XXy ;12)

iua k=1

where al,...as are arbitrary real numbers and as+l,...an are arbitrary

complex conjugate sets of pirs. Notice that F is a positive definite
quadratic form and that it vanishes only at the origin because

o

1 " {p +§.)T X
-pk-i-giwf e K"/ ar (13)

o

i=n k=

L [Zakxk & Tf dr

k=1

The quadratic form & is defined as:

Arad o W P Pl A S B T

# 1t is evident that the corresponding canonical parameters xk nust

be similar in nature.




IX. 8

@(xl,...xn) =% Z AXRE +Cx X T Cpy-s%nern
=1
(1%)

where A P A ,C ,C . "Cn Log 2T positive real numbers.
Notice aga:i_n that @ is a positive definite guadratic form and that

it vanishes only at the origin.

Tn view of the fact that £(c) is of class (A!) it is evident
thet Vv (eq.(11)) is a positive definite function that vanishes only
at the origin and grows indefinitely as x goes to infinity. V will
be a Liapunov function if in addition it is established that V < 0.
According to equations (9):

s
V- 1; Ak’{pkxk + f(c)} clxs-ﬂ [pswxs-»a"' f(c_)]+
G %sia [ps+1 s+1+f(c)] Z Z Pyt

b x, Doyt(@)]] + 20) | Z By - *E(0) ] = - [Zakxk .
=1 ]

=1

5
2 +
+ff'f‘(c)ja + ZpkAkxk 4 Ci(psﬂ-i- ps+2)xs+1x5+3+'"Cn-l-scpn"’l
=1

+p )x % + (o) Z [A * By + 2 VTE -2y Z Pty }ﬁi ’

k=1 =1

-5
+ £(o) Z [Ca'*ss 2 fag 28 Z ] +a (25)
o=1 ' =1

where Tor convenience in writing the sums in the last bracket it is

assumed that

cn-l-s T Ynes




n
and the quantity 2 /FI{o) E: a Xy has been added and subtracted from
the equation. k=1

Notice that if

A + Bk + 2 Jra aak }; = 0 k=1,2...8

pk+pi

=0 = 1,2...40-8}

l““l - (16)

Co HPosq + 2 JFES+C[

then V is negative definite since Py 0 (k=1,2...s) and Rep_ < 0
(0=%,2,...n-s). Consequently, V is a Liapunov function and the

equilibrium state is asymptotically stable.

The meaning of conditions (16), first derived by Tur'e may
be stated in terms of the following theorem: If egs. (16) in which
p sevePy andB ,...6 are real and.p ,,,.p and[3 ,...B are
complex congugate pairs, admit real roots 8 seeeB and complex
conjugate pairs of roots a +1,...a for arbitrary positive numbers
Ak’ o then the equilibrium state of the system described by (6) is
absolutely and asymptotically stable, For this to be true, the
constant coefficients of the system must satisfy specific algebraic

relationships.

The derived conditions can be medified in several ways. For
further details, the reader is referred to (4).

It is important to note here that in all cases, Lur'e's
theorem requires asymptotic stability in the small (for small
perturbations when the system (6) can be linearized) in order to
guarantee absolute stability. In addition, in several specific
problems that Letov (4) has analyzed by Iur'e's method, it turns
out that the necessary and sufficient conditions for the satis-
faction of eqs. (16) are the same as the necessary and sufficient
conditions for the linearized system (6) to be absolutely stable.
Unfortunately, this result has not been generalized but its impor-

tance is of such practical value that it is worth further consideration.

Now consider the second case.




b. Some of the characteristic roots of B have positive real
parts (REpk> 0) i.e. the controlled system is inherently unstable.
To proceed with the construction of a Liapunov function admit with
Letov (4) that the augmented matrix B with elements

B nﬁp“ (17)

ka = Pxa *

has distinet characteristic roots rs and such that Rers< 0. Thus,
transform the equations of the disturbed motion into the canonical

form

-2
i

r X+
g 8 o

m

=Y Bz - o - £(a) (18)
k=1

Qo

The existence of the transformation, the transformation matrix and

explicit formulas for the coefficients Ek and p are given by Letov (4)

Following arguments and assumptions similar to those used
in the case of inherently stable systems, notice that the positive
definite funetion

3 3 akai Ie ] 2.2 f

V= - EZ ?1;['?1. XX, + 8 \xl,...xm}+%dc {19)

k=t i=1

is a Liapunov function if the following conditions are satisfied:

s}
a
- 1 -
Ak+d36k+ Eak-Eak Z W“O =], 250448
. b’
i=1
m a
2_ mi——uu.‘n- = = o I =
Ca+dﬁs+a+2as+a—2as+az -0 ol2,..ms (20)
o st

d®*p - 1> 0




Indeed, under these conditions

m 8
el EZ ]a [ 2= .2 _ 42 E; 2
V= L ax, +of - d pnlJG - &% of (o) + rAXS +
k=1 k=1
+ clcrs+:1+ rs+a)xs+1xs+e+"'+Cm-s-1(rm-1+rm)xhw1§ﬁ1< 0 (21)

The meaning of conditions (20) is that the equilibrium state x=g=0
is absolutely and asymptotically stable if eqs. (20) admit real

reots & senelg and complex conjugate pairs of roots a seesdy for

541

A, »C,, positive, El,...Es real and B "”Bm complex conjugate.

a4
This is letov's generalization of lur'e's theorem. Note again that

stability in the small is required to gusrantee absoclute stability.

This completes the brief discussion of Iur'e's theorem and
Letov's generalization., Many more detalls can be found in (4),

where in addition.systems whose canonical equations are of the form

ik % U&(k) fl(al) + ug(k) fg(oa) X=1,2,..n
n

&1 = Z Brcda ™ r‘11f1(-“1> - 7%, (o) ' (22)
Q=1

n

P2 T E: Bagq = Tay f1 (01) = Taafy (o)
Oy |

are analyzed by the same procedure.

In the next section it is shown that a variety of problems
on nuclear reactor stability can be reduced to canonical forms
similar to those of egs. (9) or (18) and that they can be readily

analyzed by means of Liapunov's direct method.

4, APPIICATIONS OF LIAPUNOV'S DIRECT METHOD TO NUCLEAR REACTOR DYNAMICS

4.1 General Remarks

Consider a nuclear reactor system whose dynamic behaviour is

adequately represented by the following set of ordinary differential
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equations
as p o
'-&-g = - f(.Xl ,Xa.a.X.k_gé)é - "K & + }‘-ici
i
dci ﬁi
—-d?t- =‘;91_ @m}\_ici 1 = 1,2,- 1| (2})
dx.
—-a—E P, (x ,...Xk,@) i=1,2,...k

The question of stability of the eguilibrium states of this system
can be readily investigated by means of Liapunov's direct method,
for different types of functions f and Pi. To this effect it is
often expedient to reduce the complexity of egs. (23) by neglecting
the delayed neutron precursors. This omission is justified because
it has been shown that the delayed neutron precursors tend always
to increase the stability of the system (12). In addition, Popov
(é)has shown that if the system without delayed neutrons

as

v i f(:f;:L S §)% (2h)

| &

i
= &
& = POy n®)
admits a Liapunov function
Vo= Vé(@) +.Vb(x1,x2,...xk) (25)
where Vé(@) is an increasing function of &, then

By Ash
‘7{' E‘“—- C, ) (26)

Ma

v, v(é)+v(x5...xk)

fda
1t
[

is a Ilapunov function for the system of egs. (23) with the delayed

neutron precursors.

Popov's theorem is useful in the context of these notes

because in many problems of reactor dynamics, omission of the delayed




neutron precursors allows the reduction of egqs. (24) to one of the
canonical forms (9) or (18) and, consequently, the derivation of the
Iiapunov function (25) by means either of Lur'e's theorem or ILetov's

generalization of Iur'e's theorem.

Of course, it must also be emphasized that omission of the
delayed neutron precursors leads to more restrictive conditions for
stability than if Liapunov's direct method were implemented for the
system including the delayed neutron precursors L&E). This goes to

prove once more that one never gets something for nothing!

Some of these points are beSt illustrated by the following
examples,

4.2 Stability of Heterogeneous Reactors.

Consider a n region reactor. Each region J is characterized
by an average temperature Tj and a coefficient of reactivity (over the
neutron mean lifetime) aj. The space independent model of the reactor
is '

m

a8 _ ey S
S { OATU)@- T T+ hici

J i
a, B
T =T MG (@7)

ar, s

sy =Ny G- B - Z"jk(Tj - Ty

where ej the heat capacity of the jth region
nj the fraction of power developed in the jth region

kthe thermal conductivity between the jth and kth regions.

If the delayed neutrons are neglected and the change of variable

X,
d

5 = ‘I\Oec (28)

is introduced, egs. (27) reduce to
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g = E;a.T.
d J
a7

& 5 = - Z Xjk(quTk} + ﬂjf(c) (29}

fo) = e.1; of(0)> 0

It is evident that egs. 29) are of the general form considered in
section {3) and therefore necessary and suffieient conditions for
the existence of a Lispunov function can be readily established by

means of Lur'e's thecrem.

Specific examples of this type have been treated in (15).

4.3 Welton's Criterion of Stability.

A general criterion of stability for nuclear reactors has been
proposed by Welton (2). Specifically Welton considers a reactor whose

dynamics are represented by the equations:

g _pltlB s . Ve,

dt A L
ac.  B. (30)
—t =1 AC
dt A il
where
t
p6) = [ attm) &) - g ] ar
-0 .
(31)
g(t) =0 t <0
Welton showed that the reactor is absolutely stable if
G(e) = 0 (2}
l o
where G(w) =-§§-gr g{T) cos wrdT (33)
o
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The meaning of inequality (32) is that the phase of the Fourier trans-
form of the feedback kernel g(t) be less than + 90°. Note that this
requirement is more restrictive than requiring that the linearized
model of (30) be absolutely stable.

Welton's criterion can be derived by means of Liapunov's direct
method (16). Indeed, consider eq. (30) without delayed neutrons.

8. 1w --2] cefawaienls G
where
k iw{tmr )l
q{w,t) =f e =T L@(T)— & Tdt
o -
& (w,t) = condgate of q{w,t) (35)
If G(w) =2 0, the function
8 2 [°
V=83 -8 }.n-g;— 3 Jo G(w)]q(m,t);sdw (36)

is positive definite and its derivative V = 0. Sinee (§~§0-§° In 5/50)
is an increasing function of §, inclusion of the delayed neutron
precursors by means of Popov's theorem renders V < 0 and therefore the
reactor absolutely stable. Consequently, the sufficient condition

for this to be true is G(w) = Q.

5. LAGRANGE STABTLITY OF NONLINEAR SYSTEMS

5.1 General Hemarks.

As it has already been emphasized Iur'e's implementation of
Liapunov's direct method requires that the linearized version of the
nonlinear system under consideration be unconditionally stable. 1In
addition Letov has shown that in several specific problems the
sufficient conditions for absolute stability coincide with those for
linear stability.
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The same comments are true for Welton's criterion in the case
of nuclear reactor systems. In other words, the sufficient condition
g(w) = 0 is equivalent to at least requiring that the linearized

version of the reactor equations admit unconditionally stable solutions.

Is was also indicated that under these conditions the non-

Jinear stability is asymptotic.

These observations imply the important experimental faet that
nonlinear stability can be experimentally investigated by transfer

function measurements.

In meny applications, where certain parameters must be kept
within very close tolerances, asymptotic stability is necessary.
However, in many other applications conditions for asymptotic stability
may needlessly restrict the system designer. The desired state of a
system may be mathematically unstable and yet the system may oscillate
sufficiently near this state that its performance is acceptable, Many
aircraft, missiles, nuclear power plants ete. behave in this way and
yet their performance is not considered undesirable. Such systems may
be classified as Iagrange stable systems and the question arises "how
does one go about analyzing Lagrange stability?" It turns out that
Liapunov's direct method is also helpful in answering this question.

This is discussed in the next zection.

5.2 Iiapunov's Direct Method for lagrange Stable Systems.

Mathematically speaking, Lagrange stability may be defined by
a simple extension of Liapunov's direct method. Specifically, consider
a physical system whose disturbed motion is desecribed by eq. (2). If
a positive scalar function V(x) of the type defined in section 2 can
be found and if in addition

VE-e<0 (537)
for all x outside some closed and bounded region around the equilibrium

state, then the disturbed motion of (2) is ultimately bounded and the
system possesses Lagrange stability. '
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It is obvious that whether a lagrange stable system is acceptable
for a practical application depends on the size of the bounded region

defined above and the particular application.

This extension of Liapunov's direct method to Lagrange stable
systems has been successfully applied to.a large class of nonlinear
systems of the type considered in section 3. Explicit conditions for
Iagrange stability are derived and it is shown that they are much less
restrictive than those required for asymptotic stabllity (;Z).

For the purposes of these notes, the procedure will be illu-

strated by an example taken from the nuclear reactor field.

5.3 Lagrange Stability of a Nuclear Reactor with Two Temperature

Coefficients of Reactivity.

Consider a two-region reactor with two temperature coeffi-
cients of reactivity. Assume that the reactor dynamics model 1s
independent of spatial coordinates and neglect the delayed neytrons.

Thus, the sbtep response of the reactor is deseribed by the equations

d@
dt plé (38)
ar'
— = -E Y} - rLop!
€1d% m, (8 Eo) hﬁr; Ta) (39)
ar]
e TE ] - t - )
. T 'na(e:»@o) + h(T] - T)) - Wl (40}
= Lt t tmt
o, = P, * rlTl + raTB (41)
where
€5 is heat capacity of ith regicn
h is over-all heat transfer coefficient between regions
(1) and (2)
ni is fractional power delivered to ith region Cﬂl +T, = 1)
r{ is temperature coefficilent of reactivity over neutron

lifetime
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p is step input over neutron lifetime

T is average temperature ilcrement of ith region
WTE’ is power remaval

% is power

& is steady-state power before step po is applied,

4 simpde change of variable

— mt t
T, =T + bT] (42)7
where - . . .2\
_g_.,.lel__, wj;‘\/[}?._..il_._ W‘Ja b o
b __1 3 € & € €2 ‘ @3)
1: 2 h
2...-...

[
2

reduces the system of egs, (38-41) into the form

a3
CL (44)
dTi
T Le- é<:nj- - ngl ()
dTg
— i - é —
dt ag [é _O] gaTa (46)
o, =1, + r-lTl + v, T (47)
with
T n
g'=£_bi.il— . -_=_l+bi..—?-
1 e . € €,
r' - 1'b r'b - !
A 2 T = 2
y b - b 2 b - b,

The coefficients g, are always positive, The coefficients ai can also
be assumed positive because, if Cti were not, a simple change of variable

T:i, - - ‘I’i would result in a system with positive coefficients.
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The system of egs. (44-47) admits an equilibrium state

P o8, &
< < rl%ga + rgo:agl

3 - % § -9
7 _ al (Eﬁm O) T _aB( @ O). (48)
%

The equilibrium state is physically meaningful if

r, 1g2 + T8 < 0

If the variables are measured in terms of their equilibfium values,
(44-47) reduce to the normalized form

sX:

55 = PP (49)
dT 3
= 8 (BT + g5 (2-1) (50)
® "o
&I é
- &(&T,) + 8, e (@ LS (51)
r_
[ A O U R Y (R (52)

For the purposes of the subsequent discussion assume &, equal to zero.
This is done for mathematical expediency and does not involve any

leoss of generality.

Finally, if the origin of coordinates of the (@,T1 ,Ta) space
is transferred to the equilibrium point (1,1,1) and Ti/gi is replaced
by T,s €as (49-52) reduce to the canonical form

dTl

T 8Tt £(s) (53)
dTg

T 8T, + £00) 4
dG

a5 = u(rataTy+ T oCaTs) (55)
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£lo) = e%1 ; of(c) >0 (56)

Notice that egs. (53-56) are of the same type as egs. (9).

Consequently, sufficient conditions for absolute stability are (see

eqs. (16) with A, =C,= 0):
af Qala2
& r,0 to e = 0 (57)
1 R
2
o 2a, ag
& I'E_CX + 2 =0 (58)

The next question is under what condltlons do egs. (57-58) admit real
solutions Oclaa? To answer this question multiply eq. (57) by g and
(58) by g and add the results. Thus find
- 7 . L ’ Ry ] — Srmah
@m{rla1g1+ r‘aflegzj + gal-i-az) = 0 ()
Eq. (59) implies that r @8+ raaag <0, since O , O, mast be real.
1 2
Similarly if egs. (57-58) are divided by g s & respectively and then
added

al aa )
3 (r g + r o 8) / &8, + (—-é: +*é-8—) =0 (60)

which also implies that rlcxl 8y + T 0.8, < 0. In summary then the
system is absolutely and asymptotically stable if

< . < 1
r1a1g1+ r g 0 ;3 rog+roeg<o0 (61)
It ecan be readily shown that these are also the necessary and
sufficient conditions for the linearized version of eqs. (4#9-52)

to admit unconditionally stable solutions.

The same conclusion could have been derived through appli-
cation of Welton's criterion to eqs. (49-52) with g, = 0. Indeed,
the feedback kernel is
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g(t) =- (roe = +r0pe ) £ >0 (62)

I
o
c..'..
v
Q

g(t)

The cosine transform of the feedback kernel is

Gl{e) = - [ T8 TRE ] (63)

ua+gle wa+géa

and it is positive only when conditions (61) are satisfied. Therefore,

Welton's criterion results in the same conditions as lur‘e's method.

Now consider what happens if conditions (61) are not completely

satisfied. Of course, the reguirement
= - < >
r103g2+ raoggl Rz 0 Ra 0
is necessary for the existence of the equilibrium state., Assume that
regg+rag =R >0 and ra+ra=-R <0 (64)
1171 2 2 3 1 11 2 3 o

It can be easily shown that when conditions {64) are satisfied, the
linearized version of the reactor equations leads to a conditionally
stable system. Specifically, the reactor is linearly stable (§O=O)
when the step reactivity input is
(g, + 8, )R
€ e
o, = (65)

1

or the equilibrium power is

<e;1 g (g,+¢g)

R
1

3, (66)

It will be subsequently shown that the reactor 1s actually ILagrange

stable for all values of the step reactivity Py

To this effect consider the system of egs. (49-52) (§o= 0)




and introduce the change of variables

In(3+1) 3 = %1 = £o) (67}

a
il

g=x X=y

thus, reduce the original system of eqs. (49-52) to the following

g =X
x 5y
v o= -(51+g2) y-F{o)x- E’@Raf(o) )

_ o
F(o) = g g, + §Re >0

The equilibrium state of this system is g=x=y=0 and it is
linearly unstable when Po is larger than the upper bound given by
(65). The question then is whether there is a bounded region
around the equilibrium state beyond which the growth of the reactor
parameters is limited, The answer is yes as it can be easily

deduced from the following considerations.

First note that for x < 0 (d3/dt < 0) and for all o and y the
system is physically bounded. Consequently, it is of interest to
examine what happens only for x > 0. To this end consider the

following functions.,

a. v =Y ye(g 45 e rcﬁ(c)d01?+(g +2, )8 Ry rof(ﬂ)dd (69)
1 L 1 78 Jo- e Jo )

This function is positive definite (V&(m) - o) and its time

derivative is:

R g
¥, = {yele +8,)x +L F(o)do [+(g, +8, )8R, (0)x =

= - %Raf(c)&r-i-f: F(cs)dc] (70)

This derivative is negative for all x in the following regions:
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(¢ >0, 3> 0) ; (6< 0, y<0)

o g (71)
(6 >0, -y <IF(U)dU) 3 (0<0,¥7< -IF(G)do)

(o) o]

consequently, V1 is a Liapunov function in these regions and there-
fore the reactor parameters are bounded for ¢ and y satisfying

conditions (71). This result is schematically shown in fig. 1,

g
2
b. Vo = %{y-z-@ R rf(a)dc] + %(glg_e_-{- @wﬁo)xa {72)
&

V, 1s also a positive definite function (V_ (=) - ®) and its derivative

is:
/ o
‘}e: —[y-kéa}ﬁo Jrf(c)dc] -[(gl +8, )y+@@Raf(c)] -
’ o (73)
- %Ro(g;lga-i-@mRo)x J\ f(o)do

R

Note that for x > 0, o0 <0 and ¥ >
8,75,

.

V8 < 0 and comnsequently the reactor parameters are bounded in the

region shown in fig. 2.

e. v =%[y-§—ix+ jF(c)dc]z (74)
v o= R?-[ % GF( )*7[ R f( ] (75)
3__.-?{: y:.-B-gx+J o)do | | TR, o)

o)

Note that for x >0, ¢ >0 and -y > j\ F(os)do, \.73 < ( because

o
G

[ro)ao = g0 + 8R500) > 8 000) (76)
o]
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Therefore, the reactor parameters are bounded in the region shown
in fig. 3.

o
2
_af _
d. v, = 2Ly+(g1fg2)x1 + | f(o)de (77}
o
7= y l: :
v, [y-{»(s__ﬁ;l+g2)x-J Flo)x + @éﬂsf(c)]+f(a)x (78)
@ng .
For ¥ > 0, 6 < 0 and X > - the derivative V. is negative
8182“@&30 &

and therefore the reactor parameters are bounded in the region

shown in fig. &.

Sirultaneous consideration of V ,...V; reveals that the
1
reactor parameters are bounded everywhere but for a small region

around the equilibrium state definsd Ly

§mR a inz - ) (79)
g < 03 X < o 5 Y < 3 ¥ > —‘[F(o dog 79
gl g+ @mﬁo gl +ga
o
The sufficient conditions for this to be true are
R, =~ (rlaig2+ PEO%g&) >0; R, = - (v 0 + raaé)> 0 (80)

Consequently under these conditions the system is Lagrange stable,
Whether this system is practically acceptable depends on the
magnitude of the region defined by inequalities (79).

6. DISCUSSION
The preceeding sections give a brief review of some analytical

techniques used in stability investigation of nonlinear systems.

Liapunov's direct methoed has been emphasized as the most power-
ful method for this purpose. There are several arguments that

support this view.
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¥irst, for a large class of systems the method can be readily
implemented and sufficient conditions for asymptotic atability carn
be derived.

Second, for a large number of nonlinear control systems, the
requirements for absolute asymptotic stability are the same as the

requirements for unconditional linear stability.

Third, in many cases Liapunov's direct method does not re-
quire detailed knowledge of the nonlinear effects (see for instance
the condition of (g) > 0O).

Fourth, the method surveys the entire family of solutions
of a system of nonlinear ordinary differential equations without
resorting to series expansions. This is a great asset since series
expansions are always bound to introduce over-restrictive mathe-

matical limitations.

Of course, Liapunov's direct method has also many dis-
advantages., In many cases the construction of a Liapunov funection
is extremely difficult if not impossible. In other problems the
requirements for asymptotic stability are so severe that they
cannot be achieved. A case in point is the boiling water reactor

which is linearly unstable when the power is up to a certain level,

Tn the latter problems the approach to the question of
stability from the point of view of Lagrange stability is most
appropriate. As it is discussed in section 5, Liapunov's direct

method proves again very helpful, if it can be implemented.

The extention of ILiapunov's direct method to Lagrange stable
nonlinear systems in general and nonlinear rea¢tol dynamics in
particular is new. However, it is felt that it will provide a use-

ful tool for further analytical studies.

St.nr. 5699
EPG/BrEv
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