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ABSTRACT o :
Hatsopoulos and Gyftopoulos (1976a-d) argued
persuasively that both Newton's equation F = ma, and von

Neumann's equation Bp/at=(21l:/ih)[_H,p] are

incomplete, and that: some nonunitary principle of quantal
motion must be devised to achieve a unification of
thermodynamics and quantum physice into a self-censistent
theory, The two equations of moticn are incomplets
because they describe neither all reversible adiabatic
changes of state nor any irreversible adiabatic changss of
state.

Motivated either by these thermodynamic considerations
or by other objectives, various authors have considered
many mathematical generalizations of quantum dynamics.
Are all these generalizations accepiable?

To answer this question (Gubukgu, 1993), we establish
nine sensible criteria that must be satisfied by any relation
purporting to represent the complete equation of motion of
thermodynamics, apply these criteria to each of the
proposed generalizations of von Neumann's equation, and
find that the only acceptable relation is the one proposed by
Beretta ot al. (1984, 1985).

Nomenclature

A linear operator on B or system A
a acceleration

B linear operator on H or system B

AB composite of A+ B

Ayy  kemel of operator A = {3y |A|8y)

F force

F(g,p) linear-operator on H, function of € and p

G; . generators of motion (set of linear operators on H)
h Planck's constant

H Hamiltonian operator

H Separable Hilbert space

i V-1

k

Boltzman's constant

linear super-operator on L1(H)

mass

number operator of constituent i

momentim operator on i

entropy operator on H

time _

trace of operator that follows

linear operator on H

position operator on #

adjoint of operator X

<X>  expactation value of operator X

[X.Y] commutatorof operators X and Y = XY-YX
{X,Y}, anti-commutator of operators X and Y XY+YX
8 Dirac delta function

£ set of instantaneous expressions correspondmg to
propetties

positive time constant

positive time constant

thie number pi = 3.14159...

density operator

derisity operator of a stable equihbnum state
the operator on H = -Log(p)

positive time constant

positive time constant of constituent i

wave function
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Dynamics

The power of a physical theory is in its ability to make
predictions. A successful theory must be able to describe
all types of time evolutions of systems we observe in
nature, mcludmg irreversible and all forms of ‘réversible
adiabatic changes of state. In that réspect, both classical
and quanturm mechanics are physical theories which
describe only a special class of adiabatic changes of state
and, hence, both Newton's equation F = ma and



Schridinger's equation -fa—"{--—-%hﬁl-lw are incomplete.

ot
Also, it is well known that von Neumann's equation

(2] oo

implies a unitary time evolution, hence cannot describe all
adiabatic changes of state (Wehil, 1978). Hatsopouios and
Gyftopoulos (1976a-d) argued persuasively that to achieve
a unification of thermodynamics and quantum physics into
a self-consistent theory, some nonunitary principle of

()

quantal motion must be devised. This new principle of

equation of motion, which we call the complete equation of
motion of thermodynamics, will not only describe
irreversible adiabatic changes of state, but also reversible
adiabatic changes of state which are not unitary.

To date, several authors have proposed many
mathematical generalizations of quantal dynamics. Even
though the motivation behind each such generalization is
not always identical to that of Hatsopoulos and
Gyfiopoulos, the proposed equations of motion are
candidates for being the complete equation of motion of
quantum thermodynamics. In this study, we investigate
whether all these generalizations are accepiable, i.e., are
consistent with experimental observations and do not lead
to mathematical inconsistencies.

Using thermodynamic considerations only; we establish
nine sensible criteria which must be satisfied by the
complete equation of motion of thermodynamics:
Applying these criteria to each of the proposed
mathematical generalizations of quantam dynamics, we
conciude that only the equation proposed by Beretia et al.
(1984, 1985) is acceptable.

Conditions Imposed on the Equation of Motlon

In gquantum thermodynamics the state is represented by
the sei ¢ of instantaneous expressions. corresponding to
properties and the density operator p. The operator p is a
self-adjoint, non-negative definite, unit trace, linear
operator on a Hilbert space H. Therefore, in dynamics, we
have 10 describe the time evolution of both the set € and the
density operator p. In isolated systems, the set € is time
invariant, and so all we need is an equation that describes
the time evolution of p. We call it the equation of motion
of quantum thermodynamics.

If system A interacts with other systems, we
need to describe the evolution of the set €, as well. One
possible approach is to study the behavior of the isolated
composite sysiem A+B, where B is the union of all
systems interacting with the sysiem A. Then, the seteap
is time independent, and the time evolution of the density
operator p,p of the composite system is determined by
the equation of motion for the composite sysiem. In
principle, the set £, and the density operator p, at any
instant of time t, can be recovered from the siate
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{eap.papl Of the composite at time t, provided that A is
an identifiable subsystem of A+B.

The dynamical law of quantum thermodynamics
remains to be established. Nevertheless, we can determine
several mathematical conditions that need to be satisfied by
the equation of motion.

As a first condition, we believe that the equation of
motion should be compatible with the principle of
determinism, i.., without any ambiguity it should allow us
to determine the state at any instant of time, given the state
at some specific time. The simplest form of equation

possessing this feature has the mathematical
representation;
ap
= F(e, 2
~ = F(e.p). @

where F(g,p) is a linear operator which is a function of the
state {e,p} and remans o be discovered. Note that the
equations of motion of both classical and quantum
mechanics have the form of Equation (2).

To be an acceptable equation of.motion in the
framework of quantum thermodynamics, the, following
mathematical conditions must be satisfied.

1. The equation must preserve the Hermiticity of p.
Accordmgly, F(e,p)-F (e,p), where F* (e,p) denotes the
adjoint of the eperator F(e,p)

2, The equation must preserve the trace of p, ie,
Tr(p)=1 at any instant of time .  Accordingly,

d
-{ETr(p) =0= Tr(F(e,p_)_).

3. In an isolated system, energy must be conserved,
ie., ad?(H) =0, where H is the Hamiltonian operator of

the system. Accordingly, Tr{HF(¢g,p))=0.
4. The entropy of an iseolated . 18 given by

(S)=-k Tr(p Log(p)). This value must not decrease,

e., %(‘S)z—k Tr(Log(p)F(e.p)) 2 0.

there must exist a class of states for which the inequality
becomes strict, i.e., the entropy increases, so that the
equation can describe iiréversible spontaneous processes
which are part of innumerabie experiences.

5. The equation should preserve the non-negative
definiteness of p.

6. The equation should reduce to the von Neumann
equation (Equation (1)) or, equivalently, to the Schrédinger
equation 9y

9 ot

Furthermore,

= g-l-iEH\y if p s a projector (p2=p), because

ordinary quantum mechanics is a special caseé of quantarmn
thermodynamics.

7. Soiutions of the equation for a composuc of two
independent systems A and B should be compatible with
the two equations of motion for the parts A and B. If
par(t) denotes the solution of the eguation for the

ol



composite system for the initial condition
Pap(0)=pa(0)®px(0), pA(t) and pg(t) denote the solutions
for the initial conditions p,(0) and py(0), respectively, then
we must have pap(t)=pA()®pp(t). This condition implies
that the operator F(g,p) of Equation (2) must satisfy the
relation: Fap(€ap.Pan)=Fa(Ea.pa®pp+pa®Fp(€Ep.P)-

8. The solution of Equaticn (2) must €xist and be
urigue for any initial condition p{0).

9, The time evolution predicted by the equation must
be consistent with experimental observations. Actually,
this is the only way the equation of motion of any physical
theory can be and is validated.

Candidate Equatlons

Many attempts have been made to establish equations
that describe quantum dissipative phenomena within the
framework. of statistical quantom mechanics. One group
consists in irtroducing nonlinear terms in the Schrodinger
equation (Kostin, 1972, 1975; Scuch et ai., 1983a-c; Gisin,
1983a-b, 1986; Albrecht, 1975: Hasse, 1975). Each
proposal in this group, however, fails to satisfy Criterion 4
because it preserves the value of eniropy for all adiabatic
changes of state, and, therefors, is not accepmme

Accordingly, in this $tudy we present only equaﬁons of

motion which apply not only if p=p2 but also if prp?.

The first equation of motion for the deasity operator p
was proposed by von Neumann (Eguation (1)), In this
equation, however, p is interpreted as a statistical average,
OvVer many projectors Only Jauch (1968) considered all
density operators p——p and p=p2, and postulated that the
dynamicai law of generalized quantum mechanics is given
by the von Neumann equation. Later, Hatsopoulos and
Gyftopoulos (1976a-d) postulated that the von Neumann

equation applies to all density operators p-—p2 and p¢p2 :

but only for unitary changes of p, and provided that p is
represented physically (as opposed to mathematically) bya
homogeneous ensembie. A homogeneous ensemble is
defined as an ensemble of identical systems each of which
is in a state {e,p}. This is a generalization of the concept
of homogeneous ensemble introduced by von Neumann for
the representation of a projector (wave function).

In the literature there are attempts to describe quantum
dissipative phenomena using subsystem dynamics. For
example, several equations of motion for the statistical
operator of a subsystem have been developed by
Kossakowski (1973), Lindblad (1976), and Gorini et a/.
(1976). These equations are based on the notion of a
quantum dynamical semi-group, are derived by using the
concept of "complete positivity” (Gorini, 1976; Messer and
Baumngariner; 1978), and are linear in p. Each is of the
form

9

ot &

:Lp’
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where L is a linear operator on L1(H), that is the Banach
space over the field of real numbers of self-adjoint trace
class linear operators on the Hilbert space H. The operator
L. is sometimes referred to as a super-operator. Because of
its similarity with the Liouville equation of classical
mechanics, Equation (3) is commonly referred to as the
"Liouville equation”.

Kossakowski's proposal is exclusively for a two-level
system, and that of Gorini ef al. .applies to systems
associated only with a finite dimensional Hilbert space H.
The equation proposed by Lindblad is valid for all systems,
and reduces to the equations proposed by Kossakowski and
Gorini ef al. Therefore, in this study, we investigate only
the equation of motion proposed by Lindblad (1976) who
considered a super-operaior L such that

9P 21: « 1g % .
o= (el Z[vnpvn—-ze{vnvn,pu @

where {V;Vn,P}+ = v;vn-p+pv;v,, ,and {Vy} is a set

of bounded linear operators on H. In the following section,
we investigate whéther this equation is suitable for
quantum thermodynamics, even if we interprcte p as a
density opérator rather than a statistical operator.

Messer and Baumgartner (1978) proposed two different
equations of motion for the density operator, both
nonlinear in p. The most important aspect of their work is
the recognition that p cannot represent a statistical
operator. They proposed these equations as a
generalization of nonlinear Schrodinger equations Wthl’l
are valid only for projectors or wavefunctions, i.e., p=p2.

“The first equation proposed by Messer and
Baumgartner is of the form

-3 (V(pwl'ﬁW_V )

where ¥ is a positive constant, and V(p) a linear operator
such that

Bp 21c{ )

ot ih

%
Vip)yy =(Vp),, Mg%—;ﬂ-,

¥X

(©)

and Axy denotes the "kernel” of the operator A with
respect o posmons % and y. The kernel of an operator Aig
given by the inner product <3!Al8,>, where 3y and By are
Dirac delta functions singular at x and y, respectively.

The second equation proposed by Messer and
Baumgariner is of the form

(2
21

)2~ (o] 1(elxp]. Y



where ¥ is a positive constant, and x and p are the position
and momentum operators, respectively.

Park and Simmons (1981) adopied the generalized set
of density operators of quantum thermodynamics, and
proposed the nonlinear equation given by

,ﬁaﬁ_.:_.;[H,p]f%(f)(P)“P)’

8
X 8
where A is a positive constant, and p{p) is the density
operator of a stable equilibrium state which shares the
same values of energy, amounts of constituents and
parameters with p.

Beretta et al. (1984) proposed another nonlinear
equation for p. To express the Beretta equation in a
compact form, we define: (a) the semi-inner product

(A.B) =Te{A"Bp)~Tr(A"p)Tx(Bp)
R-{x o ).

where A and B are linear, closed operators on H; and (b)
the operator Z=-Log(p) with the convention Log(0)=0. so
that the entropy of the system in state {£,p} is given by

®

S(p)={S)=-k Tr(p Log(p)}=Kk({Z). (10)

For systems consisting of only one constituent, the Beretta
- equation is given by the relation

%’f-?—g[ﬂ,ph%{pﬁ(p)h an
where
() 61—(G1} ... Gn~(Gn)
(61.Z) (61.Gy) (61.Gn)
fown) ©@no) . @]
i) (61.G61) ... (61.Gy) -
(G0:G1) . (GG

|- deneotes the determinant, {G;) is a set of n linear,

closed, self-adjoint, commuting operators on H, and 7 a
positive time constant. The members of the set {G } are
called the generators of motion, and one of them is always
the Hamiltonian operator,

Because it always contains the Hamiltonian, the set
{Gj} is not empty. Its cardinality depends on the system.
In grand systems, i.e., systems which admit fractional
expectation values of the amounts of constituenis, the
constituent number operators {Nj} are also included in the
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set {G;}. Furthermore, the elements of the set {Gj} are
always lincarly independent. For certain systems, the set
{Gj} contains only the Hamiltonian and Equation (12a)
reduces 1o

Z- (E) H- (H)
((H.z) (HH)| -
( () (12b)

For systems consisting of more than one constituent,
Beretta et al. (1985) proposed a more general equation. In
the general form, to i'* constituent of the system, there
corresponds z different time constant 1;. However, if we
assume that all time constants t; are identical, then the
general equation reduces to Equation (11), _

For certain p's the dénominator in Equation (12a) can
vanish and Equation (11) becomes undetermined. For
those p's, Beretta (19852) postulates that D(p) itself
vanishes, and, thus, the equation reduces to the von
Neumann equation.

Finally, Korsch and Steffen (1987) proposed a
nonlinear equaiion of motion for the statistical operaior p.
Because of the nonlinearity of the equation, the authors

recognize the difficulties in interpreting the meaning

assigned to p. However, they did not state as explicitiy as
Messer and Baumgartner (1978) that p cannot be a
statistical operator. The motivation behind the work of
Korsch and Sieffen is to describe the irreversible
dissipaiive time evolution of a system in contact with its
environment (an open system). Their equation of motion is
given by

9P _

3 (13)

= —[H,p] +7A(p)

where 7 is a constant, A(p) a nonlinear functional of p
given by either

Alp)={z-{2))p

of

(14a)

Afp )=-;-{A pl, —(Akp (14b)

or a combination of Equations 14a and 14b, and A an
operator corresponding to an additive property of the
system.

The Equation of Motion

In this section, we examine which of the equations in
the preceding section meet the nine conditions discussed
earlicr. Upon investigation, we conclude that only the
Beretia equation conforms with all the conditions.

First, we observe that the von Neumann equation
(Equation (1)) satisfies Conditions 1 to 3, and 5 to 8.
However, because it describes only unitary transformations



in time, the von Neumann equation conserves the value of
entropy and violates Condition 4. Accordingly, we
conclude that the von Neumann equation is not acceptable.

The two equations of moiion proposed by Messer and
Baumgartner (Equations (5) and (7)) satisfy Conditions 1
and 2. However, they do not conserve the value of erergy,
herice violate Conditicn 3. Even though this last siatement
alone shows that the cquations proposed by Messer and
Baumgartner are unaccepiable, for the sake of
completcness, we investigate them further. The avthors
emphasized that the question of whether or not these
equations satisfy Conditions § and 8 is an open one. Both
equations violate Condition 6, however. They are invented
in such a way that, if p is a projectos, each eqaution
reduces to a so-called "nonlinear Schrodinger equation”
instead of the Schrodinger equation. Furthermore, it is not
known whether or not Equation (5) satisfies Condition 4.
1t is easy to show that Equation (7) conserves the value of
entropy, and therefore violates Condition 4. Based on
these observations, we conclude that both eguations
proposed by Messer and Baumgartner are not accepiable.

Simmons and Park (19814-b) have criticized the way
the Liouville equations are derived for the statistical
operator. Here, we are not interested in how the equations
are derived, but rather in whether they satisfy Conditions 1
t0 9. Tt turns out that the Liouvillé equations do not satisfy
these conditions.

If it were possible to find a Liouville equation that
satisfies the Conditions 1 to 9, we could have postulated it
as being the equation of motion of quanium
thermodynamics by interpreting p as a density operator.
This approach would have been fundamentally different
from those of Lindblad, Kossakowski and Gorini who
"derived” rather than "pestulated™ their ¢quation. It is
noteworthy, however, that if the equation of motion cannot
be derived from known principies because these principles
do not regularize all experiences, then it must be
postuldted

It is easy to verify that the Lindblad equation satisfies
Conditions 1 and 2. The first difficulty encountered with
the Liouville equations proposed in the literature is that, in
general, they are not energy conserving and do not
conform. with the principle of entropy non-decrease (Park
and Simmons, 1981; Simmons and Park, 1981). It is
possible, however, to give a version of the Lindblad
equation (Equation {4)) which is both energy conserving
and entropy non-decreasing, for the special case of a two-
level system. Therefore, we cannot find a definitive
answer to the question of whether or not, with a proper
choice of {Vy], the Lindblad equation satisfies Conditions
3 and 4. It can be readily shown, however, that the
Lindblad equation does not satisfy Condition 5, because it
preserves the non-negativity of the density operator only in
the positive direction in time. Given the state of a system
at an instant of time t, in a deterministic theory, the state at
any other instant of time (both after and before t} is
uniquely determined. The Lindblad equation fails (o0
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satisfy this criterion because it does not preserve the non-
negativity of the density operator in the negative direction
in time and, therefore, we cannot recover the state of the
system in the past. Accordingly, we conchide that the
Lindbiad equation i$ not suilabie for our purposes.

For the sake of completeness, we also investigate
whether the Lindblad equation satisfies Conditions 6 to 9.
Condition 8 is satisfied because Lindblad (1976) used i in
deriving his equation. Cubukgu (1993) has shiown thai the
Lindblad equation does noi comply with Conditions & and
9, and Condiiion 7 is satisfied only with a proper choice of
{Vn1. From this discussion, we conclude that ihe Lindblad
equation is not acceptable. _

Park and Band (1977, 1978a-b) searched for a
genesalized equation of motion linedr in p which takes any
initial state to a stable equilibrium state with the same
values of energy, amounts of constituernts and parameters
as the initial siate. They have found that such an equation
exists for two-level systems. However, later on Simrrions
and Park (1981a) showed that no such linear equation
exists for N-evel systems with N>2, and concluded that
any equation of motion which takes a state to its
corresponding stable equilibrium state must be nonlinear in
p. They have proposed Equation (8), which clearly
satisfies their critérion, and have shown that it satisfies
Conditions 1 10 4. Because p(p) is determined once the

initial density operator is given, Condition 8 is also
satisfied. The reason is that then the equation becomes
linear in p and its solutions are known to exist and be
unique (Bender and Orszag, 1978). However, the Park-
Simmons equation satisfies Condition 7 only. in an artificial
manner, It is clear that the equation for a composite .
systern takes any initial state to a stable equilibrium state of
the composite system in which the individual parts are in
mutual stable equilibrium with each other. However, if the
equation is solved for each individual part, the resulting
stable equilibrium states of the parts are. not necessarily in
mutial stabie equilibrium. For example, the temperatures
of the final states are not necessarily identical. There is no
reason for them to be identical because the parts dre
independent of each other. The difficulty can be avoided
only by postulating that a system should first be
decomposed to ifs independent parts and then the Park-
Simmons equation be applied to each part. Even if the
problem with Condition 7 is resolved, Cubukcu (1993) has
shown that the equation violates Conditions 5, 6 and 9
exactly in the same manner as the Lindblad equation.
Accordingly, we conclude that the Park-Simmons equation
is not acceptable.

The Beretta equation (Equation (11)) is the most
promising among the candidate generalizations of quantum
dynamics. Beretia et al. (1984) showed that his equation
satisfies Conditions 1 to 6. Cubukgu (1993) has shown
that the equation satisfies Condition 7 as well. The major
difficulty to date has been to prove the existence and
uniqueness of the solutions of the equation, but as shown
by Cubukcu (1993), this difficulty has been resolved and
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the Beretta equation satisfies Condition 8. In principle, the
equation describes both reversible and irreversible
spontaneous processes (Beretia ef al., 1984), i.c., processes
in isolated systems. Because it mducss 10 the Schrdinger
equalion or, equivalently, o (he von Neumann cquation for
mechanical states, the Berelia equation describes all ihe
processes captured by either of these two equations. The
validity of the equation for the more general states (p#p™)
remains to be shown.
experiments which can validate quantitatively this equation
and which can be used to evaluate the time constant T
(Cubukg¢u, 1993). Beretta (1985a-b) also suggesied an
experiment for a quantitative verification of hic equation of
motion. _

Korsch and Steffen {1987) introduced their equation in
the context of subsystem dynamics. In its general form the
equation results in entropy increase if initially the state is
not equilibrium. Upon requiring that encrgy be conserved,
Korsch and Steffen showed that their equation reduces to
the Beretta equation, and concluded thai ihe laster is the
most gengral equation that satisfics all the requirements of
quantum thermodynamics.

Because the Bercita equation is the only equation which
complics with all the conditions we have determined, we
concur with the conciasions of Korsch and Sieffen.

Concluslon

Hatsopoulos and Gyftopoulos {1976a-d} have
developed a new physical theory which encompasses both
thermodynamics - and mechanics within a single
mathemancal framework, calied quantum thermodynamxcs
all revcrszble and irreversible adlabauc changes of state.
The compiefe” equation of motion of quantum
thermodynamics remains to be discovered, however. To
defermine the complete equation of motion, in this. paper
we investigate whether the generalizations of quantum
dynamics proposed in-the literature safisfy the set of
requirements we have established from thermodynamic
considerations only. Upon this investigation, we conclude
that only the equation of motion proposed by-Beretta et al.
(1984, 1985) satisfies all the established criteria.
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