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ABSTRACT

Carnot analyzed an engine operating between two reservoirs,
Through a peculiar mode of reasoning, he found the correct
optimum shaft work performed during a cyclic change of state of
the engine. Clausius justified Carnot’s result by enunciating two
laws of thermodynamics, and introducing the concept of entropy
as a ratio of heat and temperature of a thermodynamic equilibrium
state.

By appropriate algebraic manipulations, in this paper we
express Carnot’s. optimum shaft work in terms of available
energies or exergies of the end states of the reservoirs, and
Clausius’ entropy in terms of energy and available energy.

Next, we consider the optimum shaft work performed during
a cyclic change of state of an engine operating between a
reservoir, and a system with fixed-amounts of constituents, and
fixed-volume but variable temperature. We express the optimum
shaft work in terms of the available energies of the end states, and
Clausius’ entropy in terms of energy and available energy,
Formally, the entropy expression is identical to that found for the
Carnot engine except for the difference in end states.

Finally, we consider the optimum shaft work performed
during a cyclic change of state of an engine operating between
system A initially in any state A, (thermodynamic equilibrium
or not) and reservoir K. We call this optimum generalized
available energy with respect to R, and use it together with
energy to define an entropy of any state A;. Again we observe
that the expression for entropy is formally identical to the two
given earlier except for the difference in end states.

NOMENCLATURE

A system

B system

Cp positive constant of reservoir R
E energy

EY energy of system Y

W)

energy of system Y in state Y,

vector of types and amounis of constituents
vector of types and amounts of constituents of
system Y

vector of types and amounts of constituents of
system Y in state Y,

Clausius entropy

Clausius emtropy of system Y

Clausius entropy of system Y in state Y,
entropy generated spontaneously
temperature

temperature of system A in state A,
temperature of system Y

volume

volume of system Y in state Y,

shalt work performed by composite system YZ as its
state changes from state (YZ) to state (YZ),

shaft work performed by composite system YZ as its
state changes reversibly from state (YZ), to state
(YZ),

engine

entropy of any system Y in any state

entropy of any system Y in any state Y,

available energy or exergy of a system with respect to
reservoir Y

available energy or exergy of system A in state A,
with respect to reservoir Y; also generalized available

energy of system A in state A, with values nf
and V;* with respect to reservoir Y and a final state

of A with values n, and VUA and such that A
and Y are in mutual stable equilibrium.



INTRODUCTION

Over the past few decades, we have adopted the viewpoint
that the laws of thermodynamics are not either statistical or
restricted only to macroscopic systems in thermodynamic
equilibrium. In support of this viewpoint, we have presented both
the quantum-theoretic foundations (Hatsopoules and Gyftopoulos,
1976; Beretta et al., 1984; Beretta et al., 1985), and a nonquantal
exposition of foundations and applications (Gyftopoulos and
Beretta, 1991a).

Ameng the many novel results of the new viewpoint is the
recognition that entropy is a nonstatistical property of matter, in
the same sense that energy and momentum are nonstatistical
properties of matter, and that it is well-defined for all systems,
farge and small, and 21t states, thermodynamic equilibrium and not
thermodynamic equilibrium {(Qubukgu and Gyftopoules, 1994).

Most physicists and engineers find the new viewpoint, in
general, and the extension of entropy to states that are not
thermodynamic equilibrium, in particular, unacceptable and
oppose them vehemently. To the best of our knowledge, their
opposition is based solely and exclusively on the argument that
the new ideas differ from the accepted dogma, and not on any
experimental results or on any reasoned arguments either against
our statements of the laws of thermodynamics and quantum
theory, or against the faultlessly, noncircularly, and completely
proven theorems, such as the theorems that result in the definition
of entropy.

In this brief paper, continuing the efforts to elucidate the new
point of view, 1 present the general definition of entropy as an
outgrowth of the seminal ideas of Clausius. The paper is
organized as follows.

The Clausius definition of entropy of a reservoir is discussed
in the second section, the extension of this definition to a system
with variable temperature in the third section, the definition of
entropy of any system in any state in the fourth section, and a
concluding remark in the last section.

CARNOT ENGINE

Carnot (1824) analyzed an engine X which interacts with
two reservoirs A and B, and through a peculiar mode of
reasoning found the correct optimum shaft work performed in the
course of a cyclic change of state of the engine (Figure 1).

Using Clausius’ pathfinding ideas about energy and entropy
(1867}, denoting energy by E, Clausius’ entropy by S,
temperature by T, volume by V, amounts of constituents by
n, the values of these quantities for each reservoir at the
beginning and the end of the cyclic change of state of the engine
by the symbols listed on Figures 2a and 2b, respectively, we can
reproduce Carnot’s seminal result by beginning with the energy
and entropy balances of the composite system AXB.

Energy balance of composite system AXDB

B

Bt - B+ B - B = - WET M
Entropy balance of composite system AXB

St -8t 8P -8 =5, (2)
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Figure 1. Schematic of a Camot Engine

where WiY~ s the shaft work (energy transfer only) in the
course of the cyclic change of state of the engine, and S;, the
amount of entropy generated spontaneously during the samie time,

The value of Wiy~ is positive if work is done by the engine,
and negative if work is done on the engine.

For each of the reservoirs A and B, the changes of energy
and Clausius entropy are proportional to each other so that

st - st =[8) - BN/, 3)
8P -sP=(8 - EM)/T, @)

So, using equations (2) to (4), we can eliminate the energy of
reservoir B from equation (1) and find

T
whs — (E{‘ ~ E{‘) 1- T_B} - T, S, (5
A

Because the optimum is the reversible process and then S, = 0,
equation (5) yields

(w;‘f*)m = -[B-EN |1 - E] (6)

TA
that is, Carnot’s seminal result in terms of absolute temperatures,
where (Wf}_B_’)
. eV . .
composite system AXB is reversible.

For the purposes of this paper, we rewrite equation (6} in
several equivalent forms, such as

denotes the shaft work if the process of the
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Figure 2. Schematic of a cyclic change of state of a Carnot
engine: (a) initial states of the reservoirs; and (b) final
states of the reservoirs

(), = - (Bt - ),

= - (BA - BN 18t - sB) ™
St -8t = (EzA - ExA) * (WﬁBﬁ*)m‘,}/TB

“er B @, ®

where in writing the second of equations (7) we use equation (3),
the first of equaiions (8) is a rearrangement of the second equation

201

(6), and the second equation (8) results from the definition of OF

as the available energy or exergy of an amount of energy EiA of

systern A in state A; at fixed temperature T, with respect to
reservoir B at temperature Ty, that is,

TB
Ta

As is very well known, the available energy or exergy CF
is a property of both system A and reservoir B. It is

noteworthy, however, that the entropy S;* and the energy E*
are each independent of reservoir B. We can express this
important result in another way. We consider the same changes
of energy and entropy of system A from state A, to state A,
but in a process of a composite sysiem AXR consisting of
system A, engine X, and reservoir R at temperature Ty, In
the course of a cycle of X, we can readily verify that

Q"=E:‘[1— e

SA L8t = [(E;“ -EM) - (of - Q’})]/TR (10)

where Q-R is the available energy or exergy of EiA at fixed
temperature T, with respect to a reservoir at temperature Ty,

that is,
R
TA

Though O* and T, depend on the reservoir, we see from
equation {10) that neither E* nor S* has this dependence.

—

Q,?‘=E;‘[1 - (11)

ENGINE OPERATING BETWEEN A SYSTEM THAT CAN
ASSUME DIFFERENT TEMPERATURES AND A
RESERVOIR

Next, we consider a cyclic change of state of an engine X
while it interacts with system A and reservoir R so that the
values of E, Clausius’ entropy S, T, V, and n of the end
states of A and R are as listed on Figures 3a and 3b. In
contrast to the process depicted in Figure 2, here the initial
temperature of A is T,, and the final temperature T, = T,
that is, at the end of the process, system A is in mutual stable
equilibrium with reservoir R.

If the process of the composite system AXR is reversible,

the energy transferred through the shaft (Wﬁ:“) is optimum,
the energy and Clausius’ entropy that flow out of system A are
E - E} and S} - 81,

entropy S - S]A into reservoir R at the end of the cyclic
change of state of X requires the concurrent transfer of energy

respectively, and transfer of the

TR(SDA - SIA) (equation [4]). So the energy balance for the
compaosite system AXR yields
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Figure 3. Schematic of a cyclic change of state of an engine:
(a) initial state of A at temperature T); and (b} final state
of A attemperature T, =Ty

(wi) = - [(Eg‘ - BN - Tofse - s;*)] (12)

or, equivalently,

/T

R

SA _gr = [(ElA ~ EBA) ~ (wiaoka)m

[(E;‘ - E) - Q‘f]/TR (13)

where Qf = (Wﬁ,’l}m. It is clear that € is a property of both

system A and reservoir R, and represents the largest work that
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can be done by the composite system AXR as A starts from an
initial thermodynamic equilibrium state A, and ends in a
thermodynamic equilibrium state A, suchthat A and R are in
mutual stable equilibrium, and X undergoes a cyclic change of
state. By definition, this work is the available energy or exergy
of state A; with respect to reservoir R,

If during the cyclic change of state of X, the reversible
pracess of the composite system AXR starts with system A in
thermodynamic equilibrium state A, and ends with A in
thermodynamic equilibriam state A, different from 4, then
repeated application of equation (13} yields

SH - st = [(E;‘ -EM - (& - Q‘f)]/TR (14)
Though in equations (13} and (14), both Of and T,
depend on R, it is noteworthy that neither energy E* nor
Clausius entropy S* exhibit such dependence.
The Clausius entropy appearing in equations (10) and (14}
can be shown to satisfy the following conditions (Callen, 1985).

1. It applies to thermodynamic equilibrium states only.

2. 1t is independent of the reservoir.

3. It is nondecreasing in adiabatic processes.

4, It is additive.

5. It can be assigned nonnegative values only (third law of
thermodynamics or Nemst’s theorem).

6. For given values of energy, amounts of constituents, and
volume, it assumes a maximum.

7. For given values of amounts of constituents and volume,
the graph of 8 versus E is concave.

8. For mutual stable equilibrium between two systems, it

yieldsthe conditions of temperature equality, total potential
equalities, and pressure equality.

In addition to these conditions, a scarcely appreciated fact is
that the Clausius entropy applies to all systems, large and small,
and is not statistical because neither Clausius nor other scientists
that worked on the foundations and theorems of the theory of
classical thermodynamics made any restrictive assumptionseither
about the size of the system or about the phenomena explained by
this theory being statistical, or both.

A GENERAL ENGINE

Next, we consider an engine X that interacts with system
A and reservoir R, and performs shaft work under the
conditions listed on Figure 4. Initially, A isinstate A, thatis
not necessarily thermodynamic equilibrium. In this state, the

values of the amounts of constituents are n ', and the vatue of

the volume is V,* (Figure 4a). At the end of the interactions,

engine X has undergone a cyclic change of state and has

performed shaft work W{y ", and the state of A has changed

from A, to athermodynamic equilibrium state A, The latter

A

state corresponds to prespecified values n, of the constituents



and V' of the volume, and is such that A and R are in
muiual stable equilibrium (Figure 4b).

Using their statements of the laws of thermodynamics' (see
Appendix), Gyftopoulos and Beretta (1991b) prove that if the
process of AXR just cited is reversible, then the shaft work
performed by the engine is optimum -— the largest if done by the
cyclic engine or the smallest if done on the cyclic engine. They
call this optimum shaft work generalized available energy of state

A, with respect to reservoir R and the values :15“ and V3,
and for the sake of simplicity of nomenclature denote it by the

same symbol QF as that for available energy. It is noteworthy
that, under the proper conditions, generalized available energy
reduces to the available energy or exergy concept represented by
either equation (11) or the definition in equation (13).

Next, Gyftopoulosand Beretta establishseveral characteristic
features of generalized available energy. For example, they
consider two arbitrary states A, and A, of system A, and a

common state A, with prespecified values n > and V. For
an adiabatic process from A, to A, of system A only, they

show that the energy difference E(\ - EZA of A and the

generalized available energy difference QI} - Q‘; of the
composite of A and R satisfy the relations
If the adiabatic process of A is reversible:
B - = - of (15)
If the adiabatic process of A is irreversible:
Ef -E <0 - (16y

It isnoteworthy that energy and generalized available energy
are defined for any state of any system, regardless of whether the
state is steady, unsteady, equilibrium, nonequilibrium, or stable
equilibrium, and regardless of whether the system has many
degrees of freedom or one degree of freedom, or whether the size
of the system is large or small.

Now, we define the following linear combination of energy
and generalized available energy

(B} - EA) - (o - Q‘f)]/cR (17)

where ¢, is a positive constant which can be chosen so as to
make X independent of R. The proof that such a choice of ¢,
is possible is given by Gyftopoulos and Beretta (1991c). Tt turns
out that the value of ¢ is also equal to the temperature T of
the reservoir.

g - Bt -

'All correct statements of the laws of thermodynamics that appear
in the literature are proven to be special cases of the statements
given by Gyftopoulos and Beretta (1991a).

SYSTEM A A, 1S NOT THERMODYNAMIC
STATE A, EQUILIBRIUM; HAS a7, VA
RESERVOIR
R
(a)
SYSTEM A A, IS THERMODYNAMIC
STATE A, EQUILIBRIUM; HAS n 2, VJ';
A AND R ARE IN MUTUAL
STABLE EQUILIBRIUM
RESERVOIR
R

(b

Figure 4. Schematic of a cyclic change of state of an engine:
{a) initial state of A is not thermodynamic equilibrivm; and
(b) final state of A is thermodynamic equilibrium so that A
and R are in mutual stable equilibrium

Based on the proven characteristic features of E and OF,
we find that I satisfies the following conditions.

1. For the specifications of either the Carnot engine or the
engine operating between a system that can assume
different temperatures and a reservoir, it reduces to either
equation (10} or equation (14), respectively.

2. It is well defined for all systems and all states.

It is independent of R.

4, It is nondecreasing in adiabatic processes.

(VR



5. It is additive.

6. It can be assigned nonnegative values.

7. Among all the states of a system having given values of
energy, amounts of constituents, and volume, there exists
only one which has the largest Z*.

8. For given values of amounts of constituents and volume,
the graph of X versus £ of the thermodynamic
equilibrium states (largest-Z* states) is concave.

9. For mutual stable equilibrium between two systems, A

yields the conditions of temperature equality, total potential
equalities, and pressure equality.

Comparison of this list with the list of characteristic features
of Clausius’ entropy for thermodynamic equilibrium states
indicates that £ behaves exactly like the Clausius entropy, and
maintains the appropriate and expected behavior for states that are

not thermodynamic equilibrium. So we can say that X is the
entropy of any system in any state, and denote it by T4 = S4.

CONCLUDING REMARK

It is alleged that the late Cardinal Cushing of Boston said:
"When I see a bird that walks like a duck, swims like a duck, and
quacks like a duck, T call that bird a duck.” Though a
non-Catholic, but a Bostonian over the past 43 years, I believe
that the comparison of the characteristics of Clausius’ entropy and
% allows us to paraphrase the late Cardinal’s statement and aver
with a great degree of certainty that both states which are not
thermodynamic equilibrium, and states which are thermodynamic
equilibrium can be assigned entropy, and that this entropy is

defined by equation (17) for A = §4.

APPENDIX — THE LAWS OF THERMODYNAMICS

Gyftopoulos and Beretta state the laws of thermodynamics as
follows.

First law: Any two states of a system may always be the
end states of a weight process, that is, the initial and final states
of a change of state that involves no net effects external to the
system except the change in elevation between z, and z, of a
weight. Moreover, for a given weight, the value of the quantity
Mg(z, - z,) is fixed by the end states of the system, and
independent of the details of the weight process, where M is the
mass of the weight and g the gravitational acceleration.
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Second law (simplifiedversion): Among all the states of a
system with a given value of the energy, and given values of the
amounts of constituents and volume, there existsone and only one
stable equilibrium state.

Third law (simplifiedversion): For each given set of valués
of the amounts of constituents and the volume of a system, there
exists one stable equilibrium state with zero temperature.
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