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ABSTRACT

The overwhelming majority of scientists, engineers, and other
professionals believe that: (a)} statistical mechanics explains ther-
modynamics, and provides explicit expressions of entropy (for ex-
ample, § = kin§); and (b) in general, each entropy represents
disorder in a system and, in particular for given values of en-
ergy, volume, and amounts of constituents, the largest value of
the entropy represents the ultimate disorder (thermodynamic equi-
librium state). The purposes of this paper are to present both
theoretical and experimental evidence that refutes these beliefs
and to show that the spontanecus increase in thermodynamic en-
tropy represents a nonstatistical, natural tendency to perfect order
rather than disorder. The arguments are presented in two paris.
Brief discussions of the premises and conclusions of the statistical
interpretation of thermodynamics, the association of the statisti-
cal entropy with disorder, and inconsistencies that arise from such
an association are presented in Part I. A nonstatistical exposition
of thermodynamics, the interpretation of entropy as a measure
of the quantum-theorstic shape of molecules, and the association
of the entropy of classical thermodynamics with perfect order are
presented in Part I1

1 INTRODUCTION

With very few exceptions, over the past thirteen
decades scientists and engineers have been sharing and pro-
mulgating the almost religious belief that entropy is not a
fundamental scientific concept. Instead, they view it as a
measure of ignorance or lack of detailed information about 2
macroscopic system and a monotonic indicator of disorder.

Despite many correct and practical numerical results,
review of the theoretical premises and the experimental ev-
idence casts serious doubt about the validity of the prevalent
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belief, and brings to the forefront the need for both a more
rigorous examination of the premises of statistical thermo-
dynamics, and the consideration of contemporary quantum-
theoretic ideas. '

The purposes of this two-part paper are to review the
statistical ideas and disorder, and to summarize a unified
quantum theory of mechanics and thermodynamics and a
nonguantal exposition of thermodynamics which lead to the
demonstrable .conclusions that thermodynamics is & gen-
eral, nonstatistical theory of physics that admits mechanics
(both classical and conventional quantum) as one limiting
case (zero entropy physics), and classical thermodynam-
ics as another limiting case (largest entropy physics). In
the quantum theory, entropy is a well-defined and mathe-
matically precise monotonic indicator of order. The mono-
tonic indicator is a measure of the quantum-theoretic spatial
shape of the molecules of a system, in the same sense that
mu? /2 and not some other expression is a measure of the
kinetic energy of a particle.

The beliefs of many eminent scientists about both the
gtatistical explanation of thermodynamics and entropy and
disorder, and two experiments that prove that the statisti-
cal interpretation of thermodynamic phenomena cannot be
correct are summarized in Part I. A road map through an
interconnected. series of theoretical developments that are
not only complete, noncircular, and unambiguous, but also
consistent with all the empirical evidence, and that prove
that thermodynamics is a nonstatistical theory, and éntropy
a monotonic indicator of order are discussed in Part I1.

Part Tis organized as follows. A summary of the beliefs
of many scientists about the statistical explanation of ther-



modynamics, and the relation between entropy and disorder
is presented in the second section, experiments that contra-
dict both the statistical interpretation of entropy, and the
connection between entropy and disorder in the third and
fourth sections, and concluding remarks in the fifth section.

2 STATISTICAL MECHANICS, ENTROPY, AND DISOR-
DER

Newton’s enunciation of the three laws of classical me-

chanics {1666) is one of the greatest achievements of the

human mind {Tolman, 1962). Their advent met with un-
precedented success in a broad spectrum of applications
from stars and planets to molecules and radiation. This
success was so impressive and overwhelming that scientists
were convinced that every natural phenomenon could and
should be regularized by use only of the laws and theorems
of classical mechanics. So, two centuries after Newton’s
time, when the laws of classical thermodynamics were enun-
ciated by Clausius (1867), it was only natural that scientists
felt compelled to explain these laws and their theorems by
using classical mechanics.

2.1 Maxwell's demon and the statistical method.

Maxwell (1871) is one of the great scientists who be-
lieved that all physical phenomena are mechanical, but nu-
merical difficulties with macroscopic¢ systems force us to
abondon the mechanical explanation and resort to the sta-
tistical method. He said: “One of the best established facts
in thermodynamics is that it is impossible in a system en-
closed in an envelope which permits neither change of vol-
ume nor passage of heat, and in which boeth the temperature
and the pressure are everywhere the same, to produce any
inequality of temiperature or of pressure without the expen-
diture of work. ...But if we conceive a being whose facul-
ties are so sharpened that he can follow every molécule in its
course, such a being, whose attributes are still as essentially
finite as our own, would be able to do what is at present
impossible to us. For we have seen that the molecules in
a vesgel full of air at uniform temperature are moving with
velocities by no means uniform, though the mean velocity
of any great number of them, arbitrarily selected, is almost
exactly uniform. Now let us suppose that such a vessel is
divided into two portions A and B; by a division in-which
there is a small hole, and that a being, who can see the indi-
vidual molecules, opens and closes this hole, so as to allow
only the swifter molecules to pass from A to B, and only
the slower ones to pass from B to A. He will thus, withoust
expenditure of work, raise the temperature of B and lower
that of A, in contradiction to the second law of thermody-
namics.” An then, he continued: “In dealing with masses of

matter, while we do not perceive the individual molecules,
we are compelled to adopt what I have described as the
statistical method of calculation and to abandon the strict
dynamical method, in which we follow every motion by the
calculus.” It is noteworthy that the statistical method of
calculation implies irreversibility, whereas the strict dynam-

“ical model does not. -

Maxwell’s sharp-witted being was subsequently nick-
named “Maxwell’s intelligent demon” by Thomson (1874),
and created what Thomson called the reversibility para-
dox (Brush, 1986a), that is, raised the question: “How can
irreversibility result from molecular motions and collisions
which are themselves {according to Newton’s laws of mo-

_ tion) reversible in time?”
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2.2 Boltzmann, entropy, and disorder.

Boltzmann began his lifelong, pioneering, and creative
study of the atomic theory of matter as a doctorate candi-
date (Brush, 1986b). He tried to explain the second law of
thermodynamics, miscontrued as dS > 0, by using classical
mechanical principles but concluded that such an explana-
tion could not be completed without the statistical approach
introduced by Maxwell. Upon adopting the statistical ap-
proach, Boltzmann made trailblazing contributions that are
preeminent to date, and that include the Boltzmann equa-
tion and the H-theorem.

In 1876, Boltzmann’s professor Loschmidi (Brush,
1986b) brought the reversibility paradox to the attention
of Boltzmann, and he quickly converted the apparent dif-
ficulty into a new conceptual advance. He asserted that
“gystems tend to pass from ordered to disordered states,
rather than the reverse, because the number of disordered
states is so much greater than the number of ordered states

e

This explanation suggested to Boltzmann that entropy
— previously a rather mysterious quantity — should be
interpreted as a measure of disorder, and the tendency to-
ward larger values of entropy as a tendency toward greater
disorder. Moreover, he defined entropy S by the relation

S=klogQ (1)

where Q is the number of microscopic configurations corre-
sponding to a given macroscopic state, and k Boltzmann'’s
constant. ' ; '

2.3 Brillouin and information,

In addressing the question of entropy, Brillouin (1962)
states: “Entropy is usually described as measuring the
amount of disorder in a physical system. A more precise



statement is that entropy measures the lack of information
about the actual structure of the system. This lack of in-
formation introduces the possibility of a great variety of
microscopically ‘distinct structures, which we are, in prac-
tice, unable to distinguish from one another. Since any one
of these different micréstructures can actually be realized
at any given time, the lack of information corresponds to
actual disorder in the hidden degrees of freedom.”

“This picture is clearly illustrated in the case of the
ideal gas. When we specify the total number n of dtoms,
their mass m, their degeneracy factor g, and the total en-
ergy E, we do not state the positions and velocities of each
individual atom. This is the lack of information leading to
the entropy. Since we do not specify the positions and ve-
locities of the atoms, we are unable to distinguish between
two different samples of the gas, when the difference con-
sists only in different positions and velocities for the atoms.
Hence we can describe the situation as one of diserdered
atomic motion.”

Nuances in terminology notwithstanding, it is notewor-
thy that the information-theoretic approach is the underly-
ing key idea of all statistical explanations of thermodynam-
ics, in general, and the interpretations of varieus entropies,
in particular. In view of the enormous and impressive em-
pirical evidence about the objective reality, accurate repro-
ducibility, and permanent impact of thermodynamic phe-
nommens on our resources and our environment, it is amazing
that so many people continue to try to understand the sub-
ject through statistical measures of ignorance. With some
hindsight, such an attitude is like saying that no child will
ever look like his parents because we do not know the details
of the genome. ) '

2.4 Feynmann, the laws of physics, and disorder,

In trying to understand entropy and irreversibility,
Feynmann (1963) considers thé mixing of white and black
molecules, and cornments: “Gradually the whites worm
their way, by accident, across into the space of blacks, and
the blacks worm their way, by accident, into the space of
whites. If we wait long enough we get a mixture. Clearly,
this is an irreversible process in the real world, and ought
to involve an increase in the entropy.”

“Here we have a sitnple example of an irreversible pro-
cess which is completely composed of reversible events.

.. 90 we have an irreversibility which is based on reversible
situations. But we also see the reason now. We started
with an arrangement which is, in some sense, ordered. Due
to the chaos of the collisions, it becomes disordered.”

“So far as we know all the fundamental Jaws of physics,
like Newton's equations, are reversible. Then where does
irreversibility come from? It comes from order going to
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disorder, but we do not understand this until we know the
origin of the order.”

Though indeed all- the known fundamental laws of
physics are reversible, it is noteworthy that neither Feyn—
question: “are the known fundamental Iaws of physics cor-
rect but incomplete?”’ In Part IT, we will see that ax affirma-
tivé answer to this question opens new scientific vistas that
resolve the inconsistencies about genéral thermodynamics
and broaden the realm of quantum theory.

2.5 Penrose, disorder, and lack of specxﬁcnty -of the deﬁmtlon
of eitropy. ‘-
Among many others, the issue of entropy and disorder is
addressed by Penrose (1989). He writes: “Why is it that in
the world in which we happen to live, it is the causes which -
actually do precede the effects; or to put things in another
way, why do precisely coordinated particle motions occur
only after some large-scale change in the physical state and
not before it. In order to get a better physical description of
such things, I shall need to introduce the concept of entropy.
In rough terms, thé entropy of a system is a measure of its
mianifest disorder. ...But what precisely is the entropy
of a physical system? ‘We have seen that it is some sort
of measure of manifest disorder, but it would appear, by

iy use of sirch imprecise terms as ‘manifest’ and ‘disorder’,

that the eritropy ¢oncept could not really be a very clear-cut
scientific quantity.”

“Thus, irreversibility seems to be merely a ‘practical’
matter. We cannot in praciice unscramble an egg, though
it is a perfectly allowable procedure according to the laws of
mechanics. Does our concept of entropy depend upon what
is practical and what is not?”

“Recall . ..that the physical concept of energy, as well
as momentum and angular momentum, can be givén pre-
cise mathematical definitions in terms of particle positions,
velocities, masses, and forces. But how can we be expected
to do as well for the concept of ‘manifest disorder’ that is
needed for making the concept of entropy mathematically
precise? Surely, what is ‘manifest’ to one observer may not
be so to another.”

Professor Penrose’s remarks are very puzzling in view of
the universal, overwhelming, and extremely important em-
pirical evidence that cries for a rational, complete, noneir-
cular, and unambiguous explanation. Such an explanation
is discussed in Part I

The preceding (Sections 2.1 to 2.5} are a few of the
comments made by a number of eminent scientists about
the statistical explanation of thermodynamics. Admittedly,
the list is very short, and the comments selected. Neverthe-
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Figure 1. Configuration of four white {A) and four black (B} flashlight
battefies on each side of the line P.

less, these comments provide a representative sample about
statistical mechanics, entropy, and disorder, and reflect the
views of almost all scientists and engineers. In the next two
sections, we describe two typical numerical examples which
purport to quantify the meanings of entropy and disorder
at the macroscopic and microscopic levels.

3 MIXING OF COLORED BATTERIES

In both scientific and popular discussions of statistical
mechanics, the concept of entropy is illustrated by consider-
ing mixtures of colored balls (Denbigh, 1968). To facilitate
the experimental verification of our conclusions, instead. of
balls we consider four flashlight batteries painted Whlte and
four flashlight batteries painted black, and configure them
in a flat container. Each white battery is denoted by A and
each black by B. In one configuration, all white batteries
A are to the left of the dotted line P (F1g 1), and all black
batteries B are to the right. It is clear that there is only one
configuration of the type shown in Fig. 1, and therefore,

Qip=1 (2)

where 3 stands for the number of configurations in which
there are i A batteries to the left and j to the right of P.

Next, we consider a configuration in which there is one
A to the right and one B to the left of P (Fig. 2). The
A battery can be placed in any one of the four right-hand
sites, and the B battery in any one of the four left-hand
sites. So the number of configurations

03:1 =16 (3)

Continning this kind of configuring, and calculating the
number of configurations of different types we find the re-
sults listed in Table I. We see that the total number of
configurations is 70, and that the most likely {36 out of 70)
is the one corresponding to two A and two B on each site
adjacent to P. According to Boltzmann’s definition of en-
tropy, the configuration with the most possibilities prevails,
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Table 1

" Figure 2. One of the configurations with three white {A) and one black {B)
battery on the left of line P, and three black and one white batteries on the
right side. of line P.

Batteries Batteries Number of
1 to the left of P | to the right of P | configurations
4A 4B 1
3A+B A+ 3B 16
2A+2B 24428 36
A+ 3B 3A+ B 16
4B 44 1
and its entropy is -
8o = kin 36 (4)

Next, we exaimine whether the preceding results con-
form to empirical evidence. For given values of the energy,
the volume, and the amounts of constituents of a system, a
very well established and universally recognized thermody-
namic experience is that the higher the value of the entropy
the less the ability of the system to do work. So the ques-
tion must be raised: Does 5.5 reflect this universal empir-
ical fact? The answer to the question is an ungualified no!
The reason is that each battery is a systélh, that is, both
its spatial coordinates and its probabilistic features are sep-
arable from and uncorrelated with the spatial coordinates
and probabilistic features of any other battery, respectively
(Gyftopoulos and Beretta, 1991a). Moreover, none of the
instantaneous values of the properties of any of the batteries
is affected by the volume of either the flat container or any

of its sites. So no matter which configuration we consider at
anty instant in time, the amount of work that can be done
either by each battery or by all the batteries collectively is
the same for each of the 70 configurations. Because both
the shape and the state of each battery are unaffected by
its spatial location within the fat container, it follows that
neither the value of any S nor of Sy is relevant to any



thermodynamic considerations. More precisely, none of the
values of S;; affects the adiabatic availability (Gyftopoulos
and Beretta, 1991b) of any of the batteries, individually or
collectively.

This indisputable conclusion can be readily verified ex-
perimentally. All we need is 280 type A identically pre-
pared batteries painted white, and 280 type B identically
prepared batteries painted black. At any instant in time, we
can create the 70 configurations listed in Table I, and check
the work that each configuration can do. Upon performing
the experiments, we find that the work is the same for all
configurations.

If the budget permits it, we can also check the effect of
entropy generated by irreversibility as a result of the spon-
taneous internal discharge of each battery. To this end, we
arrange many groups of 70 configurations, and check the
work that can be dene by one or more members of each
group at a different instant in time. Upon performing this
experiment, we find that the work decreases and, therefore,
the entropy increases spontaneously regardless of configu-
ration because the entropy increase is due to the internal
discharge of each battery and not to the configuration.

In closing, it is noteworthy that all the conclusions just
cited are true for any number of colored batteries, and would
continue to be valid even if the colored batteries were mov-
ing randomly within the stationary flat container, provided
we consider only the electricity from each and all batteries.
Said differently, here the discrder defined by Boltzmann has
no effect whatsoever on the entropy of the system.

4 MIXING OF IDEAL GASES

Next, we consider the isothermal mixing of two distin-
guishable gases, say A consisting of na molecules of argon,
and B consisting of ng molecules of butane. This mixing
has many similarities to the mixing of colored batteries; but
also some fundamental differences.

Prior to mixing, A is in a container of volume V, at
temperature T and pressure p, and B in a container of
volume Vi and at T and p. Temperature T is sufficiently
high, and pressure p sufficiently low so that each gas be-
haves as ideal. Upon mixing, each gas occupies the same
volume V' = V, + Vg, and the mixture is at temperature
T, and has an experimentally verifiable thermodynamic en-
tropy Sa + Sg + Sy, where Sj, is the entropy of mixing
generated spontaneously and given by the relation

Sm=rnakln — +ngkln —

A 7 (5)

and S; and n; are the entropy prior to mixing and the num-
ber of molecules of gas i, respectively.
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if viewed superficially, Eq. {5) may appear paradoxical
compared to the results discussed in the previous section.
The réason is as follows. Because the behavior of each of
the gases is ideal, each gas molecule is a system, that is,
both its spatial coordinates and probabilistic features are
separable from and uncorrelated with the spatial coordi-
nates and probabilistic features of any other molecule, re-
spectively. Moreover, if we adopt the apparently innocuous
classical mechanics view that each molecule can be visual-
ized as a rigid sphere, then there would be no difference
between mixing argon and butane molecules and mixing of
colored batteries discussed in Section 3. And yet, in con-
trast to the batteries which experience no entropy of mixing,
here the mixing of molecules'does result in the spontaneous
generation of entropy by each molecule —kIn{V/V}4) by an
A molecule, and k n(V/V4) by a B molecule. Moreover, the
entropy increase per molecule is independent of whether the
number of molecules is large or small, including unity.

Some authors try to justify the entropy increase
(Eq. (5)) by arguing that the larger the volume the larger
the number of microstates. In view of the behavior of the
mixed batteries, this argument is unconvincing becaunse, in
the case of the batteries, the results show that the entropy
is independent of the volume of the flat container. More-
over, if viewed ‘classically, the number of microstates of each
molecule of the mixture is infinite both for the initial vol-
ume and for the final volume. So, which infinity is larger? It
is clear that a much more rational and rigorous explanation

is required. We discuss a quantum-theoretic explanation in
Part 11.

5 CONCLUDING REMARKS

In the preceding sections, comments by eminent scien-
tists are cited to illustrate the widely held belief that en-
tropy is a statistical, monotonic measire of disorder, and
disorder is defined as the number of microstates that are
most likely $o occur in a macroscopic system. In addition,
two experiments are discussed which have practically iden-
tical classical mechanical featiires and yet yield results con-
trary to the premises and predictions of statistical classical
mechanics and the empirical evidence about thermodynam-
ics.

In view of this background which is as old as the sub-
ject itself, it behooves us to ask whether the beliefs are
consistent both with the correct laws and theorems of thes-
modynamics and the rich totality of the empirical evidence.
If we take the view that thermodynamic phenomena repre-
sent a physical reality independent of the evolution of homo
sapiens, then we must conclude that the empirical evidence
is beyond the realm of mechanics, either classical or con-
ventional quantum, because entropy is beyond the realm



of these two sciences. This conclusion is analogous to the
approach taken regarding the geocentricity versns heliocen-
tricity of the solar system. After many millennia, the issue
was decided not solely on the basis of appearances and ac-
curacy of numerical results but also on the basis of logical
consistency and breadth of experiences.

The questions raised by the statistical interpretation
of thermodynamics are discussed in Part II of this paper.
They lead to the irrefutable conclusion that the beliefs are
not consistent with either the correct laws and theorems of
thermodynamics or the empirical evidence, and provide the
motivation for a new, quantum-theoretic approach to the is-
sue of the relation between mechanics and thermodynamics.
Instead of disorder, one of the results of both the correct
laws and the quantum-theoretic approach is that each ther-
modynamic equilibrium state represents perfect order.
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