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ABSTRACT

Part 11 of this two-part paper refutes the beliefs about the
statistical interpretation of thermodynamics, and the association
of entropy with disorder that are summarized in Part I. The refu-
tation of the statistical approach is based on either a nonstatisti-
cal unified quantum theory of mechanics and thermodynamics, or
an almost equivalent, novel, nonquantal exposition of thermody-
namics. Entropy is shown to be: (i) valid for any system (both
macroscopic and microscopic, including orie-particle systems), and
any state (both thermodynamic or stable equilibrium, and not
stable equilibrium); (4) & measure of the quantum-theoretic pli-
able shape of the molecules of a system; and {#i) a monotonic
indicator of order. In contrast to statistics which associates a
thermodynamic equilibrium macrostate with the largest number
of compatible microstates, the second law avers that, for each set
of values of energy, volume, and amounts of constituents of either
a macroscopic or a microscopic system, there exists one and only
one thermodynamic or stable equilibrium state. So, even if Boltz-
mann’s definition were used, a thermodynamic equilibrium state
is one of perfect order.

1 INTRODUCTION

" Ever since the unrefined enunciation of the first and sec-
ond laws of classical thermodynamics by Clausius (1867),
the guestion of the relation between thermodynamics and
mechanics has been the subject of intense investigations
and controversy. Invariably, Maxwell’s {1871} seminal ideas
prevail, that is “ ...the molecules in a vessel full of air
at uniform temperature are moving with velocities by no
means uniform ...”, and “In dealing with masses of mat-
ter, while we do not perceive the individual molecules, we
are compelled to adopt what I have described as the sta-
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tistical method of calculation, ...”. Though deeply rooted
in classical mechanics, these ideas play a major role in con-
ventional quantal explanations as well.

Statistical theories of thermodynamics yield many cor-
rect and practical mimerical results about thermodynamic
equilibrium states (McQuarrie, 1973; Callen, 1985). Despite
these successes, the almost universal efforts to compel ther-
modynamics to conform to statistical explanations is not
justified in the light of many accurate, reproducible, non-
statistical experiences, and ig out of step with the responses
of the scientific community to the considerations that re-
sulted in modifications of classical mechanics. Examples
of such modifications are the theory of relativity, and the
theory of quantum mechanics.

Over the past three decades, intrigued and challenged
by the prevalent misunderstandings about thermodynamics,
a group of us has proposed a resolution of the dilemmas and
paradoxes created by statistical explanations. The resolu-
tion differs from all statistical interpretations of thermody-
namics, in general, and from Maxwell’s (1871) explanation,
in particular.

The purposes of Part II of this two-part paper are:
(i) to summarize a unified quantum theory of mechanics and
thermodynamics which leads to the demonstrable conclu-
sion that thermodynamics is a general, nonstatistical the-
ory of physical phenomena; this theory admits mechanics
(either classical or conventional quantum) as one limiting
case (zero entropy physics), and classical thermodynamics
as another limiting case (largest entropy physics); moreover,
entropy is a well-defined and mathematically precise mono-
tonic indicator of order; the indicator is a measure of the



quantum-theoretic shape of the constituents of a system, in
the same sense that, in classical mechanics, m1v?/2 and not
some other expression is a measure of the kinetic energy of
a particle; {#) to sketch a nonquantal, novel exposition of
thermodynamics that is almost equivalent to and results in
the same conclusions as the unified theory; and {#%} in the
light, of the unified theory and the new exposition, to eval-
uate the beliefs summarized and respond to the questions
raised in Part I.

The paper is organized as follows. A roadmap through
an interwoven and well-documented series of theoretical,
nonstatistical developments is discussed in the second sec-
tion. In the light of these developments, the issues outlined
in Part I are clarified in the third section, and conclusions
are presented in the fourth section.

2 ROADMAP THROUGH RECENT BEVELOPMENTS

2.1 A unified quantum theory of mechanics and thermo-
dynarics.

Hatsopoulos and Gyftopoulos (1976 a, b, ¢, d) have
proposed a nonstatistical resolution of the dilemmas and
paradoxes that have preoccupied generations of physicists
over more than a century in their attempts to rationalize the
relation between mechanics and thermodynamics. The res-
olution is based on a unified quantum theory of mechanics
and thermodynamics which without modification encom-
passes all systems (both macroscopic and microscopic, in-
cluding systemns with only one particle), and all states (both
thermodynamic or stable equilibrium and not stable equi-
librium).

The key for the elimination of all statistical explana-
tions is the discovery that the only quantum-mechanical
density operators p > p? that are subject to the laws of
physics (quantum- thecretic and thermodynamic) are those
that can be represented by a homogeneous ensemble (Hat-
sopoulos and Gyftopoulos, 1976d). In such an ensemble,
every member is assigned the same p as any other member
(Fig. 1) and experimentally (in contrast to algebraically)
p cannot be decomposed — is unambiguous or irreducible
— into a statistical mixture of either projectors or density
operators different from p. The impossibility of decomposi-
tion is analogous to von Neumann’s (1955) conclusion that
a wave function or projector (p; = p?) cannot be decom-
posed into a statistical mixture of states of classical me-
chanics. Moreover, and perhaps more imiportantly, the ex-
tension of the concept of homogeneity to density operators
p > p? is accomplished without radical modifications of
the quantum-theoretic postulates and theorems about ob-
servables, measurement results, values of observables, and
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Figure 1. Representation of a homogeneous ensemble.

densities or probabilities of measurement results.

Key concepts — definitions, postulates, and theorems
— of the unified theory are discussed also by Gyftopoulos
and Gubukgu (1997), and Gyftopoulos (1998a).

2.2 Edquation of motion.

Hatsopoulos and Gyftopoulos (1976c) observed that
Newton's, Schroedinger’s and its equivalent von Neu-
mann’s equations of motion are correct but incomplete.
More specifically, Schroedinger’s equation describes only re-
versible adiabatic processes that are unitary. However, not
all reversible adiabatic processes are unitary, and not all
processes are reversible. Moreover, von Neumann’s equa-
tion (Tolman, 1962) for unitary transformations of p in time
is not acceptable because both his p is a statistical average
of wave functions or projectors, and the statistical weight
of each wave function is independent of time.

In response to these observations, Hatsopoulos and
Gyftopoulos (1976a) postulated a von Neumann-like equa-
tion for the unitary evolution in time of unambiguous or
irreducible p’s, and Beretta et al. (1984 and 1983) proposed
equations of motion that involve no statistics associated
with lack of information or ignorance, or macroscopic jus-
tifications, and that account for both all reversible and all
irreversible processes.

It is noteworthy that, of all the equations of motion that
differ from the Schroedinger equation and that have been
proposed in the literature, Kossh and Steffen (1987), and
Gubukgu and Gyftopoulos (1995) prove that the equations
proposed by Beretta et al. (1984 and 1985) are the only ones
that comply with all the criteria that must be satisfied by an
equation that accounts for all reversible and all irreversible
processes.



2.3 A novel, nonquantal exposition of thermodynamics.

Gyttopoulos and Beretta (1991a) have composed a
novel, nonstatistical exposition in which all concepts of ther-
modynamics are defined completely and without circular
and tautological arguments in terms of only the concepts
of space, time, and force or inertial mass. Though the in-
tellectual underpinning is the unified quantum theory cited
earlier, the new exposition evolves without any reference to
quantum-theoretic concepts, postulates, and theorems. So
it can be studied without knowledge of quantum theory.

The order of introduction of concepts, postulates, and
theorems is: system. (types and amounts of constituents,
forces between constituents, and external forces or para-
meters, such as volume); properties at an instant in time;
states; the first law (without the concepts of energy, work,
and heat); energy {without work and heat); energy bal-
ance; classification of states in terms of time evolutions;
thermodynamic or stable equilibrium states; second law
{without temperature, heat, and entropy but as an asser-
tion of existence of one and only one stable equilibrium state
for each set of values of energy, volume, and amounts of
constituents); generalized available energy; entropy of any
state, stable equilibrium or not, in terms of energy and
generalized available energy (and not in ferms of tempera-
ture and heat); entropy balance; fundamental relation
which exists for stable equilibrium states only; tem-
perature, pressure and total potentials in terms of
energy, entropy, volume, and amounts of constituents, valid
for stable equilibrium states only; the third law; work in
terms of energy only; heat in terms of energy, entropy, and
temperature only; other interactions; various applications.
All concepts and postulates are valid for all systems {both
macroscopic and microscopic), and all states (both stable
equilibrium and not stable equilibrium).

In this exposition, no statistical considerations whatso-
ever are required either by any definition or by any postulate
or by any theorem.

2.4 Definition of entropy.

The definition of entropy in the novel exposi-
tion (Gyftopoulos and Beretta, 1991b; Gyftopoulos and
Gubukeu, 1997; and Gyftopoulos, 1998b) differs from and is
more general than that in any other exposition of thermo-
dynamics. The new definition: (i) applies to all systems,
both macroscopic and microscopic, including one-particle
systems; (i) applies to all states, both stable equilibrium
and not stable equilibriuin; (#:) most certainly is not sta-
tistical; and {4v) satisfies about ten reasonable and readily
understandable criteria.
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Figure 2. Energy versus entropy graph of a system with fixed values of
amounts of constituents and volume, and without upper bound on energy.

2.5 Energy versus entropy graphs.

One result of the novel exposition of import to the pur-
poses of thig paper is a graph of energy E versus entropy &
{Gyftopoulos and Beretta, 1991¢).

At an instant in time, the stofe of a system is defined
by the values of the amounts of constituents n, the value
of the volume V, and the values of a complete set of in-
dependent properties, and can be represented by a point
in a multidimensional space with one axis for volume, for
each amount of constituent, and for each independent prop-
erty. Such a representation, however, is unwieldy because
the number of independent properties of any system, even
a system consisting of one particle only, is infinite. Never-
theless, useful information can be captured by first cutting
the multidimensional state space by a hypersurface corre-
sponding to given values of the volume and of each of the
amounts of constituents, and then projecting the cut on an
energy versus entropy plane. For a system A without upper
bound on energy, we prove that the projection must have
the shape of the cross-hatched area in Fig. 2.

A point either inside the cross-hatched area or on any
line of the surface S = 0 represents the projections of an
infinite number of states. Hach such state has the same
values of i, V, E and S but differing values of other prop-
erties, and is not & stable or thermodynamic equilibrium
state. In particular, the surface § = 0 represents all the
states encountered in purely mechanical theories of physi-
cal phenomena. On the other hand, by virtue of the second
law of thermodynamics, esch point on the convex curve
represents one and only one stable equilibrium state. Said
differently, the value of every property, including entropy, is
determined solely by the values of F, 1, and V, or the value
of every property, including energy, is determined solely by
the values S, n, and V.

For all classes of states, stable equilibrium or not sta-




ble equilibrium, it is clear that entropy is a property of
the constituents of the system and not a statistical mea-
sure of ignorance, lack of information, inability to perform
detailed calculations, or disorder. The importance of this
interpretation of entropy and the conceptual difference of
the interpresation from all others in the literature cannot
be overemphasized.

2.6 Analytical expression for entropy.

It is self-evident that any explicit analytical expression
purporting to represent the concept of entropy must satisfy
the criteria resulting from its definition. Gyftopoulos and
Cubukgu (1997} prove that none of the expressions exist-
ing in the literature, including kln (), conform with these
criteria except for

§=—kTr[p In p] )

provided that p is a density operator that cannot be de-
composed into other operators, that is, an operator which
is represented by a homogeneous ensemble (Fig. 1), where
Tr stands for the trace of the operator that follows, and k
is Boltzmann’s constant. '

Though it looks identical to a relation proposed by
von Neumann, Eq. (1) differs from von Neumann’s rela-
tion for a fundamental reason of paramount importance. In
the von Neumann relation, p is a statistical average of wave
functions or projectors. Accordingly, not all members of
the ensemble representation of such a p are characterized
by the same projector. In Eq. (1), p is an unambiguous
or irreducible operator that can be represented only by a
homogeneous ensemble (Fig. 1). If p is ambiguous — oper-
ationally can be decomposed into a statistical combination
of two or more different density operators — Eq. (1} does
not represent the entropy of thermodynamics, and neither
p nor S are subject to the fundamental laws of physics.

2.7 Entropy as a measure of the quantum-theoretic shape of
constituents.

In many textbooks (Leighton, 1959; Brandt and Dah-
men, 1995), the probability density function of the spatial
coordinates is interpreted as the shape of the constituents
of a system. An illustration is provided by the wave packet
and its evolution in time depicted in Fig. 3. Gyftopoulos
(1998 a and b) observed that the same interpretation of the
spatial shape can be applied to the probabilities derived
from a density operator p > p*.

if follows that the entropy of thermodynamics (Eq. (1))
is a measure of the quantum-theoretic spatial shape of con-
stituents, in the same sense that mv?/2, and not some
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Figure 3. Time evolution of the shape of 2 wave packet in an infinitely deep,
one-dimensicnal potential well (Brandt and Dahmen, 1995).

other expression, is the measure of the kinetic energy of
a molecule. .

For given values of the energy E, volume V, and
amounts of constituents n, the values of the special measure
S range from zero to a largest value. For all density opera-
tors that are projectors, p, = p?, such as the wave packet in
Fig. 3, the value of 5 = 0. For all other density operators,
p > p?, S > 0 and reaches the largest value for the density
operator p° that corresponds to the unigue stable equilib-
rium state dictated by the second law of thermodynamics
for the given values E, V, and n.

With this interpretation in mind, we can think of the
spontaneous increase of entropy in the course of irreversible
processes as a natural tendency of an atom, molecule, or
other system to adapt the shape of its state to the nest of
internal and external forces of the system until no further re-
shaping is possible, that is, for given values of E, V, and n,
until the unique p® and the largest value of S are achieved.
The adaptation to the internal and external forces is always
in the direction of nondecreasing entropy, and is beautifully
exemplified by considering the spontanecus expansion of an
amount of colored gas squirted in a corner of a transparent
glass container.

2.8 Velocity of any particle of a system in a stable equili-

brium state.

For a system in a stable equilibrium state, Gyftopoulos
(1998 a and b) proves that the quantum-theoretic value of
the velocity of any particle — nucleon, electron, atom, or
molecule — equals zero. This zero is the value of the veloc-
ity of the particle in question and not an average over ve-
locities of different particles moving in different directions.
In other words, if a system is in a thermodynamic or stable
equilibrium state, every motion has ceased, nothing moves.
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2.9 Entropy of thermodynamics and perfect order.

For a system with given values of E, V, and =, in the
unified theory and in the novel exposition we have estab-
lished the following results: (Z) there exists one and only
one stable equilibrium state; {#) in the stable equilibrium
state, the entropy has the largest value, and all velocities
are null; and (4) there is an infinite number of states for
each value of the entropy smaller than the largest value.
In view of these results, we are compelled to conclude that
the stable equilibrium state is more orderly than any other
state which is turbulent or nonequilibrium, or said differ-
ently, that thermodynarmic or stable equilibrium represents
perfect order rather than disorder. Interestingly enough,
because of the uniqueness of the stable equilibrium state
for each. set of values F, V, and n, the conclusion about
order is reached even if we use the definition of disorder
proposed by Boltzmann!

This completes the brief description of the roadmap
through the interwoven recent developments about thermo-
dynamics and quantum theory, and the definition, analyti-
cal expression, and pictorial interpretation of the entropy
of thermodynamics. In the next section, we examine the
beliefs about statistics and disorder in the light of these
developmients.

3 REVIEW OF BELIEFS ABOUT STATISTICAL MECHAN-
iICs

3.1 WMaxwell's views (Part I, Section 2.1, in these proceed-
ings).

Maxwell is correct in asserting that if one accepts the
atomic-kinetic viewpoint, entropy and irreversibility cannot
be parts of an absolute law of nature. Viewed from that
perspective, molecules are hard spheres, and do not have
entropy as a private property as they do have inertial mass
and energy as private properties. As discussed in Part I,
however, the theoretical and empirical evidence with gases
under conditions of ideal behavior is contrary to Maxwell’s
conclusion. To overcome the contradiction, we must aban-
don the premise that molecules behave as hard spheres and
accept the quantum-theoretic idea that molecules have a
variable shape. The variable shape is even more elegantly
illustrated by our current understanding of the electromag-
netic field in a thermodynamic or stable equilibrium state.
It is shown (Beretta and Gyftopoulos, 1990) both that each
mode of fundamental frequency v has its own private en-
ergy, entropy, and pressure — behaves as each molecule
of an ideal gas — and that the integral of each of these
three properties over all fundamental frequencies yields the
respective calculated and measured property of the black-
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body. Moreover, and perhaps more importantly, the plia-
bility of the modes to adapt from one volume to another is
easier to visualize and comprehend in terms of electromag-
netic waves than in terms of molecules. Of course, the guan-
tization of either a particle with nonzero inertial mass or of
the electromagnetic field, and the nonclassical explanation
of molecular structures and blackbody radiation were not
known at the time Maxwell proposed his statistical theory.
The contemporary evidence, however, suggests that the vi-
sualization of molecules as hard spheres is neither necessary
nor sufficient to regularize therinodynamic phenomena. The
discussions in Sections 2.4, 2.6, and 2.7 eliminate the classi-
cal mechanics premise, and yield results that are consistent
with both our understanding of quantur theory, and with
all the empirical evidence.

Again, Maxwell is correct in asserting that a being with
“fing tactile and perceptive organization” — a demon —
could separate fast molecules from slow molecules i1l a con-
tainer without performance of work, in violation of the sec-
ond law of thermodynamics. Here too, his premise is the
notion that, at the microscopic level, molecules do not have
entropy as a private property. More than 300 publications
(Leff and Rex, 1990) discuss the feasibility of the demon by
using different specific devices (pistons, photons, ratchets
and pawls, and computers), and all conclude that the de-
mon is not feasible because each device of the schemes just
cited generates entropy, and at the end of each scheme the
entropy change is positive, and so the second law remains
intact.

Upon careful study, I find that practically all the pub-
lications about the demon aré flawed for three fundamen-
tal reasons. First, none of the aithors of these publica-
tions addresses the problem posed by Maxwell, that is, that
the demon must accomplish his task without any energetic
and for entropic cost to him whatsoever. In each proposal,
the specific devices contribute either energy or entropy, or
both and, therefore, do not operate as specified by Maxwell.
Second, in each of these publications, the demon is proven
infeasible by showing that the entropy increases and so, the
authors conclude, the second law is not vialated. But this
is not correct reasoning. The laws of thermodynamics re-
quire that the entropy increase only in irreversible adiabatic
processes, but these laws do not require that all adiabatic
processes be irreversible. Third, and perhaps most impor-
tantly, each of these publications overlooks one of the most
elegant and most universal results of thermodynamics, that
is, limiting conditions must he and. always are established
for a reversible process, and not for any particular gizmo for
the implementation of the process, because for a given task
all reversible processes are equivalent. For example, the
Carnot coefficient (T1 — 1)/} is independent of the engine
and its cycle, and an excellent illustration of the remark



just cited.

One definitive exorcism of the demon {Gyftopoulos,
1998 ¢) is achieved by an analysis of his demonic act in
terms of the graph in Fig. 2. This graph can be regarded
as representing the states of the air molecules in the vessel
discussed by Maxwell. The air is system A in thermody-
namic or stable equilibrium state Ap. The demon is asked
to sort the air molecules into swift and slow without any
contribution either by him or the environment. If this were
possible, the final state of A would be A;, that is, a state
with the same values F, V, and n and less entropy than Ag.
But, in the novel exposition of thermodynamics, entropy is
not introduced because “we are compelled to adopt the sta-
tistical method of calculation” but because it is proven to
be a well-defined, nonstatistical, and nondestructible prop-
erty of each molecule. Accordingly, the demon cannot re-
duce this molecular entropy without compensation no mat-
ter how “fine his tactile and perceptive organization” is. It
is clear that this impossibility has nothing to do with either
spontaneous entropy generation (irreversibility), or short-
comings of the procedures the demon has at his disposal, or
both.

Equivalently, if the demon is regarded as a perpetual
motion machine of the second kind (von Smoluchowski,
1914), then his ultimate goal is to extract energy only —
make the system do work only — starting from state Ag.
But, under Maxwell’s specifications, it is clear from the
graph in Fig. 2 that inherently each state of energy smaller
than Fy of Ay has also smaller entropy than Sp. And again,
because entropy is a well-defined, nonstatistical, and nonde-
structible property of each molecule, the demon cannot ac-
complish his assignment because he is forbidden from com-
pensating for the entropy reduction. If either he were al-
lowed to extract both energy and entropy, or if entropy were
not a property of each molecule, the demon’s task would be
very easy. All he would have te do is cool the air to a
temperature smaller that i or extract only energy.

A second definitive exorcism is achieved by an analy-
sis based on the quantum-theoretic results summarized in
Section 2.8. To establish the quantum-theoratic value of the
velocity of each molecule, the demon must perform measure-
ments on homogeneous ensembles that represent the stable
equilibrium state density operator p’. As a result he finds
that the value of the velocity of each molecule — not the
average of the velocities of many molecules — equals zero.
So he concludes that there are no swift and slow molecules
to be sorted out. Though he would continue to venerate
the imaginative and creative intellect of his father, he re-
grets that quantum theory was not recognized earlier so
that he could have been spared the century-long search for
a solution of a problem that does not exist.
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3.2 Boltzmann's view (Part |, Section 2.2).

On the occasion of the 150th anniversary of Boltz-
mann’s birthday, a recent essay (Lebowitz, 1993} reminds
us of how richly Boltzmann deserves to be admiringly com-
memorated for the originglity and importanee of his ideas,
discusses the success of Boltzmann’s statistical approach in
explaining the observed irreversible behavior of macroscopic
systems in a manner consistent with their reversible micro-
scopic dynamics, and finds it surprising that there is still so
much confusion about the problem of irreversibility.

I could not agree more with the debt we owe to Boltz-
mann for his trailblazing, stimulating, and fertile contri-
butions to physics. However, both our current theoretical
understanding, and empirical evidence suggest that Boltz-
mann’s views about thermodynamics are not indisputable
(see Part I, Sections 3 and 4).

In Sections 2.4 and 2.6, we show that entropy is not
statistical, and that kln €} cannot represent the entropy of
thermodynamics because it does not satisfy the criteria that
must be met by an analytical expression that purports to
represent entropy. In Section 2.2, we provide arguments for
the need of a complete equation of motion which describes
both all reversible processes and irreversible processes, and
propose equations that satisfy these criteria. Moreover,
Gyftopoulos (1988 ¢) has shown that the Boltzmann equa-
tion that describes the evolution in time of a density func-
tion of space and time, even if valid, applies only to very
dilute gases, that is, states for which the expectation value
of the number of particles is less than unity.

In Section 2.9, we prove that both the novel exposition
and the unified theory require that each thermodynamic or
stable equilibrium state must be unique because that is the
content of the second law of thermodynamics. So, even if
we use Boltzmann’s criterion of disorder, we must conclude
that a thermodynamic equilibrium state represents perfect
order.

An empirical result that contradicts the idea that a
spontaneous entropy increase implies an increase of disorder
is the spontaneous crystallization of an agitated and turbu-
lent fluid. It is hard to argue that an agitated and turbulent
fluid is more orderly than a perfect crystal.

Another empirical result is discussed by Bridgman
{Denbigh, 1966). He refers to the spontaneous crystalliza-
tion of a supercooled liquid which results in entropy in-
crease, and for which again is difficult to claim that there
has been an increase in disorder. Nevertheless, Denbigh
(1966) argites that: “ ...though there is a decrease of con-
figurational entropy, consequent on the more orderly ar-
rangement of the lattice as compared to the liguid, there is
a more than compensating increase in thermal energy, due
to the randomization of the liberated potential energy over
the vibrational motions of the atoms in the crystal”




There are several objections to Denbigh’s insistence to
explain the spontaneous entropy increase by invoking a con-
nectioni between thermodynamic equilibrium and disorder.
For example, thermal energy — heat — is not a property of
a system. Thermal energy reférs to the entities that are ex-
changed betweén two systemns in the course of a heat interac-
tion. Again, we have proved (Section 2.8) that, in any ther-
modynamic equilibrium state, the quantum-theoretic value
of the velocity of any individual particle equals zero. So
there are no vibrational motions in a crystal in a thermo-
dynamic equilibrium state.

In view of these observations, we must conclude that
neither Boltzinann’s expression for the entropy of thermo-
dynamics, nor his association of entropy with disorder are
justified either by quantum theory or by the empirical evi-
dence.

3.3 Bullouin's view {Part §, Section 2.3).

Brillouin and other scientists (Jaynes, 1957 a and b;
Katz, 1967) propose a statistical interpretation of ther-
modynamics, and an informational explanation of entropy.
They argue that the better informed an observer is about
the state of a system, the lesser the entropy that he as-
signs to that state. In the light of both the unified theory,
and the empirical evidence, both the informational inter-
pretation of thermodynamics, and the informational expla-
nation of entropy cannot be correct. Given a system, its
state is uniquely determined by a density operator p or by
a complete set of values of independent properties. More-
over, the performance of the system is dictated exclusively
by the values of the concepts just cited and not by the
degree of information of an observer. For example, if the
system is in a stable equilibrium state, the operator is p°,
the entropy is the largest of the entropies of all the states
that share the same values E, V, and n, and no amount of
additional information affects either p® or (—k Tr p¥Inp®).
Again, let us consider two identical electricity storage bat-
teries, each having the same value of energy but one be-
ing fully charged and the other fully discharged internally
and spontaneously. A universal experience is that every
observer, who knows nothing about thermodynamics, in-
formation theory, entropy, and batteries, will find that one
battery powers a flashlight, whereas the other does not.
Similar comments can be made about a myriad of other
systerms in either a thermodynamic equilibrium state or not
in such a state. So the statistical interpretation of thermo-
dynamics, and the concomitant informational explanation
of entropy cannot be correct.

In addition, Brillouin associates lack of information, en-
tropy, and disorder with lack of specificity of the positions
and velocities of the molecules of an ideal gas. As we dis-
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cussed in Part I, Sections 3 and 4, however, this association
leads to inconsistencies.

3.4 Feynmann's views (Part [, Section 2.4).

Feynmann wonders how we get, irreversibility out of the
equations of mechanics which describe only reversible phe-
nomena, and associates entropy with disorder.

Our answer to Feynmann’s perceptive comments is that
the equations of motion of mechanics are correct but incom-
plete, and that an appropriate proposal for their completion
has been made (Section 2.2). Unfortunately, because most
scientists believe that all questions about thermodynamics
have been answered by statistical mechanics, very few indi-
viduals recognize that there remain important questions to
be answered, and that the discovery of the complete equa-
tion of motion of physics is one of them. ‘

Qur position about disorder is discussed in Section 3.2.

3.5 Penrose's views (Part !, Section 2.5).

Penrose as well as many other eminent physicists asso-
ciate the increase of entropy with the arrow of time. Despite
the almost universal agreement about this association, I be-
lieve that its validity is not correct, and will discuss it in a
future commuinication.

Next, Penrose asserts that entropy could not be a “very
clear-cut scientific concept.” I could not disagree more with
this assertion because, in the novel exposition, the defini-
tion of entropy is as explicit, complete, noncircular, and
precise as that of any other important concept of physics
(Section 2.4).

Next, Penrose questions the importance of conceiving
concepts, such as irreversibility , that are “practical.” I
have two responses to this kind of questioning. First, ther-
modynamic thinking plays a very iimportant role in cosmol-
ogy. Second, our ability to coutrol entropy generation —
to use processes that are as close to reversible as we can
afford — is of paramount importance to the protection of
our environment, and the wise use of our limited resources
of energy and materials. I would be very surprised if there
were many scientists who feel that physics should not be
concerned with the well-being of humanity.

Finally, Penrose claims thdt entropy does not have an
analytical expression as do energy, momentum, and angu-
lar momentum. The discussions in Sections 2.6 and 2.7, and
many relations of classical thermodynamics contradict this
claim, and provide incontrovertible evidence that the con-
cept of entropy not only has an analytical expression but
it is as well founded as any other well-defined concept of
physics including energy, momentum, and angular mormen-
tum.




4 CONCLUSIONS

The brief summaries and the references listed in Sec-
tion 2, provide a lot of information for study. The main
message is that thermodynamics is a well-defined, nonsta-
tistical general theory that includes mechanics and conven-
tional quantum mechanics as special cases.

The conclusions in Section 3 contradict the beliefs
about thermodynamics, statistical mechanics, and entropy
discussed in Part I, and are consistent with the empirical
evidence. In particular, entropy is shown to be a measure
of the quantum-theoretic spatial shape of the molecules of
a system. For given values of F, V, and n, the value of
this measure increagses from zero to a maximum, and the
latter value corresponds to a unique state which is the most
ordered of all the states that have the same values E, V,
and 7.
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