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Abstract

In previous publications, it has been shown that entropy is a measure of the quantum-
theoretic shape of the constituents of a system. In this paper, we present examples of
quantum-theoretic shapes of some systems cach consisting of one unit of a single
constituent, in either a2 stable (thermodynamic) equilibrium state or in states that are not
stable equilibrium, The systems that we consider are a structureless particle confined in
either a linear box or a square box, and a harmonic oscillator of a speciﬁed ﬁmdamental
frequency. In general, we find that the shape of each constituent is “smooth”—without
ripples—for cach thermodynamic equilibrium state, and oscillatory or nppled for states that
are either non-equilibtium or unstable equilibrium.

1. Intreduction

In the exposition of themmodynamics by
Gyftopoulos and Beretta (1991), entropy is shown
to be a nonstatistical property—to have a vake at
an instant in time independent of stafistical
probabilities and other times— of the constituents
of any system in any state in the same sense that
inertial mass is a property of the constifuents of
any system in any state.

In confrast to the plethora of entropy
expressions appearing in various formulations of
statistical mechanigs, in the unified quantum theory
of mechanics and thermodynamics by Hatsopoulos
and Gyftopoulos (1976), and in an article by
Gyfiopoulos and Cubukeu (1997), the entropy of
thermodynamics is shown to be represented by one
and only one functional of a special quantum

mechanical density operator . A brief discussion
of this operator is given in the Appendix.
In many textbooks, the probability density

function associated with measurement results of

the spatial coordinates of the constituénts of a
system is interpreted as the spatial shape of the
constituents of the system (Leighton, 1959; Brandt
and Dahmen, 1995a), and the shape is used to
caleulate atomic, molecular, and ionic radii (Slater,
1963) as well as explain the formation of various
compounds. The probability density function of
the spatial coordinates enters also into the
evaluation of the entropy. S and, therefore, we can
think of entropy as a measure of the spatial shape
of the constituents of a system and, thus, achieve a
pictorial visualization of a concept that has been
puzzling scientists and engineers for over more
than a century.
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In what follows, we present examples of
quantum-theoretic shapes of some systems, each
consisting of one umnit of a single constituent in
various states, nonequilibrium, equilibrium, and
stable (thermodynamic) equilibrium. In general,
we find that the shape of cach constituent is
oscillatory or rippled for states that are either
nonequilibrium or unstable equilibium  and
smooth--without  ripples—for each stable
equilibrium state.

2. Particlein a Linear Box

2.1. Energy eigenstates

We consider a structureless particle of rmiass
M confined in a linear box-infinitely deep
potential well--extending from x=-d to x=d¢
(Figure 1). The Hamiltonian operator of sich a
parti¢le is given by the refation

v
-d 0 — X
Figure 1. Schematic of a linear box.

2 3
H=—L-‘-’~i-+V(x) (1
M dx

where#t is Planck’s constant divided by 2z, and
V{(x} the potential energy such that
Vx)=w for |xj>d - . (1a)
V=0 for |x<d (1b)

The Hamilionian operator defines the energy
eigenvalue problem

Hon (1) = £,0n (%) @

where €, and @,(x) arc the nth energy
eigenvalue and energy eigenfunction, respectively.
We can readily verify that the energy eigenvalues
and riormalized enérgy eignfunctions are given by
the relations
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for all integer values
: 2\%? X
Pp(x)= (E) cos(-d—'J for n=13,... (%)

0.5
(p,,(x):(-j—) sin(-t-l—':i) for n=24,... (5)

@u(x)=0 for allnand x|>d (6)

and each energy eigemstate has zero value of
momentum, that is,

)= fon0 2 Lo com=0 @)

where the * indicates the complex conjugate
function.

We can use the energy eigenstates to express
the probability density function of any state of the
particle. :

2.2.  Noneguilibrium state
We consider a nonequilibrium state— wave

packet—having a value of momentum different
than zero and a time dependent wave function

V1) = X 830, (x) exp(-ig, t/h)  (8)

=]

and a shape - probability density function— given
by the relation

e O = v (x, 0 wix, £ ©®

Itis noteworthy that the wave function can also be
written as a density operator p. In matrix form and
in the energy eigenfunction representation, the km-
element of the matrix is givén by the relation

Prm = 2 expl#isy t/h)a,, expl-ic,, /4)
forall kandm {10y

Moreover, in. a representation that has as one of itg
orthogonal axes w(x,t) itself, the density operator



matrix of w(x,t) is diagonal and has only one
element along the diagonal equal to unity.

A graph of the evolution of the shape of the
particle in time is shown in Figure 2. At t=0, the
wave packet is bell-shaped. Then, it moves toward
one walk of ihe linear box, where it is reflected; and
eventually if spreads so widely that it touches both
walls simuitaneously. Though the shape of the
wave packet changes in time, we can easily prove
that its entropy is time independent and cqual to
zero. In general, any shape determined by a wave
function has entropy equal fo zero (see Appendix}.

Figure 2. Shape — probability density function —

versus time of g particle in a linear box -

(infinitely deep potential well) in a
nonequilibrium state. Arbitrary dimen-
stonless units (Brandt and Dahmien,
1995b,).

Other nonequilibrium states cotrespond to
density operators that cannot be represented by
wave functions, The eniropy of each such state is
positive and in general, but not necessarily,
increasing sponfancously in time.

2.3. Unstable and stable equilibrivm. states

In many discussions, the terms equilibrium
state and thermodynamic (stable) equilibrium state
are used as synonyms. They are not. The former is
unstable. To clarify the difference, we consider an
equilibrium state that has a density operator matrix,
which in the energy representation is diagonal with
only three nonzero elements, that is

Py =01 p33=02  pgg=07 (1

The only three energy eigenvalues that are relevant
to this staie are '

¢, =h?n?/8Md>  for n=2338  (12)

and the -energy E, shape—probability density
function p(x)—and entropy are given by the
relations

© E = (h2/8Md2 )(0.1(4) + 0.2(9) +0.7(64))

= 4712 [8Md? (13)

p(x)/(2/d) = 0.1sin (2nx/d)+ 0.2 cos® (3nx/d)
+0.7sin® (8nx/d) (14)

S =-k[0.1 0.+ o.zln(o.-i) +0.71(0.7))
=0.802k (15)

A graph of the shape—p(x) versus x—is
shown in Figure 3. The shape is wavy. It is also
unstable because a minute perturbation precipitates
a spontaneous tendency for the peaks and valleys
to proceéd to an evening-out evolution and an
increase in entropy. The next example Hllustrates
the ultimate result of this evening-out évolution.

Figure 3 Shape—probability density function
versus position — of a particle in a linear
box (infinitely deep poteniial well) in an
equilibrium state of energy E (Eq. 13).
Arbitrary dimensionless units of the
spatial coordinate and the probability
density function.

Next, we consider a stable equilibrium state
that corresponds to the same energy £ (Eq. 13) as
that of the equilibrium state just discussed. For

such a state, the probability density function is
given by the relation

p(x)/2Q/d) = 3, cos? (omx/d) exp(-on?)
n=odd

+ ¥ sin? (mx/d) exp(-om®) (16)
n=gven
where Q= Z:;i exp(-an?), a= }12/8Md2 kT,
and T is the temperature of the stable equilibrium
state.
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In thermodynamics, the temperature of a
stable equilibrium state is determined solely by its
energy. Moreover, for a particle confined in a
Linear bex, E=LkT/2, Therefore, we have the
relations

E =472 /8Md? =xT/2 17

o =h?/sMd2 kT = 1/04 (18)

where use has been made of Eq. 13.

A graph of the shape—probability “density
function versus x —of the particle in the linear box
in 2 stable equilibrium state is shown in Figure 4.
For this calculation, we use a~=1/94, and only 30
terms on the right hand side of Eq. 16, In contrast
to the equilibrium state with the same eriergy
(Figure 3), we see that the shape of the stable
equilibrium state is utiiform almost throughout the
entire range of x excépt near the walls of the linear
box where p(x) must reduce to zero.

Figure 4 Shape—probability density function

versus position —of a particle in a linear

box (infinitely deep potential well) in a
stable equilibrium state having the same
energy E (Eq. 13) as the equilibrium
state in Figure 3, Arbitrary dimension-
less units of the spatial coordinate and
the probability density function.

Upon approximating the sum of the partition
function Q for the stable equilibrium state by an
integral (Hatsopoulos and Gyftopoulos, 1979), we
find that

Q=(nMkTa2/x2)? =36 (19)
S =kInQ+E/T = 2.65k (20)

We see that the entropy of the stable equilibrium
state is more than 3.3 times larger than the entropy
of the equilibrium state with the same energy.
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2.4. Stable equilibrium state

Next, we consider a stable equilibrium state
and compute the shape ~ probability density
function p(x) (Eq. 16)— for o=0.1, that is, for the
same value of Md?, a temperature about 10 times
smaller than the temperature used for the graph in
Figure 4. A graph of this shape with 30 terms on
the right hand side of Eq. 16 is shown in Figure 5.
Again, we observe that the shape is uniform
throughout almost the entire range of values of x,
exceptnear the walls of the box.

[\

Figure 5. Shape—probability  density  function
versus position— of a particle in a linear
box (infinitely deep potential well) in a
stable equilibrium state of energy E such
that a=0.1. Arbitrary dimensionless
units of the spatial coordinate and the
probability density function.

It is noteworthy that the one-particle results
for stable equilibrium states are the basis for the
calculation of properties of systems that behave as
idéal gases because under such behavior the
nteractions — internal forces —between the
particles are negligible.

3. Particle in a Square Box

3.1. Energy eigenstates

Next, we consider a structureless particle of
mass M confned in a square box—two-
dimensional, infinitely deep potential well—
extending from x=-d to x=d, and from
y=-d to y=d. The Hamiltonian operator of
such a particle is given by the relation

2 2 2 2
S & Ve @1
M & M dy

H=

where .

V{x,y)=o for x|>d and y>d (21a)
and

Vix,y)=0 for [xj<d and yj<d (21b)



The two degrees of freedom x and y are

separable, and the quantum probabilities associated
with x are not correlated with those associated with
y.  Therefore, the emergy -ecigenvalues and

normalized energy exgenﬁmchons are given by the
relations

Eaen, < B2 +n})/aMd> 22)
Pien, (Y= 9n, (X) 9 (¥} 23

where @ (x) and @n, (¥} are given by Egs. 4 and

5 for both x and y and for all positive integer
values of n, and n,. Said differently, each degree
of freedom defiries. a. subsystem.

3.2. Unsiable and stable equilibrium states

We now consider an equilibrium $tate such
that the energy of each of the two subsystems is
given by Eq. 13, the probability density function
for the x subsystem by Eq. 14, and the probability
density function for the y subsystem by Eq. 14
with x replaced by y.

A graph of the shape—probability density
function p(x,y) = p(x)p(y} —is shown in Figure

6. The shape-is wavy and unstzble because a

minute perturbation precipitates the spontaneous
tendency for the peaks and valleys to even out,
The next example illusifates the ultimate result of
this evenihg-out evolution.

Figure 6. Shape—probability density function
versus position—of a particle in a
square box (infinitely deep potential
well) in an equilibrium state of energy E
(Eq. 24). Arbitrary dimensionless units
of the two. spatial coordinates and the
probability-density function.

Next, we consider a stable equilibrium state
that corresponds to the same energy as that of the

equilibrium state just discussed. In other words,
we have that

24Nh? 94n%
sMd?  aMd?®

E=z-l 2(k T/2) (24)

o=h?/sMd? kT = 1/94 (25)

A graph of the shape—probability density function
p(x,y)}—of the particle in a square box in a stable
equilibrium state for a=1/94 is shown in Figure 7.
In this calculation, we use only 30 terms on the
right hand side of Eq. 16 for each degree of
freedom. In conirast to the equilibrium state, the
shape of the particle in the stable equilibrium state
with the same énergy as that of the equilibrium
state is uniform throughout the square box except
niear the walls where, as was pointed out earlier,

p(x;yY must réduce-to zero.

s EpH QARG

Figure 7. Shape — probability density function
versus position — of a particle in a
square box (infinitely deep potential
well) in a stable equilibrium state of the
same energy E as the equilibrium state
in Figure 6. Arbitrary dimensionless
units of the two spatial coordinates and
the probability density function.

4. Harmonic Oscil_lator

4.1. Energy eigenstates

We consider a structureless particie of mass
M that experiences a continuously acting force
F(x) which can be thought of as the force of a
spring, and which follows Hooke’s law

F(x) = —kx

where the proportionality constant & is the stiffness
of the spring. Such a force is called harmonic, and
the particle a harmonic oscillator.
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The potential energy stored in the spring is
given by the relation

Vix)=kx%/2

and, therefore, the Hamiltonian operator of the
oscillator is

SR N % o e®

The Hamilonian operator defines the ‘energy
eigenvalue problem

Ho, (x) = €9a (%) (29)
where &, and @ (x) are the nth energy eigenvalue
and energy eigenfunction, respectively. Uipon
introducing the harmonic oscillation angular
ﬁ‘equenqy

o= kM) (30)

and the dimensionless variable

oo = (H/Ma)'?
B

£=xfo, where
we can readily verify that the energy eigenstaies
are such that

g, =(n+1/2) ho for
n=012,.. ¢

0.,(8) = (W 2° nty V2 B, (&) exp(-E7 12)
for n=GL2,.. (33)

where ¢,(E) is normalized in &, and H,(E) is .

the nth Hermite polynomial. The eigenfunction
@, {x), normalized in x, is

0o (%) =(ap ¥x 2" )2 Hy (x/00)
cexp(-x2 1263) (34)

4.2, Stable equilibrinm state

We consider a stable equilibrium state. The
shape of the oscillator—probability density
function p(&) versis the dimensionless position
E —is given by the relation
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p(&)/[exp(-a/2)/ V7 Q] = exp(-£%)

N
- S H2 () expl-an)/2” n! "

n=0

=]
where Q= ¥ exp|-ofn + 0.5)], and o = hn/kT .
n=0

Graphs of the shapes for a=0.1, and N=5,
30, and 108 are shown in Figures 8 to 10,
respectively. We see that the ripples in Figure 8
are smoothed out as the number of energy
eigenstates included in the evaluation of the shape
is increased above 30, The shape for M=108
represents, to an excellent approximation, a stable
equilibrium state, since the values contributed by
additional terms for values of N approaching
infinity die gut exponentially and, thus, negligibly
affect the vahie of the probability density function.

We also calculate the shapes for a=1, 10,
and 100, and N=148. They are shown in Figures 11
to 13, tespectively. We see that they are all
smooth (without ripples), and conclude that for
each of the ﬂ}ree cases, N=148 is an excellent
approximation” of the shape of the stable
equilibrium state of the harmonic oscillator.

Figure 8 Shape —~probability  density  function
versus the dimensionless position &—of
a harmonic oscillator in an equilibrium
siate, evaluated for o =01 and N=3
(see fext).

Figure 9 Shape—probability  density  function
versus the diniensionless position §—of
a harmonic oscillator in an equilibrium
state, evaluated for a.=0.1 and N=30
{see text).



Figure 10 Shape —probability density function
versus the dimensionless position &-
of a harmonic oscillator in a stable

equilibrium state, evaluated for o =0.1
and N=108 (see texi).

i

Figure 11 Shape—probability density function
" versus the dimensionless position £—
of a harmonic oscillator in o stable
equilibrium state, evaluated for o =]

and N=148 (see text),

A

Figure 12 Shape — probability density finction
versus the dimensionless position {—
of a harménic oscillator in a stable
equilibrium state, evaluated for o =10
and N=148 (see text).

5. Concluding Remarks

The results and ¢onclusions presented in this
paper are based on a unified quantum theory of
mechanics and thermodynamics. To illustrate cer-

Figure 13 Shape — probability density function
versus the dimensionless position £—
of a harmonic oscillator in a siable
equilibrium  state, evaluated for
o =100 and N=148 (see text).

tain fundamental aspects of this theory, we provide
graphical illustrations of quantum mechanical
shapes—probability density functions with respect
to spatial coordinates—of various systems in
various states. Admittedly, we have selected very
simple examples—one structureless particle
confined in a linear box, or in a square box, or by a
harmonic oscillator force field—in order to achieve
analytically explicit and transparent guantum-
theoretic results, and to facilitate the computations.
In each case, we find that the shape of
nonequilibrium and unstable equilibrium states is
rippled (not smooth), whereas for each stable
equilibrium state the shape has no ripples (is
smooth). '

In addition, we find that in each illustration
the thermodynamic entropy—a measure of the
shape of the state of a system and a fimdamental
property of matter—increases if the system
proceeds spontaneously from a state that is not
stable equilibrium to the stable equilibrium state
dictated by the second law of thermodynamics.
Our examples, thus, provide graphical illustratiohs
of both entropy—a concept, which has puzzled
scientists and engineers for over a century—and
the cause of irreversibility.

-,

Nomenclature

distance

energy

force

Planck’s constant divided by 2n
Planck’s constant

nth Hermite polynomial
Hamiltonian operator

spring stiffness constant

BT e o
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k  Boltzmann’s constant

£  angolar momentum quantum number

m z-component of the angular momen-tum
quantam number

M  mass

u  energy quantum number

P momentum

p(x) probability density function in x

Q  partition function

§  thérmodynamic entropy

T thermodynamic temperature
{  time

V  potential energy

x  spatial dimension

Y  spatial dimension

Greek Letters

o given in the paragraph immediately following
Eq. 16

a; ith statistical (informational) probabili-ty

g, nth energy eigenvalue

g  dimensionless varidble

p  density operator

og given by Eq, 31

¢, uth'energy eigenfunction

$, nthenergy eigenfunction normalized in & or x
Y wave function

@  harmonic oscillation angular frequency
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APPENDIX

The density operator of the unified guantum
theory of mechanics and thermodynamics

In many textbooks on quantum mechanics,
probabilities associated with measurement. results
are derived from a normalized wave function

w(x) or equivalently from either a Dirac ket | y)

or a projector |W){y|, where x are the spatial
coordinates of the constituents of a system, and
{| is the bra of ket |y) (Shankar, 1994). For
example, for a system with one degree of spatial
freedom %, the probability density function of
measurement results of x is given by

2 : A2
ool =(wix)xl w)=fxl v -

In statistical quantum  mechanics,
probabilities associated with measurement results
are derived from a density operator p=Z; o;p;
which represents a mixture of quantal probabilities
derived from projectors p; =|y; )w;| for i =
1,2,... and statistical {informational) probabilities
&; which reflect the lack of infarmation about some
or all aspects of the staie of a system.

In general, the foundations and theorems of
the unified quantum theory of mechanics and
thermodynamics differ from those of the ordinary
expositions of quantum mechanics and statistical
quantum mechanics. Among the many novel
concepts and results, two deserve special emphasis
for the porposes of this paper. The first is that in
contrast to statistical gquantim mechanics, a novel
concept of the unified quantum theory is that its
postulates —quantum-theoretic and thermodyna-
mic—de not apply to density operators that
tepresent mixtures of quantal probabilities derived



from projectors p; =|w; ;| and statistical
(informational) probabilities ¢; that reflect the lack
of information about some or all aspects of the
state of a system. Instead, the unified theory avers
that the laws of physics apply only to density
operators each of which is construed as the seat of
exclusively quanial probabilities, that is, enly to
operators p that can be represented by a
homogenecus ensemble of identical systems,
identically prepared. A homogeneous ensemble is
an ensemble in which the probabilities of results of
measurements on any member are represented by
the same density operator p as those on any other
member, Accordingly; experimentally (in contrast
to algebraically) the ensemble camot be
decomposed into statistical mixtures of projectors
or other non-projector demsity operators. The
concept of a homogencous ensemble was
introduced by von Newmann (1955), but he
assumed that it applies only to projectors

(pi= pi2 ), whereas here the concept is extended to
all self-adjoint, nonnegative definite, linear, unit
trace density operators. Each such operator

satisfies the relation p > p2 .

The second concept which deserves special
emphasis here is that, ih contrast to the plethora of
expressions for entropy that have been proposed in
the scientific literature over the past 140 years, it
has been shown that only one conforms with the
criteria that must be satisfied by the entropy of
thermodynamics, and this expression s
{Gyfiopoulos and Cubukeu, 1997)

§=-kTr[pnp] D

where k is Bolzmann’s constant, Tr stands for the
trace of the operator that follows, and p is a
density operator which can be represented solely
by a homogeneous ensemble. It is noteworthy that,
if p cannot be represented by a homogeneous
ensemble, then —kTr [p]n p] does not represent
the entropy of thermodynamics.

For given values of energy, volume, and
amounts of constituents, if p is a projector (wave
function), then 5=0; if p is not a projector but
corresponds to a state which is not stable
equilibrium (not thermodynamic equilibriom), then
8 has a positive value smaller than the largest
possible for the given specifications; and if p
corresponds to the unique stable equilibrium state,
then § has the largest value of all the entropies of

the system which share the given valués of energy,
volume, and amounts of constituents.

To illusirate the fundamental difference
between an ensemble that is heterogeneous and one
that i$ homogeneous, we consider the density

operator po of the eleciron of a hydrogen atom n
a stable equilibrium state. The heterogenecous
ensemble would be a combination of sub-
ensembles, each of which is specified by one set of
values of three quantum numbers: the energy
quantim fumber n, the angular momentum
quantumn number 0<f#<n-1, and the z-
component of the angular momentun quantum

"number —£<m<{. Se for n=3, there would be

nine sub-ensembles because the encrgy eigenstate
is n>-fold degenerate, Fach of these sub-ensembles
has the shape shown in Figure A-1. In contrast, the

density operator p° of

H T

Ran _1\

Figure A-1. Heterogeneous sub-ensemble sur-
Jaces—shapes—of the constant prob-
ability density function Py =
0.0002 in full xyz-space of the
electron in a hydrogen atom in a
stable equilibrium state (Brandt and
"Dahmen, 1995c). The shapes for
m=-1 and -2 are identical to the
ones shown for m = 1 and 2,
respectively.
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the homogeneous ensemble cannot be in any
conceivable way subdivided into sub-ensembles,
Each member of the ensemble is described by the

same p° and has a spherical shape as shown i
Figure A-2.

-

Figure 4-2. Homogenecus ensemble  member
surface—shape—of  the  constant
probability density function in full
xy.z-space of the electron in a
hydrogen atom” In  a  stable
equilibrium state (arbitrary units).
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