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ABSTRACT: We review both the Einstein, Podolsky, Rosen (EPR) paper, and
Schrodinger’s responses, and find that both are not consisient with the current
understanding of quantum theory and thermodynamics. Because both contributions play a
leading role in discussions of the fascinating and promising fields of quantum computation
and quantum information, we hope our review will be helpful to researchers in these fields.
A summary of our understanding of quantum theory and thermodynamics is presented in
the Appendix. In addition to its role in the discussion of quantum computation, the
summary provides tools for analyses of all systems (large or small) in any state (unsteady,
steady, nonequilibrium, equilibrium, and stable equilibrium). As such, it may stimulate
new interests of the attendees of this Conference in nanotechnology and other emerging
fields.

Key concepis: Nonstatistical guantum thermodynamics, expansion versus superposition of
wave functions and/or projectors, nonstatistical density operators, homogeneous
ensembles, state, uncertainty relations, equation of motion of quantum thermodynamics,
entanglement, measurement result.
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von Neumann’s statistical
density operator {Schrédinger’s
notation)

time coordinate

time interval

space coordinate along the x
direction

ket, Dirac’s notation of a wave

Greek leiters
p statistical or nonstatistical
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T time interval
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y,'¥ wave functions

. 2
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function

. . 2
(x) value of observable property x statistical operator (pi = Pi )

i. INTRODUCTION

The great and very important interest in quantum computation and quantum
information' behooves us to review the current definitions, postulates, and major
theorems of quantum theory to see whether they are correctly and consistently used
by rescarchers in the development of the fascinating and promising field of
quantum computers. We notice that practically all discussions of quantum
computers and quantum information involve: (i) the paradoxology of the famous
EPR paper’; (ii) Schriodinger’s cat paradox and his responses to the EPR paper’®;
and the concept of entanglement.

In this essay, we review the issues raised in the EPR paper regarding the
completeness of quantum theory, Schrodinger’s responses to the issues just cited,
and the concept of entanglement, and regret to report that they misrepresent the
definitions, postulates, and principal theorems of quantum theory.  The
misrepresentations arise from: lack of clear and/or complete definitions at an
instant in time of the concepts system, property, and state; use of a postulate that
has been proven to be false; and misinterpretation of an expansion of a wave
function in terms of a complete set of orthonormal eigenfunctions as a
superposition of the eigenfunctions.

The basis of our remarks is a revolutionary conception of quantum theory and
thermodynamics without probabilities of statistical mechanics. A brief summary is
presented in Appendix A.

2. CAN QUANTUM MECHANICATL DESCRIPTION OF PHYSICAL
REALITY BE COMPLETE?

In the abstract of the EPR paper, the authors aver: “In a complete theory there is

an element corresponding to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting it with certainty,
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without disturbing the system. In quantum mechanics in the case of two physical
quantities described by noncommuting operators, the knowledge of one precludes
the knowledge of the other. Then either (1) the description of reality given by the
wave function in quantum mechanics is not complete or (2) these two quantities
cannot have simultaneous reality. Consideration of the problem of making
predictions concerning a system on the basis of measurements made on another
system that had previously interacted with it leads to the result that if (1) is false
then (2) is also false. One is thus led to conclude that the description of reality as
given by a wave function is not complete.”

The conclusion about a wave function is both false and correct. As we discuss in
the Appendix (A V), the description of the probabilities of the physical reality

represented by a wave function or projector p; = pi2 is complete for phenomena

that correspond to zero entropy physics and, therefore, the sweeping conclusion
just cited is not correct. On the other hand, probabilities associated with

measurement results may require a representation by a density operator p > p2 (A

I, A V) that involves no statistics of the type introduced in statistical quantum
mechanics. In sharp contrast to the density operator defined in statistical theories of
physics, the density operator p involves only quantum probabilities, and is

represented solely by a homogeneous ensemble, that is, an ensemble of identical
systems, identically prepared in which each member is characterized by the same

density operator p > p2 as the ensemble, and corresponds to nonzero entropy

physics. Therefore, the conclusion reached by EPR is correct but not for the reason
cifed in their paper.

It is noteworthy that the concept of a homogeneous ensemble was introdnced by
von Neumann’ only for wave functions or projectors. The revolutionary (in the
sense of Kuhn®) recognition that the concept applies also to density operators that
involve no probabilities of statistical physics was recognized by Hatsopoulos and
Gyftopoulos’, and Jauch', and observed by Schrédinger® who however did not
make use of his observation. For further discussion see Dirac’s presentation in
Section 3.

The concept of entropy referred to in the preceding comments differs from all the
concepts introduced in textbooks and scientific articles on quantum mechanics,
thermodynamics, and statistical physics. The new concept is shown to be both a
nonstatistical intrinsic property of any system (both macroscopic and microscopic,
including one spin) in any state (both thermodynamic equilibrium and not
thermodynamic equilibrium), and a measure of either the quantum-mechanical
spatial shape of the constituents of the system'"", or the orientation of spins within
or on the Block sphere.
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Next, we consider the EPR statement that “In quantum mechanics in the case of
two physical quantities described by poncommuting operators, the knowledge of
one precludes the knowledge of the other”.

This statement is not correct. The proof is given in A XTI and A X1V where we
show that: (i) the value of an observable represented by an operator A is an
expectation value deter-mined by an ensemble of measurement results and not by
the result of a single measurement; and (ii) the expectation value (A) is

independent of that of any other observable represented by an operator B regardless
of whether AB-BA=0 or #0.

EPR conclude that the description of reality as given by a wave function is not
complete. They say: “Whatever the meaning assigned to the term complete, the
following requirement for a complete theory scems to be a necessary one: every
element of the physical reality must have a counterpart in the physical theory. We
shall call this the condition of completeness. ... We shall be satisfied with the
following criterion, which we regard as reasonable. I without in any way
disturbing a system, we can predict with certainty (i.e., with probability equal to
unity) the value of a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity.”

The statements just cited are excellent and consistent with the thoughts of many
preeminent physicists, including Margenau' .

Next EPR assert: “To illustrate the ideas involved let us consider the quantum-
mechanical description of the behavior of a particle having a single degree of
freedom. The fundamental concept of the theory is the concept of state, which is
supposed to be completely characterized by the wave function vy, which is a

function of the variables chosen to describe the particle’s behavior. Corresponding
to each physically observable quantity A there is an operator, which may be
designated by the same letter.”

We find this assertion misconceived because a wave function does not determine
the state. The definition of state requires the definitions of both a system (A I) as
an entity separable from and uncorrelated with its environment, and the values of a
complete set of linearly independent properties (A VI, A VII, and A XIV).

Next, EPR consider a particle described by a momentum eigenfunction, and
conclude that “such a particle has momentura but when the momentum of a particle
is known, its coordinate has no physical reality.”

The conclusion just cited is not correct for the following reasons: (i) If a

momentum measurement yields the value p,, that result does not necessarily mean
the system immediately after the measurement is in a state for which the
probabilities are described by the momentum eigenfunction corresponding to Po

(A X to A XIV), (i1} The EPR conclusion is based on the so-called von Neumann
projection or collapse of the wave function postulate which is proven to be
invalid"!" (A XVI); and (111) If the expectation value of momentum measurement
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results is the p,, then this does not mean that the coordinate of the particle has no

physical meaning, It means that the standard deviation of momentum measurement
results Ap=0, and the standard deviation of position measurement results

Ax =00 so that AxAp=o00x0>%/2. On the other hand, if the particle is

confined within a one-dimensional infinitely deep potential well of width L, then
the standard deviation of position measurement results Ax < I, and the wave
function is not and cannot be 2 momentum eigenfunction because, if it were, then
Ap =0 and the uncertainty relation is violated, that is, AXAp < Lx0Q =0 and not
>h/2.

Next, EPR aver: “In quanfum mechanics it is usually assumed that the wave
function does contain a complete description of the physical reality of the system in
the state to which it corresponds. At first sight this assumption is entirely
reasonable, for the information obtainable from a wave function seems to
correspond exactly to what can be measured without altering the state of the
system. We shall show, however, that this assumption, together with the criterion
of reality given above, leads to a contradiction.” “For this purpose let us suppose
that we have two systems, I and II, which we permit to interact from the time # =0
to t=1T, after which time we suppose that there is no longer any interaction
between the two parts. We suppose further that the states of the two systems before
t =0 were known. We can then calculate with the help of Schridinger’s equation
the state of the combined system T + 1T at any subsequent time ¢>7. .. We
cannot, however, calculate the state in which ecither one of the two systems is left
after the interaction. This, according to quantum mechanics, can be done only with
the help of further measurements, by a process known as the reduction of the wave
packet.”

After a detailed analysis, EPR conclude: “We see therefore that, as a consequence
of two different measurements performed upon the first system, the second system
may be left in states with two different wave functions. On the other hand, since at
the time of measurement the two systems no longer interact, no real change can
take place in the second system in consequence of anything that may be done to the
first system. ... Thus, it is possible to assign two different wave functions to the
same reality (the second system after the interaction with the first).”

In general, the calculations for > 7 are not correct for several reasons: (i} For
example, assume that for # <0 system I is a proton in a box, and system Il an
electron in a box, and that during the interaction from =0 to =1 the two
particles combine and form a hydrogen atom. The Hamiltonian operator after the
inferaction includes the potential energy between the proton and the electron, that
is, a term absent from the Hamiltonian operator of the proton, and the Hamiltonian
operator of the electron. As a result, no two systems can be 1dentified after the
interaction; (ii) As we discuss earlier, the reduction of the wave packet has been
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proven to be invalid. Accordingly, the conclusion that two different wave
functions can be assigned to the same reality is not valid; and (iii) After the
interaction is over, the two parts may be separable but correlated, that is
“entangled™. If this is the casc, defining two systems after the interaction amounts
to neglect of correlations, and results in an increase of the non-statistical entropy.
But such an increase cannot be accounted either by a wave function ¥ or by its
unitary evolution in time dictated by the Schrodinger equation of motion. Because
every system in any state has entropy as a fundamental and intrinsic property of the
constituents (A V), entropy should not be created and/or destroyed by inappropriate
mathematical representations.

3. THE PRESENT SITUATION IN QUANTUM MECHANICS

Schrodinger authored three articles in German® that have been translated into
English’. These articles include a one paragraph description of the “cat paradox”,
In addition, two presentations were made on Schrédinger’s behalf at the Cambridge
Philosophical Socicty by Bom®, and Dirac®. In both presentations Schrédinger
acknowledges that the FPR paper motivated his offerings. He begins his
discussion with the following statements:’ “Statistics of Model Variables in
Quantum Mechanics. At the pivot point of contemporary quantum mechanics
{(Q.M.) stands a doctrine, that perhaps may yet undergo many shifts of meaning but
that will not, I am convinced, cease to be the pivot point. It is this, that models
with determining parts that uniquely determine each other, as do the classical ones,
cannot do justice in nature. One might think that for anyone believing this, the
classical models have played out their roles. But this is not the case. 4. The
classical concept of state becomes lost, in that at most a well-chosen Aalf of a
complete set of variables can be assigned definite numerical values; ... The other
half then remains completely indeterminate, while supernumerary parts can show
highly varying degrees of indeterminacy. In general, of a complete set ... aff will be
known only uncertainly. One can best keep track of the degree of uncertainty by
following classical mechanics and choosing variables arranged in pairs of so-called
canonically-conjugate ones. The simplest example is a space coordinate x of a

point mass and the component p, along the same direction, its linear momentum
(i.e, mass times velocity). Two such constrain each other in the precision with
which they may be simultaneously known, in that the product of their tolerance —

or variation-widths (customarily designated by putting a A ahead of the quantity)
cannot fall below the magnitude of a certain universal constant, thus

Ax-Ap, 2(Planck’s constant)/2x =1 >,
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The conclusions just cited are not correct because they overlook both the
universal definition of state (A XIV), and the meaning of uncertainty relations'® (A
XV).

Next, Schridinger states: “B. 1f even at any given moment not all variables are
determined by some of them, then of course neither are they all determined for a
fater moment by data obtainable earlier. This may be called a break with causality,
but in view of A4. it is no-thing essentially new. If a classical state does not exist at
any moment, it can hardly change causally. What do change are the siatistics or
probabilities, these moreover causally. Individual variables meanwhile may
become more, or less, uncertain. Overall it may be said that the total precision of
the description does not change with time, because the principle of limitations
described under 4. remains the same at every moment.”

These remarks are not consistent with either the equation of motion of quantum
theory, or the definition of state. What defines the state at an instant in time is a set
of expectation values (A XIV). If we restrict our considerations to probabilities
that are described by a projector, then for any expectation value (F) it is readily
shown that'®

@ =1 (HF —FH) + @
d h ot
where H is the Hamiltonian operator of the system.

Next, Schrédinger raises the question “Can one base the theory on ideal
ensembles?”, and responds as follows: “The classical model plays a Protean role in
Q.M. Each of its determining parts can under certain circumstances become an
object of interest and achieve a certain reality. But never all of them together —
now it is these, now those, and indeed always at most half of the complete set of
variables al-lowed by a full picture of the momentary state. Meantime, how about
the others? Have they then no reality, perhaps (pardon the expression) a blurred
reality; or are all of them always real and is it merely, according to Theorem 4. that
simultaneous knowledge of them is ruled out?”

As we discuss earlier, this dilemma does not exist if the proper interpretation of
quantum theory is followed.

Next, Schrddinger elaborates on the issue of blurred variables, and introduces
his cat paradox. Upon using the definitions, postulates, and major theorems of
quantum theory (see Appendix), we conclude that there is no “cat paradox™. To
facilitate our discussion, we use a cartoon' (Figure 1) that correctly claims to
represent the cat paradox. The cartoon shows a ket that presumably can be
represented by a superposition (and not by an expansion) in terms of two kets, one
consisting of a radio-activity source and a live cat at an instant in time ¢, and the
other a radioactivity source that has decayed at time f+7 and a dead cat that has
been poisoned by the release of hydro-cyanic acid induced by the radiation emitted
atf+71.
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Figure 1. Cartoon representing Schrodinger’s cat paradox. (Reprinted from
Physics Today by permission of the authors and Physics Today.)

Such a superposition corresponds to no physical reality because a ket is valid at a
specific instant in time, and therefore cannot be represented by an expansion, let
alone a super-position, in terms of two kets, one of which applies at time #, and the
other at time¢ 7+7. Moreover, and for sure more importantly, a radioactivity
source prior to decay is a system, that is, an entity both separable from and
uncorrelated with its environment which includes a live cat and its life support
interactions, such as breathing, drinking, eating, and (excuse the expression) other
necessities of living beings. Solid and incontrovertible evidence for the physical
reality just cited is provided by a very large number of radioactivity sources devoid
of evil contraptions in hospitals, science and engineering laboratories, and nuclear
energy installations, and a myriad of creatures, including human beings and cats,
that live happily around these sources.

For clarity and avoidance of misinterpretations, at time # the Hilbert space of the

radioactivity source and the cat must be the direct product ﬂﬂ® H .., and the

—lc»
catalog of probabilities by the direct product p, ®p,,, where ﬂ.i and p; for

1=rl,lc are the Hilbert spaces and probability catalogs of the radioactivity source
and the live cat, respectively. Most likely, even though not necessarily, the
probability catalogs are density operators for both the radioactivity source and the
live cat and not projectors or, equivalently, the entropy of each of these two
systems is not zero. Moreover, cach of the probability catalogs Py and py, is

represented by a homogeneous or irreducible ensemble of identical systems,
identically prepared (A 1T and A V). It is clear that in the time interval fto £ +71
the quantum representation of the radioactivity source and the live cat does not
involve a radioactivity source that has decayed and a dead cat.

At t+17, however, if radiation is emitted from the source and precipitates the
poisoning and death of the cat, then we have an entirely new situation, that is, two
new systems. The source is a system with fewer radioactive nuclei than were
present at time ¢, and the cat is an entirely new system because a dead cat does not
need to and does not interact with any life support systems. At this time, the

Hilbert space for the two systems is ﬂ_r2® H._, and the probability catalog is

“des

P ®pgy., wWhere the subscript 12 denotes the radioactivity source with fewer
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radioactive nuclei than at time ¢, and dc the dead cat. Tt is clear that neither the new
systems nor their probability catalogs have any part that refers to time t. As a
result, no inference can be made about the radioactivity source prior to decay and
the live cat by studying the radioactivity source after the decay and the dead cat
because in each of the two intervals t to #+7 and (time) >¢+71 each of the two
entities is both separable from and uncorrelated with its environment, and therefore
can be identified as a system.

After a discussion of theories of measurement, Schrodinger considers two
systems that interact with each other for a certain time and then are separated. The
following are some of his statements: “This is the point. Whenever one has a
complete expectation—catalog — a maximum total knowledge — a y-function — for

two completely separated bodies, or, in better terms, for each of them singly, then
one obviously has it also for the two bodies together, i.e., if one imagines that
neither of them singly but rather the two of them together make up the object of
interest, of our questions about the future. But the converse is not true. Maximal
knowledge of a total system does not necessarily include total knowledge of all its
parts, not even when these are fully separated from each other and at the moment
are not influencing each other at all. Thus it may be that some part of what one
knows may pertain to relations or stipulations between the two sub-systems (we
shall limit ourselves to two), as follows: if a particular measurement on the first
system vyields this result, then for a particular measurement on the second the valid
expectation statistics are such and such; but if the measurement in question on the
first system should have that result, then some other expectation holds for that on
the second; should a third result occur for the first, then still another expectation
applies to the second; ... In this way, any measurement process at all or, what
amounts to the same, any variable at all of the second system can be tied to the not-
yet-known value of any variable at all of the first, and of course vice versa also. If
that is the case, if such conditional statements occur in the combined catalog, then
it can not possibly be the maximal in regard to the individual systems. ... That a
portion of the knowledge should float in the form of disjunctive conditional
statements between the two systems can certainly not happen if we bring up the two
from opposite ends of the world and juxtapose them without interaction. For then
indeed the two “know” nothing about each other. A measurement on oné cannot
possibly furnish amy grasp of what is to be expected of the other. Any
“entanglement of predictions™ that takes place can obviously only go back to the
fact that the two bodies at some earlier time formed in a true sense one system, that
is were interacting, and have left behind ##aces on each other.”

Earlier we discuss the points raised in the preceding statements except for
entanglement which we discuss later. We will see that, as a result of entanglement,
no two systems can be defined after the interactions because the two parts may be
separable from but correlated with each other.
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4, PROBABILITY RELATIONS BETWEEN TWO SYSTEMS

Two communications were presented on Schrodinger’s behalf at the Cambridge
Philosophical Society by Born® and Dirac®. In both communications Schrodinger
provides detailed mathematical relations that presumably describe what happens to
two systems both before and after a temporary interaction.

In the communication presented by Born, Schridinger says:

1. “When two systems, of which we know the states by their respective
representatives, enter into temporary physical interaction due to known forces
between them, and when after a time of mutual influence the systems separate
again, then they can no longer be described in the same way as before, viz. by
endowing each of them with a representative of its own. I would not call that one
but rather 7he characteristic trait of quantum mechanics, the one that enforces its
entirc departure from classical lines of thought. By the interaction the two
representatives (or W -functions) have become entangled. To disentangle them we

must gather further information by experiment, although we knew as much as
anybody could possibly know about all that happened. Of either system, taken
separately, all previous knowledge may be entirely lost, leaving us but one
privilege; to restrict the experiments to one only of the two systems. After re-
establishing one representative by observation, the other one can be inferred
simultaneously. In what follows the whole of this procedure will be called the
disentanglement. Its sinister importance is due to its being involved in every
measuring process and therefore forming the basis of the quantum theory of
meagurement, threatening us thereby with at least a regressus in infinitum, since it
will be noticed that the procedure itself involves measurement.”

As we discuss earlier, in quantum theory the definition of a system requires that it
be separable from and uncorrelated with its environment (A I). In principle,
separability and lack of correlations are subject to experimental verification. For

example, if the probabilities of the whole are found to be described by (xl 2 Xy ) ,

and the probabilities of the two parts by @, (xl) and @, ( XZ), respectively, then
two  systems are separable and identifiable if and only if
W (Xi \ X, ) =, (X] )(p2 (x2 ) . and mneither separable nor identifiable if

W(prz) P (Xl )(Pz (x2)-

2. “Attention has recently been called” to the obvious but very disconcerting fact
that even though we restrict the disentangling measurements to one system, the
representative obtained for the other system is by no means independent of the
particular choice of observations which we select for that purpose and which by the
way are entirely arbitrary. It is rather discomforting that the theory should aliow a
system to be steecred or piloted into one or the other type of state at the
experimenter’s mercy in spite of his having no access to it. This paper does not
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aim at a solution of the paradox, it rather adds to it, if possible. A hint as regards
that presumed obstacle will be found at the end.”

Earlier we show that there exists neither an EPR nor a cat paradox. In particular,
the cat paradox is disproven because it is based on the misconception that a
probability catalog — projector or density operator — can be represented by a
superposition of two probability catalogs, each of which applies at a different
instant in time. Such a misconception is contrary to the structure of all non-
relativistic paradigms of physics because in each of these paradigms the definitions
of the concepts system, property, and state refer to one instant in time, and the
evolution in time is accounted by the equation of motion of each paradigm.

The hint alluded to earlier states: “The paradox would be shaken, though, if an
observation did not relate to a definite moment. But this would make the present
interpretation of quantum mechanics meaningless, because at present the objects of
its predictions are considered to be the results of measurements for definite
moments of time.”

The hint is excellent, and proves that there is no paradox.

In the introductory remarks of the Dirac communication’, Schrodinger says: “An
earlier paper® dealt with the following fact. If for a system which consists of two
entirely separated systems the representative (or wave function) is known, then the
current interpretation of quantum mechanics obliges us to admit not only that by
suitable measurements, taken on ome of the two parts only, the state (or
representative or wave function) of the other part can be deter-mined' without
interfering with it, but also that, in spite of this noninterference, the state arrived at
depends quite decidedly on what measurements one chooses to take — not only on
the results they yield. ... For it will be shown that in general a sophisticated
experimenter can, by a suitable device which does nof involve measuring
noncommuting variables, produce a nonvanishing probability of driving the system
into any state he chooses; ... The statement is hardly more than a corollary to a
theorem about “mixtures™ ...”

After detailed mathematical analyses of a system for which the probabilities are
described by a statistical von Neumann density operator U, Schrédinger concludes
that: (i) the expectation value (A) of an observable A is given by the relation (A)

= Tr[AUT; and (ii) “Since the mean values are all that quantum mechanics predicts
at all, the knowledge of U in a definite frame of reference exhausts our real
knowledge of the situation, just as in the case of a “state” the wave function
exhausts it. ... U is von Neumann’s Statistical Operator. Its matrix is hermitian. It
has the formal character of a real physical variable, but the physical meaning of a
wave function, that is to say it describes the instantaneous physical sitnation of the
system.”

Earlier we found that an experimenter cannot determine the wave function of a
system without performing direct measurements on it. We return to the issue here
because of the association that Schrédinger makes between expectation values and
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a density operator U, defined as a statistical average of wave functions or
projectors. To be sure, this is contrary to our proven result that density operators in
quantum theory are defined exclusively by quantum mechanical probabilities, and
not by quantum mechanical probabilities represented by projectors, and statistical
probabilities of statistical theories of physics. However, Schridinger’s discussion
of U contradicts his definition, and makes U a density operator that is irreducible or
unambiguous (A V). Specifically, he emphasizes that “U exhausts our real
knowledge of the situation” and therefore that “there is no way of partitioning U
into a statistical average of projectors — wave functions”. Moreover, he asserts that
“U is determined by the only measurable quantities, that is the expectation values.”

All these remarks are correct and consistent with the exposition of quantum
theory in the Appendix, and not with von Neumann’s statistical interpretation of
density operators (A X1V). In essence, Schrddinger discovered the density
operators of the unified quantum theory of moechanics and thermodynamics but did
not pursue the consequences of his discovery.

5. QUANTUM ENTANGLEMENT: A MODERN PERSPECTIVE

The title of this section is identical to that of a recent article!®. We discuss it
because it reflects several misconceptions that are present in many of the
publications on quantum computation and quantum information. The article begins
with brief discussions of the EPR paper and Schrodinger’s cat paradox, illustrated
by the cartoon shown in Figure 1, and then concentrates on the concept of
“entanglement in a quantum system”.

Paradexes: Earlier we show that there are no EPR and Schrodinger’s cat
paradoxes.

Entanglement: This concept is introduced by an allegory. “An experimentalist,
Alice, wishes to send an unknown state |s) =a |0} + £|1) of a two level quantum

system to another experimentalist, Bob; in a distant laboratory. ... Alice and Bob do
not have the means of directly transmitting the quantum system from one place to
another ... but let us imagine that they do share an entangled state. Consider the
case In which Alice and Bob each have one spin of a shared singlet state of two

spin-1/2 particles/¥ ") =(|T,4)+[{,T) ) / V2, also called EPR pair. Alice can
transmit her spin |s) to Bob by performing a certain joint measurement on her spin

|s) and her half of the EPR pair. She tells Bob the result of her measurement and
depending on her information, Bob rotates his half of the EPR. pair to obtain the
state {s) .”

There are three statements in the pre-ceding quote contrary to quantum theory: (i)
In principle, an infinite number of measurements on an ensemble of identical
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systems, identically prepared is needed to determine |s>, regardless of the values
of a and f (a2 +pt = 1). So how can one measurement reveal any information

about |s) ?; (i) The ket |'¥ ") is not an EPR state. It is an expansion of |%¥™) (not

a superpositior) in terms of two orthonormal eigenkets of a two-gpin system; and
(i11) a system is not a state, and a state is not a system.

Next, the authors" say: “The spin-singlet EPR state that Alice and Bob share in
quantum teleportation is called a maximally entangled state.  Even though the two
spins together constitute a definite pure state, each spin state is maximally
undetermined or mixed when considered separately. In mathematical terms,
Alice’s local density matrix — obtained by tracing over Bob’s spin degrees of

freedom, Tr, (| Y P \) — has equal probability for spin up and spin down. In

keeping with Schrédinger’s understanding of entanglement, one measures the
amount of entanglement in a general pure state ¢ in terms of the lack of

information about its local parts. The von Neumann entropy S(p)=~Tr(plogp)

is used as a measure of that information. In other words, the entropy of
entanglement £ of the pure state ¢ is equal to the von Neumann entropy of, say,

Alice’s density matrix p="Tr, [ @) (@|.”
The statements just cited misrepresent the theory of quantum phenomena. The

thermodynamic entropy of any projector | ) (¥ | or | @) (@] is equal to zero.

The von Neumann entropy is not relevant to this discussion, et alone the fact that it
does not represent the entropy of thermodynamics (A V).

6. CONCLUSIONS

Upon detailed and close scrutiny of the ideas presented in the EPR paper and in
Schrodinger’s responses, we find many faulty conclusions about the very
successful theories of quantum mechanics and thermodynamics. We show that the
faulty conclusions are due to lack of correct definitions of basic concepts, use of a
postulate that is proven not to be valid, and misinterpretations of key theorems of
the theory. We also find that the faulty conclusions have permeated the theoretical
underpinnings of quantum computation and quantum information. Our criteria are
based on an exposition of quantum theory that unifies quantum and thermodynamic
ideas without resort to statistical probabilities, and that is summarized in the
following Appendix.
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APPENDIX: QUANTUM THEQORY

We present a summary of nonrelativistic quantum theory that differs from the
presentations in practically every textbook on the subject. The key differences are
the discoveries that for a broad class of quantum-mechanical problems: (i) the
probabilities associated with ensembles of measurement resuits at an instant in time
require a mathematical concept delimited by but more general than a wave function
or projector; and (ii) the evolution in time of the new mathematical concept
requires an equation of motion delimited by but more general than the Schrédinger
equation. Our definitions, postulates, and major theorems of quantum theory are
based on statements made by Park and Margenau™.

The first difference is the recognition’ that there exist two classes of quantum
problems: (i) those that correspond to probabilities described by a wave function or
projector; and (i) those that correspond to probabilities described by a density
operator which is not a statistical average of projectors, i.e., not a combination of
quantum and statistical probabilities. The second difference is the recognition that
the evolution in time of nonstatistical density operators requires a nonlinear

equation of motion, and the discovery of such an equation by Beretta et al*'%.

KINEMATICS: DEFINITIONS, POSTULATES, AND THEGREMS AT AN
INSTANT IN TIME.,

A 1. System. The term systern means a set of specified types and amounts of
constituents, confined and controfled by a nest of internal and exteral forces.
Internal forces arise from interactions between constituents.

External forces arise from conditions imposed by force fields outside the system.
The effect of each field depends only on the spatial coordinates of each constituent
and not on any coordinates of constituents that are not included in the system, that
is, the system is separable from its environment. In addition, in order to be totally
independent and fully identifiable, the system inust be statistically uncorrelated
with its environment.

A L System postulate. To every system there corresponds a complex, separate,
complete, inner product space, a Hilbert space H. The Hilbert space of a
composite system of two distinguishable and identifiable subsystems 1 and 2 is the
direct product space Hlg H?

A 1II: Homogeneous or unambiguous ensemble. At an instant in time, an
ensemble of identical systems is called homogeneous or unambiguous if and only if
upon subdivision into subensembles in any conceivable way that does not perturb
any member, cach subensemble yields in every respect measurement results
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identical to the corresponding results obtained from the ensemble. Other criteria
have also been defined”.

A IV: Preparation. A preparation is a reproducible scheme used to generate one
or more homogeneous ensembles for study.

A V. Pictorial representation of ensembles. In quantum mechanics the
probabilities associated with measurement results” are described either by a wave

function ¥, or projector |'¥;) (W] =p; = piz, or by a density operator (p > pz)
which is not a statistical mixture of projectors of the kind introduced by von
Neumann’, Jaynes”, and Katz*".

Pictorially, we can visualize a projector by an ensemble of identical systems,
identically prepared. Each member of such an ensemble is characterized by the
same projector p;, and von Neumann calls the ensemble Fomogeneous. Similarly,

we can visualize a density operator p consisting of a statistical mixture of two
projectors p =P, +0,p,, 4 +a, =1, p; #p, #p, where p; and p, represent
quantum —mechanical probabilities, & and a, statistical probabilities, and the

ensemble is called heterogeneous or ambiguous’. A heterogeneous ensemble is
shown in Figure A-1.

The concept of a mixture begs the questions: (i) Are there guantum-mechanical
problems that involve probability distributions which cannot be described by a
prajector but require a purely quantum-mechanical density operator — & density
operator which is not a mixture?; and (ii) Are there purely guantum-mechanical
density operators consistent with the foundations of quantum physics?

Upon close scrutiny of the definitions, postulates, and key theorems of quantum
theory, we find that the answers to both questions are yes™'". A purely quantum-

mechanical density operator p > p2 is represented by an ensemble of identical

systems, identically prepared, as shown in Figure A-2, and, by analogy to a
projector, is called homogeneous or unambiguous’. Density operators that
correspond to homogeneous ensembles have many interesting implications. They
extend quantum ideas to thermodynamics, and thermodynamic principles to
quantum phenomena.

For example, it is shown that thermodynamics applies to all systems (both large
and small, including one particle systems, such as one spin), to all states (both
thermodynamic equilibrium, and not thermodynamic equilibrium), and that entropy
is not a measure of ignorance, lack of information or disorder™ but an intrinsic
property of a system™ in the same sense that inertial mass is a property of a system.
Again, it is shown that entropy is a measure of the quantum-mechanical spatial

* We use the expression “probabilities associated with measurement results” rather than
“state” because the definition of state (A X1V) requires more than the specification of a
projector or a density operatot.
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shape of the constituents of a system, and that irreversibility is solely due to the
changes of this shape as the constituents try to conform to the external and internal
force fields of the system' "',

It is noteworthy that for given values of energy, volume, and amounts of
constituents, if’ p is a projector the entropy S =0, if p is not a projector but

corresponds to a state that is not stable equilibrium (not thermodynamic
equilibrium) § has a positive value smaller than the largest possible value, and if p

corresponds to the unique stable equilibrium state S has the largest value. Said
differently, all projectors or wave functions correspond to zero entropy physics, all
largest entropy density operators for different isolated system specifications
correspond to stable equilibrium states — classical thermodynamics — and all other
density operators that are associated neither with zero entropy, nor with largest
value entropy correspond to probability distributions that can be represented neither
by projectors nor by stable equilibrium state density operators.

A VL Property. The term property refers to any atiribute of a system that can be
quantitatively evaluated at an instant in time by means of measurements and
specified procedures. All measurement results and procedures are assumed to be
precise, that is, both error free, and unaffected by the measurement and the
measurement procedures,

HETEROGENECUS ENSEMBLE

P, Py P, R R P,
P#p
ol o] ] - 3] [5
P# P,
Py P, Py [Py Py
FRACTION q, FRACTION q»

OVERALL DENSITY p=q;p;+ Py

Figure A-1: Pictorial representation of a hetero-geneous ensemble. Each of the

subensembles for p, and p, represents either a projector (pi = pf)

or a density operator (p}i > plz) ,fori=1,2,and o +a, =1.
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HOMOGENEOUS ENSEMBLE

pl [p] [p] p
pl [e] el - p
pl [p] [p] p

OVERALL DENSITY OPERATOR =p

Figure A-2: Pictorial representation of a homogeneous ensembie. Each of the
members of the ensemble is characterized by the same density

operator p = pz. It 1s clear that any conceivable subensemble of a
homogeneous ensemble is characterized by the same p as the
ensemble, and pertains to the same system at a given instant in time.

A VII: Observable. From A VI follows that each property can be observed.
Traditionally, however, a property is called an observable only if it conforms to the
following mathematical representations.

A VIII: Correspondence postulate. Some lingar Hermitian operators A, B, ... on

Hilbert space M, which have complete orthonormal sets of eigenvectors,
correspond to observables of a system.

The inclusion of the word “some” in the correspondence postulate is very
important because it indicates that there exist Hermitian operators that do not
represent observables, and properties that cannot be represented by Hermitian
operators. The first category accounts for Wick et al*’ superselection rules, and the
second accounts both for compatibility of simultaneous measurements introduced
by Park and Margenau™, and for properties, such as temperature, that are not
represented by operators.

A IX: Measurement act. A measuremeni act is a reproducible scheme of
measurements and operations on a member of an ensemble. Regardless of whether
the measurement refers to an observable or not, in principle the result of such an act
is presumed to be precise, that is, an error and perturbation free number.

If a measurement act of an observable is apphied to each and every member of a
homogeneous ensemble, the results conform to the following postulate and
theorems,
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A X: Mean-value postulate. If a measurement act of an observable represented by
a Hermitian operator A is applied to each and every member of a homogeneous
ensemble, there exists a linear functional m(A) of A such that the value of m(A)
equals the arithmetic mean of the ensemble of A measurements, that is,

m(A)= (A) =X a/N for N—>o0 (A-1)

where a; is the measurement result of a measurement act of A applied to the ith
member of the ensemble, a large number (theoretically infinite) of @;’s have the
same numerical value, and both m(A} and (A) represent the mean or expectation

value of A.

A XI: Mean-value theorem. For each of the mean-value functionals or
expectation values m(A) of a system at an instant in time, there exists the same
Hermitian operator p such that

m(A)=(A)=Tr[pA] (A-2)

where Tr stands for the trace (sum of diagonal elements) of the operator that
follows. The operator p is known as the density operator or the density of
measurement results of observables, and here it can be represented solely by a
homogencous ensemble as shown in Figure A-2. It is noteworthy that the value
(A) depends exclusively on the Hermitian operator A that represents the

observable and on the density operator p, and not on any other operator that either

commutes or does not commute with operator A.
The operator p is proven to be Hermitian, positive, unit trace and, in general, not

a projector, that is,
p>0; Trp=1; and p2p? (A-3)

A XII: Probability theorem. 1f a measurement act of an observable represented
by operator A is applied to each and every member of a homogeneous ensemble

characterized by p, the probability or frequency of occurrence W(au) that the

results will yield eigenvalue a, is given by the relation
W(a,)=Tr[pA,] (A-4)
where A is the projection onto the subspace belonging to a,,
: N
Ala)=a,la)) (A-5)

forn=1,2,...,i=1,2, ..., g and g is the degeneracy of a, .
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A XHI: Measurement result theorem. The only possible result of a measurement
act of observable A is one of the eigenvalues of A (Eq. A-5).

A XIV: State. The term state means all that can be said about a system at an
instant in time, that is, a set of Hermitian operators A, B, ... that correspond to

n* -1 linearly independent observables, and the values of these observables given
by the relations

(A) =Tr[pA] = >a /N

(B) =Tr[pB]=X4,/N (A-6)

where n is the dimensionality of the Hilbert space, and N -— oo .
In Egs. (A-6), either the density operator p is specified a priori and the values of

the observables are calculated, or the values ;¢ /N, Y5, /N, ... of the linearly
mndependent observables are either specified or experimentally established and a
unigue operator p is calculated. The mappings both from p to expectation values
and from expectation values to p are unique because Egs. (A-6) are linear from
expectation values to p and from p to expectation values. Tt is noteworthy that

only the first power of an operator X and its eigenvalues X, are included in Eqgs.

(A-6). For example, only the Hamiltonian operator H and its eigenvalues €, &,,

..., appear in Eqs. (A-6), and not H" and its eigenvalues €], € , ... form > 1.

Finally, it is clear that the definition of state is not synonymous either with the
concept of a wave function or more generally the concept of a density operator (A
XI). The definition of state requires both the specification of the system (A I), and
either a complete set of measurable, independent expectation values, or a
prescribed density operator p = p2 .

A XV: Uncertainty relations. Ever since the inception of quantum mechanics, the
uncertainty relation that corresponds to a pair of observables represented by non-
commuting operators is interpreted by many scientists and engineers as a limitation
on the accuracy with which the observables can be measured™®.  This
interpretation, however, cannot be deduced from the postulates and theorems of
quantum theory. An outstanding example of measurement accoracy is the Lamb
shift’'.

The probability theorem avers that we cannot predict which precise eigenvalue
each measurement will yield except in terms of either a prespecified or a
measurable probability or frequency of occurrence. Each probability distribution

of an observable represented by operator X has a variance (AX)2 and a standard
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deviation AX . Moreover, for two observables represented by two non-commuting
operators A and B, that is, AB—BA =iC, it is shown'™? that AA and AB

satisfy the uncertainty relation AAABZ [{C)/2|, that is, each uncertainty

relation refers neither to any errors introduced by the measuring instruments nor to
any particular value of a measurement result.

A XVL Collapse of the wave function postulate. Among the postulates of
quantum mechanics, many authoritative textbooks include von Neumann’s
proje]cﬁtion or collapse of the wave function postulate®™**** which is proven not to be
valid ™.

DYNAMICS: EVOLUTION OF THE DENSITY OPERATOR IN TIME

A XVIL: Dynamical postulate. Hatsopoulos and Gyftopoulos® postulate that

unitary evolutions of p in time obey the relation
dp 1
—=——IHp—pH A-T)
=~ He—pH] (

Though Eq. (A-7) is well known in the literature as the von Neumann
equation, here it must be postulated for the following reason. In statistical
quantum mechanics® the equation is derived as a statistical average of Schrédinger
equations, ¢ach of which describes the evolution in time of a projector p; and each

of which is multiplied by a time independent statistical probability ;. But here, p

is not a mixture of projectors and therefore cannot be derived as a statistical
average of projectors. It is noteworthy that the dynamical postulate (Eq. A-7) is
incomplete because it describes reversible adiabatic processes, but not all reversible
adiabatic processes are unitary’, and not all processes are reversible.

A nonlinear equation of motion of p that describes both all reversible processes

and all irreversible processes has been conceived by Beretta et al®™**. Tt is not
discussed here for the sake of brevity. The only thing we wish to emphasize is that
the Beretta equation is shown to satisfy all the requirements for it to be a bona fide
equation of motion of a nonstatistical unified theory of quantum mechanics and
thermodynamics® "%,
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