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1.1 Introduction

Ever since Clausius postulated that “the energy of the universe is constant” and
“the entropy of the universe strives to attain a maximum value,” practically every
scientist and engineer shares the beliefs that: (i) Thermodynamics is a statistical
theory, restricted to phenomena in macroscopic systems in thermodynamic equilib-
rium states; and (ii) entropy – the concept that distinguishes thermodynamics from
mechanics – is a statistical measure of ignorance, ultimate disorder, dispersion of
energy, erasure of information, or other causes, and not an inherent property of
matter like rest mass, energy, etc.

These beliefs stem from the conviction that the “known laws” of mechanics
(classical or conventional quantum) are the ultimate laws of physics and from the
fact that statistical theories of thermodynamics yield accurate and practical numerical
results about thermodynamic equilibrium states.

Notwithstanding the conviction and excellent numerical successes, the almost-
universal efforts to compel thermodynamics to conform to statistical and other
nonphysical explanations, and to restrict it only to thermodynamic equilibrium states
[1–3] are puzzling in the light of many accurate, reproducible, and nonstatistical
experiences and many phenomena that cannot possibly be described in terms of
thermodynamic equilibrium states.

Since the advent of thermodynamics, many academics and practitioners have
questioned the clarity, unambiguity, and logical consistency of traditional expositions
of the subject. Some of the questions raised are: (i) Why is thermodynamics restricted
to thermodynamic equilibrium states only, given that the universally accepted and
practical statements of energy conservation and entropy nondecrease are demon-
strably time dependent? (ii) Why do we restrict thermodynamics to macroscopic
systems, given that Gibbsian statistics [4, 5] and systems in states with negative tem-
peratures [6] prove beyond a shadow of a doubt that thermodynamics is valid for
any system? (iii) How can any of the proposed statistical expressions of entropy be
accepted if none conforms to the requirements that must be satisfied by the entropy
of thermodynamics [7]? and (iv) Why do so many professionals continue to believe
that thermodynamic equilibrium is a state of ultimate disorder despite the fact that
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16 Thermodynamics: Generalized Available Energy and Availability or Exergy

both experimental and theoretical evidence indicates that such a state represents
ultimate order [8, 9]?

The purposes of this chapter are as follows: (i) to present a brief summary of a
novel exposition of thermodynamics, (ii) to provide the rigorous definition of gener-
alized available energy, and (iii) to define and illustrate by specific applications the
concept of availability or exergy. The novel exposition was conceived by Gyftopoulos
and Beretta [10].

1.2 Summary of Basic Concepts

1.2.1 Systems, Properties, and States

A well-defined system is a collection of constituents determined by the following
specifications:

1. the type and the range of values of the amount of each constituent,
2. the type and the range of values of the parameters that fully characterize the

external forces exerted on the constituents by bodies other than the constituents,
such as the parameters that describe the size and geometrical shape of an airtight
container, and an applied electrostatic field,

3. the internal forces between constituents,
4. the internal constraints that characterize the interconnections between separated

parts, such as the condition that the overall volume of the two variable-volume
parts be fixed, and that define the modeling assumptions such as the condition
that some or all chemical reactions be inactive.

Everything that is not included in the system is called the environment or the
surroundings of the system.

For a system consisting of r different types of constituents, we denote their
amounts by the vector n = {n1, n2, . . . , nr }. For a system with external forces
described by s parameters, we denote the parameters by the vector β = {β1, β2, . . . ,

βs}. One parameter may be volume V.
Two systems are identical if they consist of the same types of constituents,

experience the same internal and external forces, and have the same ranges of
values of amounts of constituents and parameters and the same constraints. If any
of these identities is not valid, the two systems are different.

At any instant in time, the amount of each type of constituent and the parameters
of each external force have specific values within the corresponding ranges of the
system. By themselves, these values do not suffice to characterize completely the
condition of the system at that time. We also need the values of all the properties
at the same instant in time. Each property is an attribute that can be evaluated at
any given instant of time by means of a set of measurements and operations that
are performed on the system and result in a numerical value – the value of the
property. This value is independent of the measuring devices, other systems in the
environment, and other instants in time.

Two properties are independent if the value of one can be varied without affect-
ing the value of the other. Otherwise, the two properties are interdependent. For
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example, position and velocity of a molecule are independent properties, whereas
speed and kinetic energy of a molecule in classical mechanics are interdependent.

For a given system, the values of the amounts of all the constituents, the values
of all the parameters, and the values of a complete set of independent properties
encompass all that can be said about the system at an instant in time and about
the results of any measurements or observations that may be performed on the
system at that same instant in time. As such, the collection of all these values consti-
tutes a complete characterization of the system at that instant in time. We call this
characterization at an instant in time the state of the system.

1.2.2 Changes of State in Time

The state of a system may change in time spontaneously because of the inter-
nal dynamics of the system, or as a result of interactions with other systems, or
both.

A system that experiences only spontaneous changes of state, that is, a system
that does not affect the state of its environment, is called isolated. In general, a system
that is not isolated interacts with other systems in a number of different ways, some
of which may result in net flows of properties from one system to another.

The relation that describes the evolution of the state of a system as a function
of time is the equation of motion. Such an equation was discovered by Beretta et al.
[11, 12] but is not discussed in this chapter.

Rather than through the explicit time dependence, which requires the complete
equation of motion, here a change of state is described in terms of the end states,
that is, the initial and the final states of the system, the modes of interaction that are
active during the change of state, and conditions on the values of properties of the
end states that are consequences of the laws of thermodynamics, that is, conditions
that express, not all, but most of the general and well-established features of the
complete equation of motion. Each mode of interaction is characterized by means of
well-specified net flows of properties across the boundaries of the interacting systems.
For example, after the properties energy and entropy are defined, we will see that
some modes of interaction involve the flow of energy across the boundaries of the
interacting systems without any flow of entropy, whereas other modes of interaction
involve the flow of both energy and entropy. Among the conditions on the values of
properties of the end states that are consequences of the laws of thermodynamics –
conditions that express well-established features of time-dependent behavior of
systems – we will see that the energy change of a system must equal the energy
transferred into the system, and that its entropy change must be greater than or at
least equal to the entropy transferred into the system.

The end states and the modes of interactions associated with a change of state
of a system specify a process. The modes of interactions may be used to classify
processes into different types. For example, a process that involves no interactions
and, therefore, no flows across the boundary of the system is called a spontaneous
process. Again, a process that involves interactions that result in no external effects
other than a change in elevation of a weight (or an equivalent mechanical effect)
is called a weight process.
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Another important classification of processes is in terms of the possibility of
annulling all their effects. A process may be either reversible or irreversible. A
process is reversible if it can be performed in at least one way such that both the
system and its environment can be restored to their respective initial states. A process
is irreversible if it is impossible to perform it in such a way that both the system and
its environment can be restored to their respective initial states.

We will see that any irreversible process involves the irrecoverable degradation
of a valuable resource, whereas no reversible process involves such a degradation.
For this reason, putting aside all economic, social, and environmental considerations,
we sometimes say that a reversible process is the “best possible.” For example, for
a given change of state of a system, an irreversible weight process results in either
a smaller raise or a larger drop in the weight than do the corresponding results of a
reversible process.

In general, a system A that undergoes a process from state A1 at time t1 to state
A2 at time t2 is well defined at these two times but is not necessarily well defined
during the lapse of time between t1 and t2. The reason is that the interactions that
induce the change of state may involve such temporary alterations of internal and
external forces that no system A can be defined during the period t1 to t2. Said
more formally, in the course of interactions, the constituents of a system may not
be separable from the environment or, if they are, the states of the system may be
correlated with the states of other systems. Nevertheless, at the end of the process,
the system becomes again well defined, and its state is again uncorrelated.1

1.2.3 Energy and Energy Balance

Energy is a concept that underlies our understanding of all physical phenomena, yet
its meaning is subtle and difficult to grasp. It emerges from a fundamental principle
known as the first law of thermodynamics.

The first law asserts that any two states of a system may always be interconnected
by means of a weight process2 and, for a given weight subject to a constant gravitational
acceleration, that the change in elevation during such a process is fixed uniquely by
the two states of the system.

The main consequence of this law is that every system A in any state A1 has a
property called energy, denoted by the symbol E1. The energy E1 of any state A1

can be evaluated by means of an auxiliary weight process that interconnects state
A1 and a reference state Ao to which is assigned a fixed reference value Eo, and the
expression

E1 − Eo = −Mg (z1 − zo) , (1.1)

1 We say that a system is well defined and its constituents are separable from the environment if the
forces exerted on the constituents by a body not included in the system do not depend explicitly
on the coordinates of constituents of that body. We say that a state is uncorrelated from the state
of the environment if none of the values of the properties of the system depends on the values of
properties of systems in the environment. All statements and conclusions in this chapter refer to
well-defined systems in uncorrelated states.

2 Other processes equivalent to a weight process are discussed in Chap. 3 of [10].
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where M is the mass of the weight, g is the gravitational constant, and z is the
elevation of the weight. The energy E2 of another state A2 can be evaluated by a
similar procedure so that

E2 − Eo = −Mg (z2 − zo) . (1.2)

Moreover, subtracting Eq. (1.1) from Eq. (1.2), we find

E2 − E1 = −Mg (z2 − z1) , (1.3)

where we keep the negative sign in front of Mg (z2 − z1) in order to emphasize that,
the larger value of z2, the smaller value of E2, and vice versa.

Energy is an additive property, namely, the energy of a system consisting of
two or more subsystems equals the sum of the energies of the subsystems, and this
holds for all combinations of states of the subsystems. Moreover, energy has the
same value at the final time as at the initial time whenever the system experiences a
zero-net-effect weight process, or remains invariant in time whenever the process is
spontaneous. In either of these two processes, z2 = z1 and E (t2) = E (t1) for time t2
greater than t1, that is, energy is conserved.

Because of additivity, and because any process of a system can always be thought
of as part of a zero-net-effect weight process of a composite system consisting of all
the interacting systems, the conclusion that, as a function of time, energy is invariant
is known as the principle of energy conservation.

Energy can be transferred between systems by means of interactions. Denoting
by EA← the net amount of energy transferred from the environment to system A
as a result of all the interactions involved in a process that changes the state of A
from A1 to A2, we derive an extremely important analytical tool, the energy-balance
equation or, simply, the energy balance. This equation is based on the additivity of
energy and on the principle of energy conservation. It requires that, as a result of a
process, the change in the energy of the system from E1 to E2 must be equal to the
net amount of energy EA← transferred into the system, namely,

E2 − E1 = EA←. (1.4)

For all applications of thermodynamics, relativistic affects are negligible, and the
mass of a system satisfies a mass balance of the form

m2 − m1 = mA←, (1.5)

where m1 and m2 are the masses of states A1 and A2, respectively, and mA← is the
mass flow into system A from other systems in the environment.

1.2.4 Types of States

Because the number of independent properties of a system is infinite even for a
system consisting of a single particle with a single translational degree of freedom –
a single variable that fixes the configuration of the system in space – and because
most properties can vary over a range of values, the number of possible states of a
system is infinite.

To facilitate the discussion of these states, we classify them into different cat-
egories according to their evolutions in time. This classification brings forth many
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important aspects of physics, and provides a readily understandable motivation for
the introduction of the second law of thermodynamics. We consider four types of
states: unsteady, steady, nonequilibrium, and equilibrium. Moreover, we further
classify equilibrium states into three types: unstable, metastable, and stable.

An unsteady state is one that changes as a function of time because of interactions
of the system with other systems. A steady state is one that does not change as
a function of time, despite interactions of the system with other systems in the
environment. A nonequilibrium state is one that changes spontaneously as a function
of time, that is, a state that evolves in time without any effects on or interactions with
any other systems. An equilibrium state is one that does not change as a function
of time while the system is isolated. An unstable equilibrium state is an equilibrium
state that may be caused to proceed spontaneously to a sequence of entirely different
states by means of a minute and short-lived interaction that has only an infinitesimal
temporary effect on the state of the environment. A metastable equilibrium state is
an equilibrium state that may be changed to an entirely different but compatible
state without leaving net effects in the environment of the system, but this can
be done only by means of interactions that have a finite temporary effect on the
state of the environment. A stable equilibrium state is an equilibrium state that can
be altered to a different but compatible state only by interactions that leave net
effects in the environment of the system.

Starting either from a nonequilibrium state or from an equilibrium state that
is not stable, a system can be made to raise a weight without leaving any other
net changes in the state of the environment. In contrast, experience shows that from
some other types of states – they turn out to be stable equilibrium states – such a raise
of a weight is impossible. This impossibility is one of the most striking consequences
of the first and the second laws of thermodynamics.

1.2.5 Stable Equilibrium States

The existence of stable equilibrium states is not self-evident. It is the essence of
the second law first proposed by Hatsopoulos and Keenan [13]. In the absence
of internal mechanisms, such as chemical reactions or internal interconnections,
capable of causing spontaneous changes in the values of the amounts of constituents
and the parameters, the second law asserts that, among all the states of a system with
given values of the energy, the amounts of constituents, and the parameters, there exists
one and only one stable equilibrium state. A more general statement of the second
law is this: Among all the states of a system that have a given value E of the energy and
are compatible with a given set of values n of the amounts of constituents and β of the
parameters, there exists one and only one stable equilibrium state. Moreover, starting
from any state of a system, it is always possible to reach a stable equilibrium state with
arbitrarily specified values of amounts of constituents and parameters by means of a
reversible weight process.

The existence of stable equilibrium states for various conditions of matter has
many theoretical and practical consequences. One consequence is that, starting from
any stable equilibrium state of any system, no energy can be transferred to a weight
in a weight process in which the values of amounts of constituents and parameters of
the system experience no net changes. This consequence is often referred to as the
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impossibility of a perpetual-motion machine of the second kind. In some expositions
of thermodynamics, it is taken as the statement of the second law. In this chapter, it
is only one aspect of the first and the second laws.

Other consequences are discussed immediately below.

1.2.6 Reservoir and Generalized Available Energy

We define a reservoir as an idealized kind of system with a behavior that approaches
the following three limiting conditions:

1. It passes through stable equilibrium states only.
2. In the course of finite changes of state, it remains in mutual stable equilibrium

with a duplicate of itself that experiences no such changes.
3. At constant values of amounts of constituents and parameters of each of two

reservoirs initially in mutual stable equilibrium, energy can be transferred
reversibly from one reservoir to the other with no net effects on any other
system.

Two systems are in mutual stable equilibrium if their composite system is in a
stable equilibrium state.

Given a system A in state A1 and a reservoir R with fixed values of amounts of
constituents and parameters, we consider the composite of A and R and evaluate
the largest amount of energy that can be transferred to a weight in a weight process
for the composite of A and R. This amount is called available energy and is denoted
by �R

1 . After �R
1 is transferred out of the composite, A and R are in mutual stable

equilibrium, that is, the composite of A and R is in a stable equilibrium state.
The first scientist who raised the question about the largest amount of energy

that can be transferred to a weight in a weight process for the composite of a system
A and a reservoir R was Carnot [14]. He restricted his investigation, however, to A,
which was also a reservoir. His results constitute the seminal ideas – the conception
event – of the science of thermodynamics. The disclosure of the available energy �R

1
as a property is a generalization of the results of Carnot in that system A need not
be a reservoir and state A1 need not be a stable equilibrium state. Available energy
can be assigned to any system in any state.

Another property, the generalized available energy, may also be defined as a
property of a system A in any state A1. Its definition is identical to that of available
energy except that the final state A2 of system A corresponds to arbitrarily assigned
values of the amounts of constituents and parameters that differ in general from
those of state A1. Said differently, generalized available energy involves exchanges
of constituents and changes in parameters in addition to other interactions. The
generalized available energy of state A1 is defined with respect to a reservoir R and
the arbitrarily assigned values of the amounts of constituents and parameters. For
simplicity, we denote it by the same symbol, �R

1 , as that of the available energy. We
distinguish it from the available energy of state A1 with respect to reservoir R by
name and context.

The difference between the generalized available energies, �R
1 − �R

2 , of two
states A1 and A2 is equal to the energy that can be exchanged with a weight in a
reversible weight process of the composite AR of system A and reservoir R as system
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A goes from state A1 to state A2. On denoting the energy exchanged with the weight
by (WAR→

12 )rev, we have

(WAR→
12 )rev = �R

1 − �R
2 . (1.6)

The value of (WAR→
12 )rev is positive if energy is transferred from the composite AR to

the weight, and then it is the largest energy transfer to the weight that can be achieved
as system A goes from state A1 to state A2. It is negative if energy is transferred
from the weight to the composite AR, and then it is the least energy transfer that is
required for achieving the change of A from state A1 to state A2.

Two important relations exist between the energies E1 and E2 and the general-
ized available energies �R

1 and �R
2 of any two given states A1 and A2 of a system A.

By virtue of the first law, the two states can always be interconnected by means of a
weight process for system A alone. But the first law determines neither the direction
of the weight process nor its reversibility. By contrast, a comparison between the
difference in energies and the difference in generalized available energies of the
two states determines both the direction and the reversibility of the process. Speci-
fically, if

�R
1 − �R

2 = E1 − E2, (1.7)

then a weight process for A alone is possible both from A1 to A2 and from A2 to A1

and is reversible. However, if

�R
1 − �R

2 > E1 − E2, (1.8)

then a weight process for A alone is possible only from A1 to A2 and is irreversible.
For spontaneous or zero-net-effect weight processes, energy conservation im-

plies that E2 = E1 or, emphasizing the time dependence, E (t2) = E (t1) for t2 > t1.
If applied to these processes, Eq. (1.7) and relation (1.8) reveal the following results.
If the process is reversible, then �R

2 = �R
1 or, emphasizing the time dependence,

�R (t2) = �R (t1) for t2 > t1, namely, the generalized available energy is conserved.
If the spontaneous or zero-net-effect weight process is irreversible, then �R

2 < �R
1

or �R (t2) < �R (t1) for t2 > t1, namely, the generalized available energy is not con-
served. Said differently, in the course of an irreversible, zero-net-effect weight pro-
cess a system loses some of its potential ability to transfer energy to a weight. Whereas
energy is conserved, the amount of energy that can be transferred to a weight in a
weight process – the potential of a system to perform useful tasks – is not conserved.
This potential cannot be created but may be dissipated to a lesser or larger degree,
depending on whether the process is a little or a lot irreversible. A quantitative mea-
sure of irreversibility can be expressed in terms of the property entropy discussed in
the next section.

A noteworthy feature of E and �R is that both are defined for any state of
any system, regardless of whether the state is unsteady, steady, nonequilibrium,
equilibrium, metastable equilibrium, or stable equilibrium, and regardless of whether
the system has many degrees of freedom or one degree of freedom, or whether its
size is large or small.

A disadvantage of �R is that it depends both on the state of the system and
on the reservoir R. As discussed in the next section, we gain independence of the
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reservoir, without losing additivity, by considering the difference between energy
and generalized available energy.

1.2.7 Entropy and Entropy Balance

An important consequence of the two laws of thermodynamics is that every system
A in any state A1, with energy E1 and generalized available energy �R

1 with respect
to an auxiliary reservoir R, has a property called entropy, denoted by the symbol S1.
Entropy is a property in the same sense that energy is a property or momentum is a
property. It can be evaluated by means of the auxiliary reservoir R, a reference state
Ao, with energy Eo and generalized available energy �R

o , to which is assigned a fixed
reference value So and the expression

S1 = So + 1
cR

[
(E1 − Eo) − (�R

1 − �R
o

)]
, (1.9)

where cR is a well-defined positive constant. For the given auxiliary reservoir R, cR

is selected in such a way that the values of entropy found by means of Eq. (1.9)
are independent of the reservoir.3 In other words, despite the dependence of the
value of the difference of generalized available energies, �R

1 − �R
o , on the selection

of the reservoir R, we can show that there is a constant property cR of reservoir R
that makes the right-hand side of Eq. (1.9) independent of R. Thus S is a property
of system A only, in the same sense as energy E is a property of system A only. In
due course, the concept of temperature is defined as a property of stable equilibrium
states. Then we show that the temperature of a reservoir is constant and that cR is
equal to the constant temperature of the reservoir R.

The entropy S2 of a state A2 is given by an expression similar to that of A1,
namely,

S2 = So + 1
cR

[
(E2 − Eo) − (�R

2 − �R
o

)]
. (1.10)

Moreover, subtracting Eq. (1.9) from (1.10), we find

S2 = S1 + 1
cR

[
(E2 − E1) − (�R

2 − �R
1

)]
, (1.11)

or, equivalently,

�R
2 − �R

1 = E2 − E1 − cR (S2 − S1) . (1.12)

Like energy, entropy is an additive property, namely, the entropy of a system consist-
ing of two or more subsystems equals the sum of the entropies of the subsystems and
this holds for all combinations of states of the subsystems. Whereas energy remains
constant in time whenever the system experiences either a spontaneous process or a
zero-net-effect weight process, Eqs. (1.7) and (1.11) show that the entropy remains
constant in time if the process is reversible. In the course of an irreversible either
spontaneous or zero-net-effect weight process, relation (1.8) and Eq. (1.11) show
that the entropy increases in time, and part of the potential ability of the system

3 The precise definition of cR and the proof that S1 is independent of the reservoir are not summarized
here for brevity. They are given in [10].
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to transfer energy to a weight is destroyed. Because of additivity and because any
process of a system can always be thought of as part of a spontaneous process of
a composite system consisting of all the interacting systems, the conclusion that, as
time proceeds, entropy can either be created, if the process is irreversible, or remain
constant, if the process is reversible, but can never be destroyed is of great generality
and practical importance. It is known as the principle of entropy nondecrease. The
entropy created as time proceeds during an irreversible process is called entropy
generated by irreversibility or entropy production due to irreversibility. It is positive.

Like energy, entropy can be transferred between systems by means of interac-
tions. Denoting by SA← the net amount of entropy transferred from systems in the
environment to a system A as a result of all the interactions involved in a process in
which the state of A changes from A1 to A2, we derive another extremely important
analytical tool, the entropy-balance equation. This equation is based on the additivity
of entropy and on the principle of entropy nondecrease. It requires that the change
in the entropy of the system from S1 to S2 be equal to the net amount of entropy
SA← transferred into the system, plus the positive amount of entropy Sirr generated
by irreversibility inside A in the course of the process, that is,

S2 − S1 = SA← + Sirr. (1.13)

The value of SA← is positive if entropy is transferred into A and negative if entropy
is transferred out of A.

It is worth repeating that S is defined for any state of any system because energy
E and generalized available energy �R are defined for any state of any system. Thus,
like energy, entropy is defined for all states, that is, unsteady, steady, nonequilibrium,
equilibrium, metastable equilibrium, and stable equilibrium, and for all systems, that
is, systems with many degrees of freedom and systems with few degrees of freedom,
including a single particle with a single translational degree of freedom or a single
spin because both energy and generalized available energy are defined for all these
systems, and for all these states.

The dimensions of entropy are determined by the dimensions of both energy
and the property cR of the auxiliary reservoir. We can show that the dimension cR

is independent of the dimensions of mass, length, and time, but the same as the
dimension of temperature (defined later). The unit of cR chosen in the International
System of units is the Kelvin, denoted by K. Another unit is the Rankine, denoted
by R, where 1 R = (5/9) K. Entropy values are expressed in many different units
such as joules per Kelvin (J/K), kilocalorie per Kelvin (kcal/K), and British thermal
unit per Rankine (Btu/R). In particular, it turns out that 1 Btu/lb R = 1 kcal/kg K.

1.2.8 The Fundamental Relation

In the absence of internal mechanisms capable of altering the values of the amounts
of constituents and the parameters, that is, in the absence of chemical reactions,
nuclear reactions, and other types of internal interconnections, a system admits an
indefinite number of states that have given values of the energy E, the amounts of
constituents n1, n2, . . . , nr , and the parameters β1, β2, . . . , βs . Most of these states
are nonequilibrium, metastable equilibrium, and equilibrium, and, according to the
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second law, only one is a stable equilibrium state. It follows that the value of any
property P of the system in a stable equilibrium state is uniquely determined by the
values of E, n1, n2, . . . , nr and β1, β2, . . . , βs , that is, can be written as a function of
the form

P = P (E, n1, n2, . . . , nr , β1, β2, . . . , βs) . (1.14)

This result, known as the stable-equilibrium-state principle or simply the state princi-
ple, expresses a fundamental physical feature of the stable equilibrium states of the
system and implies the existence of interrelations among the properties at each of
these states.

A system in general has a very large number of independent properties. When
we focus on the special family of states that are stable equilibrium, however, the state
principle asserts that the value of each of these properties is uniquely determined by
the values of E, n,β. In contrast, for states that are not stable equilibrium, the values
of E, n,β are not sufficient to specify the values of all the independent properties.

When written for the entropy S of stable equilibrium states, Eq. (1.14)
becomes

S = S (E, n1, n2, . . . , nr , β1, β2, . . . , βs) (1.15)

and is known as the fundamental stable-equilibrium-state relation for entropy or sim-
ply the fundamental relation. We can show that the function S (E, n,β) admits partial
derivatives of all orders and therefore that any difference between the entropies of
two stable equilibrium states may be expressed in the form of a Taylor series in
terms of the partial derivatives of S (E, n,β) at one stable equilibrium state, and
differences in the values of the energy, amounts of constituents, and parameters of
the two stable equilibrium states.

The function S (E, n,β) is concave in each of the variables E, n1, n2, . . . , nr . It
is concave in each of the parameters β1, β2, . . . , βs , which are additive, like volume,
and it is also concave collectively with respect to all the variables E, n1, n2, . . . , nr ,
and the parameters β1, β2, . . . , βs , which are additive. Concavity implies that
(∂2S/∂ E2)n,β ≤ 0, (∂2S/∂n2

i )E,n,β ≤ 0 for each i, (∂2S/∂β2
j )E,n,β ≤ 0 for each

additive β j , and some other necessary conditions on all the second-order derivatives
of the fundamental relation.

Using the second law, we assert that the entropy of each unique stable equi-
librium state is larger than that of any other state with the same values of
E, n1, n2, . . . , nr , and β1, β2, . . . , βs . This assertion is known as the highest-entropy
principle. This principle is extremely useful in establishing conditions that must be
satisfied by properties of systems in stable equilibrium states.

Equation (1.15) may be solved for E as a function of S, n1, n2, . . . , nr and
β1, β2, . . . , βs so that

E = E (S, n1, n2, . . . , nr, β1, β2, . . . , βs) . (1.16)

The function E (S, n,β) admits partial derivatives of all orders, and therefore any
difference between the energies of two stable equilibrium states may be expressed in
the form of a Taylor series in terms of the partial derivatives of E (S, n,β) at one of
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the stable equilibrium states, and differences in the values of the entropy, amounts
of constituents, and parameters of the two stable equilibrium states.

Among all the partial derivatives, each first-order partial derivative of either the
function S (E, n,β) or the function E (S, n,β) represents an important and practi-
cal property of the family of stable equilibrium states of a system. It is important
because each such property enters a condition for mutual stable equilibrium with
other systems, and practical because it can be relatively easily related to simple mea-
surements. It should be emphasized that each such property is defined only for the
stable equilibrium states of the system.

1.2.9 Temperature

The partial derivative of E (S, n,β) with respect to entropy, or the inverse of the
partial derivative of S (E, n,β) with respect to energy, that is,

T =
(

∂ E
∂S

)
n,β

= 1
(∂S/∂ E)n,β

, (1.17)

is defined as the absolute temperature or, simply, the temperature. The first of
Eqs. (1.17) defines T as a function of E, n,β and the second as a function of S, n,β.
Two units of temperature are the Kelvin and the Rankine, denoted by K and R,
respectively.

If two systems A and B in states A0 and B0 are in mutual stable equilibrium, then
the temperature T A

0 of system A must be equal to the temperature TB
0 of system B.

Said differently, equality of temperatures of the two systems is a necessary condition
for the two systems to be in mutual stable equilibrium.

By virtue of the definition of a reservoir, it follows that all its states have the
same temperature TR, and this temperature is equal to the constant cR.

1.2.10 Total Potentials

The total potential of the ith constituent, μi, is defined by either of the two relations

μi =
(

∂ E
∂ni

)
S,n,β

= −T
(

∂S
∂ni

)
E,n,β

. (1.18)

The dimensions of total potential are energy per unit of amount. The first of Eqs.
(1.18) defines μi as a function of S, n,β and the second as a function of E, n,β. If
volume is the only parameter, each total potential is called a chemical potential.

If two systems A and B in states A0 and B0 are in mutual stable equilibrium,
both contain the ith type of constituent for i = 1, 2, . . . , r , and the amount of that
constituent may both increase and decrease in each system, then the total potential
(μi)

A
0 of the ith constituent of A must be equal to the total potential (μi)

B
0 of the ith

constituent of B. Said differently, in addition to temperature equality, equality of
total potentials for every constituent is a necessary condition for two systems to be
in mutual stable equilibrium.
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1.2.11 Pressure

The generalized force conjugated to the jth parameter, f j , is defined by either of the
two relations

fj =
(

∂ E
∂βj

)
S,n,β

= −T
(

∂S
∂β j

)
E,n,β

. (1.19)

If volume V is a parameter, the negative of the generalized force conjugated to V is
called pressure, denoted by p, and given by either of the two relations

p = −
(

∂ E
∂V

)
S,n,β

= T
(

∂S
∂V

)
E,n,β

, (1.20)

where here β = {V, β2, β3, . . . , βs}. The first of Eqs. (1.20) defines p as a function
of S, n,β and the second as a function of E, n,β. The dimensions of p are energy
per unit volume and, as is any other generalized conjugated force, it is a property of
stable equilibrium states only. Pressure can also be thought of as force per unit area.
However, force per unit area is not pressure if the state is not a stable equilibrium
state [10].

1.2.11.1 First-Order Taylor Series Expansions
In terms of T0, p0, (μi)0, and ( fj)0 of an arbitrary stable equilibrium state A0

of a system A, small differences in energy, dE = E1 − E0, entropy, dS = S1 −
S0, volume dV = V1 − V0, other parameters, dβ2 = (β2)1 − (β2)0, dβ3 = (β3)1 −
(β3)0, . . . , dβs = (βs)1 − (βs)0, and amounts of constituents, dn1 = (n1)1 − (n1)0,

dn2 = (n2)1 − (n2)0, . . . , dnr = (nr)1 − (nr)0 between two neighboring stable equi-
librium states are related by a first-order Taylor series expansion or differential
energy relation

dE = T0dS − p0dV +
r∑

i=1

(μi )0dni +
s∑

j=2

( fj)0dβ j . (1.21)

On solving Eq. (1.21) for dS, and writing dS as a first-order Taylor series expan-
sion in terms of dE, dV, dni , and dj , we find

dS = 1
T0

dE + p0

T0
dV −

r∑
i=1

(μi )0

T0
dni −

s∑
j=2

( f j )0

T0
dβ j (1.22a)

=
[(

∂S
∂ E

)
V,n,β

]
0

dE +
[(

∂S
∂V

)
E,n,β

]
0

dV +
r∑

i=1

[(
∂S
∂ni

)
E,V,n,β

]
0

dni

+
s∑

j=2

[(
∂S
∂β j

)
E,V,n,β

]
0

dβ j . (1.22b)
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On comparing the coefficients of dE, dV, dni , and dβ j in (1.22a) and (1.22b), we find(
∂S
∂ E

)
V,n,β

= 1
T

, (1.23)(
∂S
∂V

)
E,n,β

= p
T

, (1.24)(
∂S
∂ni

)
E,V,n,β

= −μi

T
for i = 1, 2, . . . , r, (1.25)(

∂S
∂β j

)
E,V,n,β

= − f j

T
for j = 2, 3, . . . , s, (1.26)

where, in writing these equalities, we simplify them by dropping the subscript 0,
which specifies the particular stable equilibrium state about which we make the
Taylor series expansion and at which we evaluate the partial derivatives. Each of
Eqs. (1.23), (1.24), (1.25), and (1.26) proves the second of Eqs. (1.17), (1.20), (1.18),
and (1.19), respectively.

1.2.12 Energy Relation of a Reservoir

We recall that a reservoir is an idealized kind of system that passes through stable
equilibrium states only and remains in mutual stable equilibrium with a duplicate
of itself that experiences no changes of state. If reservoir R has only volume as
a parameter, the specifications just cited imply that all states of R have the same
value of the temperature TR, the same value of the pressure pR, and the same
values of the chemical potentials of the r constituents, μ1R, μ2R, . . . , μr R, so that
the necessary conditions of temperature equality, pressure equality, and chemical
potential equality for all constituents are satisfied. It follows that, for a reservoir,
Eq. (1.21) may be stated in terms of differences – large or small – between properties
of any two states R1 and R2 so that

ER
2 − ER

1 = TR
(
SR

2 − SR
1

)− pR
(
VR

2 − VR
1

)+
r∑

i=1

μi R

[
(ni )

R
2 − (ni )

R
1

]
. (1.27)

1.2.13 Work and Heat Interactions

Interactions result in the exchange of properties across the boundaries of the inter-
acting systems. Various combinations of exchanges are used to classify interactions
into different categories. An interaction between two systems that results in a trans-
fer of energy only between two systems is classified as a work interaction. The amount
of energy exchanged as a result of such an interaction is called work. All interactions
that result in the exchange of energy and at least one more property, for example
entropy, between the interacting systems are called nonwork interactions. A process
of a system experiencing only work interactions is called an adiabatic process. Any
process that involves nonwork interactions is called a nonadiabatic process.

In the course of an adiabatic process, system A changes from state A1 to state
A2, the energy exchange EA←

12 is work, that is, EA←
12 = −WA→

12 , where WA→
12 denotes

the work done by system A on systems in its surroundings with which it interacts.
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In the course of an adiabatic process, the entropy exchange SA←
12 = 0. Therefore the

energy and entropy balances are

E2 − E1 = −WA→
12 , (1.28)

S2 − S1 = Sirr, (1.29)

where Sirr denotes the entropy generated by irreversibility inside A during the pro-
cess.

A special example of nonwork interaction entirely distinguishable from work is
one between two systems initially differing infinitesimally in temperature. It results
in no other effects except a transfer of energy and a transfer of entropy between the
two systems such that the ratio of the amount of energy transferred and the amount
of entropy transferred equals the almost common temperature of the interacting
systems. It is called a heat interaction. The amount of energy transferred as a result
of such an interaction is called heat.

Often, in applications, system A consists of many subsystems, one of which, A′,
is in a stable equilibrium state at a temperature TQ. Similarly, system B consists of
many subsystems, one of which, B′, is in a stable equilibrium state at temperature
almost equal to TQ. If the two subsystems A′ and B′ experience a heat interaction,
we say that systems A and B experience a heat interaction at temperature TQ, even
though A and B are not necessarily in stable equilibrium states.

In the course of a process that involves only a heat interaction at temperature
TQ, system A changes from state A1 to state A2, the energy exchange EA←

12 is heat
and is denoted by QA←

12 , that is, EA←
12 = QA←

12 , and the entropy exchange is QA←
12 /TQ.

So the two balances are

E2 − E1 = QA←
12 , (1.30)

S2 − S1 = QA←
12

TQ
+ Sirr, (1.31)

where Sirr is the entropy generated by irreversibility inside A during the process. It
is noteworthy that QA←

12 is not a function of TQ.
If a process of a system A involves both work and heat but no other interactions,

the energy exchange is EA←
12 = QA←

12 − WA→
12 , the entropy exchange SA←

12 = QA←
12 /TQ,

and

E2 − E1 = QA←
12 − WA→

12 (1.32)

S2 − S1 = QA←
12

TQ
+ Sirr (1.33)

where Sirr is the entropy generated by irreversibility inside A during the process. On
dropping some self-evident subscripts and superscripts, we may rewrite Eqs. (1.32)
and (1.33) in the form

E2 − E1 = Q← − W→, (1.34)

S2 − S1 = Q←

TQ
+ Sirr, (1.35)
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or, for differential changes,

dE = δQ← − δW→, (1.36)

dS = δQ←

TQ
+ δSirr. (1.37)

It is noteworthy that the prefix d denotes infinitesimal differences between the values
of a property at two different states of the system, whereas the prefix δ denotes
infinitesimal amounts of quantities that are not properties, such as work, heat, and
entropy generation by irreversibility.

For processes in which the end states of the system are stable equilibrium states,
energy and entropy changes, and therefore work, heat, and entropy generation by
irreversibility may be related to changes of other properties and variables, such as
temperature, pressure, and volume.

Work and heat interactions are most frequently encountered in engineering
applications. Other interactions, involving transfers of energy, entropy, and amounts
of constituents, are discussed later.

1.3 Availability Functions

1.3.1 General Remarks

To accomplish almost every practical task, we exploit resources in our natural envi-
ronment. Some resources are used as energy sources, others as raw materials. Energy
sources are substances not in permanent mutual stable equilibrium with the envi-
ronment that can be used to power the energy-conversion systems required by
various tasks. Typical sources are coal, oil, natural gas, uranium, and solar energy.
Typical tasks are locomotion; motive power and process heat for manufacturing;
space conditioning, such as heating, cooling, and ventilation; and electric power
for communication devices, computers, industrial machines, home appliances, and
lighting. Raw materials are substances used as feedstocks in manufacturing tasks –
in materials-processing installations that produce different products. Examples of
manufacturing tasks are the making of steel out of iron ore and the making of alu-
minum out of bauxite. Most raw materials are in mutual stable equilibrium with the
environment. They are reduced to desired products at the expense of energy sources.
Other raw materials are in only partial mutual stable equilibrium with the environ-
ment and remain so if prevented from chemical (or nuclear) interactions with other
environmental materials. Also, these raw materials are reduced to desired products
at the expense of energy sources, such as in a refinery where crude oil is processed
to yield petroleum products that are subsequently used as energy sources, or in an
enrichment plant where natural uranium is processed to yield fissile uranium that is
subsequently used as an energy source.

Each task is accomplished by means of an arrangement of devices, materials-
processing systems, and energy-conversion systems interacting with each other, with
resources, and with the natural environment. The selection, evaluation, and adop-
tion of a particular arrangement involves the resolution and reconciliation of many
complex and conflicting scientific, technical, economical, environmental, social, and
safety questions. A complete discussion of these issues is of decisive importance but
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beyond the scope of this chapter, except for the following questions that are related
to thermodynamics:

1. What are the actual inlet, outlet, and end states of both the task and the energy
sources used in a particular arrangement?

2. What are the optimum interactions required by the specified inlet, outlet, and
end states of the task?

3. What are the optimum interactions that could be supplied by the energy sources
employed if these sources were used in the best way physically possible?

4. If the answers to questions 2 and 3 differ, what aspects of the arrangement are
the causes of the difference?

5. What can be done to change the difference between the answers to questions 2
and 3?

6. What is a universal measure of such a difference that characterizes how effec-
tively the task is accomplished by a given arrangement?

It is clear that the concept of optimum that we use here is delimited only by
the laws of physics, not by restrictions imposed either by economic, social, and
environmental considerations or by current technology. As such, it may well be
secondary to all the other concerns. Nevertheless, it does provide a limit that cannot
be exceeded under any circumstances.

1.3.2 The Environment as a Reservoir

It is shown [10] that, for given inlet, outlet, and end states of a system, a process is
optimum if it is reversible. Accordingly, if the inlet, outlet, and end states are not
matched so as to yield zero net differences in entropy, the entropy balance must be
achieved by exchange of entropy with another system; otherwise the process cannot
be carried out reversibly. The only system that is readily available and can exchange
large amounts of entropy at no cost is the environment. Similarly, the environment is
a readily available, no-cost4 source of certain substances, such as the air we breathe,
the water we drink, and the air intake of our automobile engines. It is also an easy-
access sink of substances, such as from automobile engines and energy-conversion
systems and many wastes from residential, commercial, and industrial activities.

For analyses of optimum processes, we model all substances in our natural
environment, except energy sources, as a system behaving as a reservoir. We call it
the environmental reservoir and denote it by R*. Depending on the application, to
focus our attention on the phenomena that are most prevalent, we find it convenient
to impose different restrictions on the values of the amounts of constituents and the
volume of the environmental reservoir.

For example, in applications in which the system and the environment exchange
entropy and energy but neither amounts of constituents nor volume, we model the
environment as a reservoir R* with fixed values of amounts of constituents and

4 The recent decades of heavy exploitation of our natural environment show that an unregulated use
of the environment may cause a variety of serious alterations that result in enormous costs to our
society and impacts on the quality of our lives. Thus the cost-free use of the environment should be
allowed only for purposes that are unavoidable.
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volume and denote its constant temperature by TR∗ . Under these restrictions, the
relation between entropy and energy differences [Eq. (1.27) for E = U] becomes

SR∗
2 − SR∗

1 = 1
TR∗

(
U R∗

2 − U R∗
1

)
, (1.38)

where R∗
1 and R∗

2 are any two stable equilibrium states of R*.
Again, in applications in which the system and the environment exchange

entropy, energy, and volume but no amounts of constituents, we model the envi-
ronment as a reservoir R* with variable volume and fixed values of the amounts of
constituents, and we denote its constant temperature by TR∗ and its constant pressure
by pR∗ . Under these restrictions, the relation among differences in values of energy,
entropy, and the volume of any two stable equilibrium states R∗

1 and R∗
2 is

SR∗
2 − SR∗

1 = 1
TR∗

(
U R∗

2 − U R∗
1

)+ pR∗

TR∗

(
VR∗

2 − VR∗
1

)
. (1.39)

Finally, in applications in which the system and the environment exchange entropy,
energy, volume, and amounts of constituents, we model the environment as a reser-
voir R* with variable volume and variable amounts of constituents, and we denote its
constant temperature by TR∗ , its constant pressure by pR∗ , and the constant chem-
ical potentials by μ1R∗ , μ2R∗ , . . . , μ, μrR∗ . Here the relation among differences in
values of energy, entropy, volume and amounts of constituents of any two stable
equilibrium states R∗

1 and R∗
2 becomes

SR∗
2 − SR∗

1 = 1
TR∗

[
U R∗

2 − U R∗
1

]+ pR∗

TR∗

[
VR∗

2 − VR∗
1

]−
r∑

i=1

μi R∗

TR∗

[
(ni )

R∗
2 − (ni )

R∗
1

]
.

(1.40)

Any state of the environmental reservoir is sometimes called a passive or dead state
because, starting from such a state and using no energy sources, we can accomplish
no useful task. Indeed, we cannot build a perpetual-motion machine of any kind
using the environmental reservoir as a system.

In addition, the state of any system A in mutual stable equilibrium with R* is
sometimes called a passive or dead state and is denoted by A0∗ because, once in such
a state, system A is useless as well. In particular, if the environmental reservoir R* is
modeled as having variable volume and variable amounts of constituents, the dead
state A0∗ of system A has the same values of temperature, pressure, and chemical
potentials as the respective values of R*, that is, T0∗ = TR∗ , p0∗ = pR∗ , and μi0∗ = μi R∗

for i = 1, 2, . . . , r . Again, if R* is modeled as having fixed values of the volume and
the amounts of constituents, the dead state A0∗ of A has temperature T0∗ = TR∗ , but
values of pressure and chemical potentials not necessarily equal to the corresponding
values of R*.

Given a composite of system A and the environmental reservoir R*, spontaneous
changes of state can occur only until A reaches mutual stable equilibrium with R*,
that is, only until A is in state A0∗ . After state A0∗ is reached, no further change in
the state of the composite of A and R* is possible without expenditure of an energy
source because A0∗ has null available energy with respect to R*, and no reservoir
other than the environmental is readily available.
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In principle, it is always possible to create a reservoir at conditions of temper-
ature, pressure, and chemical potentials different from those of the natural envi-
ronment. But the creation of such a reservoir requires the expenditure of energy
sources, and any benefit that could result would be at best equal to, but usually less
than, the expenditure.

1.3.3 Availability or Exergy

In previous discussions, we encountered some answers to questions related to opti-
mum interactions. For example, it was shown that, in changing the state of system A
from state A1 to state A2 while the system is in combination with a reservoir R that
has fixed amounts of constituents and parameters and the composite AR experiences
a weight process, the optimum work done on the weight is

(WAR→
12 )optimum = �R

1 − �R
2 , (1.41)

where �R
1 and �R

2 are the generalized available energies of the two states of A with
respect to R and to some reference values n and β of the amounts of constituents
and the parameters of A. Hence, if �R

1 > �R
2 , then (WAR→

12 )optimum is the largest work
that the composite of A and R could do in a weight process under the specified
conditions, whereas if �R

2 > �R
1 , then −(WAR→

12 )optimum = (WAR←
12 )optimum is the least

work required in a weight process for the composite of A and R to change the state
of A from A1 to A2, again under the specified conditions.

If the system is simple5 and the reservoir environmental, Eq. (1.41) may be
expressed in terms of energy and entropy in the form

(WAR∗→
12 )optimum = (U1 − TR∗ S1) − (U2 − TR∗ S2) , (1.42)

where U and S represent the internal energy and the entropy of system A, respec-
tively, and in writing the equation we use the relation between energy, generalized
available energy, and entropy introduced in Section 1.2. Moreover, under the speci-
fied conditions, we recall that the available energy is zero if A and R* have the same
temperature and conclude that

�R∗
1 = (WAR∗→

10∗ )rev = (U1 − TR∗ S1) − (U0∗ − TR∗ S0∗) , (1.43)

where U0∗ and S0∗ are the energy and entropy of system A in the dead state
A0∗ , respectively, with temperature T0∗ = TR∗ , and the values of the amounts of
constituents and the parameters are equal to the respective reference values n
and β.

The expression U − TR∗ S is called an availability function or exergy function. As
Eq. (1.42) indicates, for the specified conditions the difference in the values of this
function at two states yields the optimum work in a weight process for the composite
of A and R*.

The expression (U1 − TR∗ S1) − (U0∗ − TR∗ S0∗), that is, the generalized available
energy of state A1, is also called the availability or exergy of state A1. Under the
specified conditions, it represents the optimum work that can be done as a result of
the state of system A changing from A1 to the state A0∗ with the reference values

5 The definition of a simple system is given in Chap. 17 of [10].
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n and β and temperature T0∗ equal to that of the environmental reservoir. It turns
out that this work is not sign definite, namely, it can be either positive or negative.

Expressions analogous to Eqs. (1.42) and (1.43) can be derived for conditions
other than those involved in the definition of generalized available energy. Ideally,
we should define a distinct name for each set of conditions and the corresponding
function and its differences. Because there are innumerable conditions that we must
examine, we would then have so many names that it would be questionable whether
the richness of the vocabulary would be of any help. To avoid this linguistic pileup,
we proceed as follows.

First, we consider a system A and the environmental reservoir R* with given spec-
ifications regarding whether the values of their respective amounts of constituents
and volume are variable or fixed. We define as the availability function or exergy
function corresponding to the given specifications that expression the differences of
which yield the optimum work in a weight process for the composite of A and R*

as system A changes from a given state A1 to another given state A2. Moreover, we
define as the availability or exergy corresponding to the given specifications and to
state A1 that expression which yields the optimum work in a weight process for the
composite of A and R* as system A changes from state A1 to state A0∗ in which A
and R* are in mutual stable equilibrium. For example, for the conditions discussed
at the beginning of this section, we summarize the results by writing, in addition to
Eq. (1.42)

availability function = U − TR∗ S, (1.44)

availability or exergy = (U − U0∗) − TR∗ (S − S0∗)

= (U − TR∗ S) − (U0∗ − TR∗ S0∗) . (1.45)

Other examples are discussed in the following subsection.
Next, we consider a given type of interaction, such as work, heat, or bulk flow,

and the environmental reservoir R* with given specifications regarding whether the
values of its amounts of constituents and volume are variable or fixed. We define
as the availability rate function or exergy rate function corresponding to the given
specifications that expression whose differences yield the optimum work rate in a
process for the composite of reservoir R* and a system A maintained in a steady state
by two given interactions of the same type. Moreover, we define as the availability
rate or exergy rate corresponding to the given specifications and associated with a
given interaction that expression which yields the optimum work rate in a process
for the composite of reservoir R* and a system A maintained in a steady state by
the given interaction and an interaction of the same type with the reservoir R*. A
discussion of availability rate functions is given in [10, Chap. 22].

1.3.4 Different Availabilities or Exergies

Here we consider a simple system A, changing from state A1 with volume V1 to state
A2 with a different volume V2, and surrounded by the environmental reservoir R*,
modeled as having variable volume but fixed values of the amounts of constituents,
so that the reservoir experiences an equal and opposite change in volume.
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At the moving boundary between A and R*, a volume exchange occurs according
to

VR∗
2 − VR∗

1 = − (V2 − V1) . (1.46)

The motion of the boundary against the constant reservoir pressure pR∗ results in a
work interaction between A and R*, and the work done by A on R* is pR∗ (V2 − V1).
In a weight process for the composite of A and R*, the work pR∗ (V2 − V1) represents
just an internal exchange between A and R* and not work WAR∗→

12 done on the
weight. To evaluate the optimum work (WAR→

12 )optimum done on the weight under the
specified conditions, we begin by writing the energy and entropy balances:

(
U2 + U R∗

2

)− (U1 + U R∗
1

) = − (WAR∗→
12

)
, (1.47)(

S2 + SR∗
2

)− (S1 + SR∗
1

) = Sirr. (1.48)

On combining (1.46)–(1.48) with (1.38) and setting Sirr = 0 for optimality, we find
that

(WAR∗→
12 )optimum = (U1 − TR∗ S1 + pR∗ V1) − (U2 − TR∗ S2 + pR∗ V2) , (1.49)

availability function = U − TR∗ S + pR∗ V, (1.50)

availability or exergy = (U − U0∗) − TR∗ (S − S0∗) + pR∗ (V − V0∗)

= (U − TR∗ S + pR∗ V) − (U0∗ − TR∗ S0∗ + pR∗ V0∗) , (1.51)

where U0∗ , S0∗ , and V0∗ are the energy, entropy, and volume, respectively, of A
in mutual stable equilibrium with the reservoir and therefore in state A0∗ with
temperature T0∗ = TR∗ and pressure p0∗ = pR∗ . Although the value of U0∗ + pR∗ V0∗ −
TR∗ S0∗ equals that of the Gibbs free energy of state A0∗ because T0∗ = TR∗ and
p0∗ = pR∗ , it is noteworthy that U + p0∗ V − T0∗ S is not a Gibbs free energy because
U, S, V, T0∗ , and p0∗ are not all associated with the same state of system A.

Here we consider a simple system A, changing from state A1 with values V1 and
(n)1 of the volume and the amounts of constituents to state A2 with values V2 and
(n)2 and surrounded by the environmental reservoir R*. The reservoir is modeled as
having variable values of volume and amounts of constituents, so that it experiences
changes in values of volume and in each of the amounts of constituents equal and
opposite to the respective changes in values of A. Thus Eq. (1.46) also holds here
and, in addition, we have

(ni )
R∗
2 − (ni )

R∗
1 = − [(ni )2 − (ni )1] for i = 1, 2, . . . , r, (1.52)

where (ni )
R∗
1 and (ni )

R∗
2 are the values of the amount of the ith constituent of R* at

states R∗
1 and R∗

2 , respectively, and (ni )1 and (ni )2 are the values of the amount of
the same constituent at states A1 and A2 of A, respectively.

The energy and entropy balances for a weight process of the composite of
A and R* under the specified conditions are still given by Eqs. (1.47) and (1.48).
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Figure 1.1. Schematic of system A maintained
in steady state by two bulk-flow interactions,
shaft work, and heat with the environmental
reservoir.

Combining Eqs. (1.39), (1.46–1.48), and (1.52) and setting Sirr = 0 for optimality, we
find that

(WAR∗→
12 )optimum =

[
U1 − TR∗ S1 + pR∗ V1 −

r∑
i=1

μi R∗ (ni )1

]

−
[

U2 − TR∗ S2 + pR∗ V2 −
r∑

i=1

μi R∗ (ni )2

]
, (1.53)

availability function = U − TR∗ S + pR∗ V −
r∑

i=1

μi R∗ni , (1.54)

availability or exergy = (U − U0∗) − TR∗ (S − S0∗) + pR∗ (V − V0∗)

−
r∑

i=1

μi R∗ [ni − (ni )0∗ ]

=
[

U − TR∗ S + pR∗ V −
r∑

i=1

μi R∗ni

]

−
[

U0∗ − TR∗ S0∗ + pR∗ V0∗ −
r∑

i=1

μi R∗ (ni )0∗

]
. (1.55)

As a third example, we consider system A maintained at steady state by two bulk-
flow interactions and the environmental reservoir R* modeled as having variable
volume and amounts of constituents. We assume no changes in mass flow rate and
composition and negligible changes in kinetic and potential energies between the
bulk-flow states of the inlet and outlet streams. For example, for the arrangement
shown in Fig. 1.1, bulk-flow states 1 and 2 are the states of the inlet and outlet streams
of a steady-state device A that, in addition to these two bulk-flow interactions, is
surrounded by the environmental reservoir and connected to a weight.

For the conditions just specified for the composite of the device A and the
reservoir R*, we find that

(WAR∗→
12 )optimum = ṁ(h1 − TR∗s1) − ṁ(h2 − TR∗s2) , (1.56)

availability rate function = ṁ(h − TR∗s) , (1.57)

availability rate or exergy rate = ṁ(h − TR∗s) − ṁ(h0∗ − TR∗s0∗) , (1.58)
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where h0∗ and s0∗ are the specific enthalpy and the specific entropy, respectively, of
a bulk-flow state O* at temperature T0∗ = TR∗ and pressure p0∗ = pR∗ . It is notewor-
thy that the stream in bulk-flow state O* is not in mutual stable equilibrium with
R*. The reason is that a bulk-flow state is not stable equilibrium unless the kinetic
and potential energies are zero, and even if these energies are zero, the condition
of chemical potential equality cannot be met because of the specification that no
changes in compositions can occur. In other words, the bulk-flow interaction at state
O* introduces into the environment substances that do not correspond to the envi-
ronmental composition and therefore cause a subsequent irreversible mixing. This
irreversibility is built into the system specifications we are considering. If the speci-
fications are different, such as when chemical reactions are allowed, the availability
rate has a different expression.

In processes involving many streams, the availability rate function and the avail-
ability rate are given by expressions similar to Eqs. (1.57) and (1.58) except that here
each rate is a sum over many streams. Specifically,

(ẆAR∗→
12 )optimum = [Ḣin − TR∗ Ṡin] − [Ḣout − TR∗ Ṡout], (1.59)

availability rate function = Ḣ − TR∗ Ṡ, (1.60)

availability rate or exergy rate = [Ḣ − TR∗ Ṡ] − [Ḣ (TR∗ , pR∗) − TR∗ Ṡ (TR∗ , pR∗)]

(1.61)

where Ḣ and Ṡ represent summations of flow rates of enthalpies and entropies over
many streams. For details see [10, Chap. 22].

Under the same conditions as specified in Subsection 1.3.4.3, except that the
changes in kinetic and potential energies of the bulk-flow streams are not negligible,
Eqs. (1.56)–(1.58) become

(ẆAR∗→
12 )optimum = ṁ

[
h1 − TR∗s1 + ξ 2

1

2
+ gz1

]

− ṁ
[

h2 − TR∗s2 + ξ 2
2

2
+ gz2

]
, (1.62)

availability rate function = ṁ
[

h − TR∗S + ξ 2

2
+ gz

]
(1.63)

availability rate or exergy rate = ṁ
[

(h − h0∗) − TR∗ (s − s0∗) + ξ 2

2
+ g (z − z0∗)

]

= ṁ
[

h − TR∗s + ξ 2

2
+ gz

]
− ṁ(h0∗ − TR∗s0∗ + gz0∗),

(1.64)

where h0∗ , s0∗ , and z0∗ refer to a bulk-flow state with temperature T0∗ = TR∗ , pressure
p0∗ = pR∗ , bulk-flow speed ξ0∗ = 0, and the lowest elevation z0∗ in the environment.

It is clear that many more availability (availability rate) or exergy (exergy rate)
functions can be defined, each associated with a particular set of conditions.
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Figure 1.2. The burning of fuel–air mixture in the
energy-conversion system provides the work needed
to process the bulk-flow stream through the
materials-processing system.

1.3.5 Availability or Exergy Analysis

An illustration of the usefulness of Eqs. (1.59) and (1.61) is provided by the bulk-
flow processes in Fig. 1.2. Various substances enter a materials-processing system
A in various bulk-flow streams with overall enthalpy rate Ḣmaterials

1 and entropy
rate Ṡmaterials

1 . The plant is designed to operate in steady state and to transform the
entering streams into products having overall enthalpy rate Ḣmaterials

2 and overall
entropy rate Ṡmaterials

2 . The transformation requires shaft work from a power plant
at a rate ẆA←

s and heat from the natural environment at temperature TR∗ at a rate
Q̇A←

R∗ . The rate balance for the materials-processing system is

ẆA←
s = [Ḣmaterials

2 − Ḣmaterials
1 − TR∗

(
Ṡmaterials

2 − Ṡmaterials
1

)]+ TR∗ ṠA
irr, (1.65)

where ṠA
irr is the rate of entropy generation by irreversibility in the materials-

processing system A. It is noteworthy that ẆA←
s is optimum if ṠA

irr = 0 and that
to each different value of ẆA←

s there corresponds a different value of Q̇A←
R∗ .

The shaft work is provided by energy-conversion system B (Fig. 1.2), which
converts a fuel and air stream into products of combustion. The fuel and air enter
the system as bulk-flow streams with overall enthalpy rate Ḣfuel+air

1 and overall
entropy rate Ṡfuel+air

1 . The energy conversion system does shaft work at a rate ẆB→
s

and interacts with the natural environment at TR∗ with heat at a rate Q̇B←
R∗ . Moreover,

we assume that the products of combustion exit in bulk-flow streams at temperature
T0∗ = TR∗ and pressure p0∗ = pR∗ . For these streams, we denote the overall enthalpy
rate by Ḣfuel+air

0∗ and the overall entropy rate by Ṡfuel+air
0∗ . If no entropy is generated

by irreversibility in the energy-conversion system, the work rate is given by the
availability rate of the fuel–air mixture, Eq. (1.61). However, if entropy is generated
by irreversibility, ẆB→

s satisfies the relation

ẆB→
s =

[
Ḣfuel+air

1 − Ḣfuel+air
0∗ − TR∗

(
Ṡfuel+air

1 − Ṡfuel+air
0∗

)]
− TR∗ ṠB

irr, (1.66)

where ṠB
irr is the rate of entropy generation by irreversibility in the energy-conversion

system.
On subtracting Eq. (1.65) from Eq. (1.66), recognizing that ẆB→

s = ẆA←
s , and

rearranging terms, we find that[
Ḣfuel+air

1 − Ḣfuel+air
0∗ − TR∗

(
Ṡfuel+air

1 − Ṡfuel+air
0∗

)]
= [Ḣmaterials

2 − Ḣmaterials
1 − TR∗

(
Ṡmaterials

2 − Ṡmaterials
1

)]+ TR∗ Ṡirr, (1.67)
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where Ṡirr = ṠA
irr + ṠB

irr, that is, the rate of entropy generation by irreversibility in
both the materials-conversion and the energy-conversion systems.

The left-hand side of Eq. (1.67) is the availability rate of the fuel–air mixture,
that is, the largest rate at which work could possibly be done by processing the
mixture in the natural environment under the specified conditions on the types
of interactions between the energy-conversion system and the environment. The
bracketed term on the right-hand side is the least work rate required for achieving
the change of state of the bulk-flow streams processed by the materials-processing
system under the specified types of interactions with the environment. The term
TR∗ Ṡirr is the work rate equivalent of the rate of entropy generation by irreversibility.
It represents a loss of availability. It is a partial loss of the ability of the fuel source
to perform a useful task. This loss is incurred because the processes in the materials-
processing and the energy-conversion systems are not the best achievable under
the specified conditions, that is, the processes are not reversible. So, in contrast to
energy, availability is not conserved. It is destroyed or consumed by the generation
of entropy due to irreversibility.

For the arrangement in Fig. 1.2, Eq. (1.67) provides answers to questions raised in
Subsection 1.3.1. Specifically, it includes the inlet and outlet states of the task and the
energy sources and therefore answers question 1: “What are the actual inlet, outlet,
and end states of both the task and the energy sources used in the arrangement?”
It specifies the optimum interactions required by the task and, therefore, answers
question 2: “What are the optimum interactions required by the specified inlet,
outlet, and end states of the task?” And it specifies the optimum interactions that
could be supplied by the energy sources and thus provides an answer to question
3. It is important to emphasize here that the only optimum dictated by the laws of
thermodynamics (physics) is reversible processes.

To answer question 4, “What aspects of the arrangement are the causes of the
difference between the answers to questions 2 and 3?,” we must look into the detailed
design characteristics of the equipment used in the process. The answer to question
4 indicates the difference between the answers to questions 2 and 3 and is suggestive
of steps that might be taken to answer question 5.

An analysis of a system based on considering the energy, entropy, and combined
balances for each component of the system and computing the availability or exergy
consumption, that is, the entropy generation by irreversibility, is called an availability
analysis or exergy analysis.

Availability analyses, as well as energy and other analyses, require that the inlet,
outlet, and end states of the task be specified and that the changes in availability or
availability rates of feedstocks, products, and energy sources be evaluated. Because
of practical considerations related to existing knowledge and technology, the speci-
fication of a desired task is very often relative to existing knowledge and technology
and not absolute, and therefore availability and other analyses yield results that are
relative to existing knowledge and technology.

For example, a common process encountered in industry is the heat treating of
alloy steel parts to produce a locally hard surface, such as the surface of a steel ball
for a bearing or the surface teeth of a gear. Although only a very small fraction of the
material of each part needs to be hardened, conventional technology has required
that the entire part be heated to about 900 ◦C. So the task is defined according to this
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requirement. Another way to specify the task, however, is to say that only a small
fraction near the surface of the material need be hardened. The availability change
required by the first task is much larger than that required by the second. Moreover,
the results of the two availability analyses are not comparable to each other, just as
the task of making pig iron in a blast furnace is not comparable to that of making
aluminum in an electrolytic cell.

In the example of steel hardening, the second specification of the task has of
course little practical significance if we do not know how to treat just the surface
without affecting the bulk of the processed piece. However, the lower availability
change required by this specification in the framework of the conventional tech-
nology of the task can provide useful guidance for innovative approaches to the
problem of metal hardening. In fact, recent developments in high-power lasers and
electron-beam accelerators have led to the development of practical processes for
localized heat treating. In one carburizing application, for example, electron-beam
heat treating reduced the energy needed for a particular part from 1 kWh to only 2
Wh. Thus, by redefining the task, the required availability was lowered well below
the level that was previously thought to be optimum.

1.3.6 Thermodynamic Efficiency or Effectiveness

Associated with each task, such as heating a room or making a specified amount of
steel out of iron ore, is the least amount of work that must be done to accomplish the
task. This least amount of work is equal to the change in availability of the substances
processed to achieve the task and is independent of any details of the arrangement
of devices and engines used in the task.

In practice, however, each specific arrangement consumes a certain, not neces-
sarily optimum, amount of fuel or energy source to accomplish the task. Associated
with this amount of fuel or energy source is the largest amount of work that can
be delivered to a weight. This largest amount of work is equal to the availability
of the fuel or energy source consumed and is independent of any details of the
energy-conversion systems and devices used to convert the fuel or energy source to
work.

For emphasis, we denote the least work rate required by a specified task pro-
duction rate as Ẇ←

least and the largest availability rate of the fuel or energy source
consumption as Ẇ→

largest, and we define the thermodynamic efficiency or effectiveness6

ε of the actual arrangement as the ratio of these two rates, that is,

ε = Ẇ←
least required by the actual task production rate

Ẇ
→
largestof the actual energy source consumption rate

. (1.68)

The effectiveness is a measure of the degree to which the processes involved in
carrying out the task and in converting the energy source are reversible. If the
processes are reversible, ε = 1. If the processes are irreversible, ε < 1.

6 In some literature on this subject, the concept of effectiveness defined here is called second-law
efficiency. Such terminology, however, is misleading because the concept is based on not just the
second law but on the first law as well, and on many other concepts, such as work, heat, and bulk-flow
interactions, and energy and entropy balances. All these concepts are certainly related to but not
derivable solely from the second law.
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The concept of effectiveness is applicable to any process and can always be
expressed in the form

ε = 1 − TR∗ Ṡirr

Ẇ
→
largest of the actual energy source consumption rate

(1.69)

because the difference between the denominator and the numerator in Eq. (1.68) is
always TR∗ Ṡirr, where Ṡirr is the total rate of entropy generation by irreversibility in the
process. For example, the effectiveness of the materials-processing plant discussed
in Subsection 1.3.5 is of the form of Eq. (1.69) as we can readily verify by using
Eq. (1.67).

The effectiveness may assume even negative values. A negative value signifies
that ideally the task can be accomplished while the processed streams transfer energy
to a weight rather than consume energy sources, that is, the processed streams can be
used as energy sources themselves. Instead, because of large irreversibilities in the
actual materials-processing and energy-conversion systems, not only is the contri-
bution from the processed streams wasted but other energy sources are consumed.
The term TR∗ Ṡirr is sometimes called the lost work rate. It represents the work rate
that could be produced in the absence or irreversibility, but is not produced because
of irreversibility.

We can express the thermodynamic efficiency or effectiveness also in terms of
batch quantities rather than rates. Then,

ε = W←
least required by the actual task production

W→
largest of the actual energy source consumption

= 1 − TR∗ Sirr

W→
largest of the actual energy source consumption

. (1.70)

This effectiveness behaves exactly in the same way as that defined by Eq. (1.68).
Subject to the qualifications discussed in the next subsection, the concept of ther-

modynamic efficiency or effectiveness is the answer to question 6 posed in Subsection
1.3.1, namely, the universal measure of how effectively the task is accomplished by
a given arrangement.

1.3.7 Thermal Efficiency

In practically every textbook, work-delivering engines are analyzed, and the ratio
of the work output W→ over the heat input Q← per cycle is evaluated under the
assumption that in each cycle all processes are reversible. For example, the cycles that
are considered are the Carnot, Rankine, Otto, Diesel, Joule–Brayton, and Stirling.
The ratio just cited is called the thermal efficiency, is smaller than unity, and, more
often than not, its difference from unity is interpreted as indicative of the margin
for improvement of the processes involved in the cycle. Such interpretation is faulty
because there are no processes that are better than reversible. Said differently, the
correct measure of perfect use of the heat from a high-temperature reservoir is the
thermodynamic efficiency or effectiveness for every one of the cycles listed earlier,
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and this efficiency is equal to unity. For example, for the Carnot cycle, the largest
thermal efficiency of use of heat from the hot reservoir is

ηthermal = W→

Q← = T1 − T2

T1
. (1.71)

But exergy of Q← with respect to the low-temperature reservoir is Q←(T1 − T2)/T1

so that the effectiveness or thermodynamic efficiency of the Carnot cycle under ideal
(reversible) conditions is equal to unity.

Similar conclusions are obtained for all the other types of cycles if the processes
of use of heat from the hot reservoir are reversible.

1.3.8 Practical Limitations

The construction of each machine, engine, and device is in itself a task that involves
materials-processing and energy-conversion systems and therefore the consumption
of energy sources. When it is sizable, this consumption must be accounted for. An
important requirement of any installation used in primary energy processing, such
as the production of electricity from various energy sources, is that the installation
be capable of extracting more availability from the sources than the availability
consumed for the construction of the machinery.

In many applications it may be technically impossible to take full advantage of
the availability of the energy sources utilized. This may happen because some of the
availability is either lost in processes outside the application or remains intact for
use in subsequent applications. When this occurs, defining the effectiveness of the
application in terms of the availability of the energy sources is misleading.

For example, if the only known method to carry out a process is by means of
electrolysis, and electricity is generated from coal, it is hopeless to expect to improve
the electrolytic process so as to take full advantage of the fuel availability. Electricity
is not available in nature, and its generation entails losses. These losses should
not be charged to the imperfections of the electrolytic process because it requires
electricity to operate and the losses cannot be recovered no matter how perfect the
electrolytic process is. To avoid this difficulty, the reasonable thing to do is to consider
the availability of electricity as a source of input and evaluate the effectiveness
of the electrolytic process with respect to electricity rather than with respect to
coal.

Again, in each stage of a steam turbine, only some of the availability of the
flowing steam is consumed. The remaining availability is ready for use in subsequent
stages. Hence it is misleading to compute the effectiveness of one stage of the turbine
with respect to the full availability of the steam flow.

In some applications, the properties of the materials of the equipment do not
permit the full utilization of the fuel availability. For example, in oil-fired power
plants, the exhaust combustion gases contain water vapor. If cooled to environmental
temperature, the vapor condenses and corrodes the equipment. So exhaust gases are
not cooled to such low temperatures. Correspondingly, the availability of the fuel
should be evaluated with respect to a final state, not in temperature equality with
the environment, but at a temperature such that vapor condensation cannot occur.
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1.3.9 Comments

In contrast to other measures of efficiency, each specifically designed for a class
of applications, the concept of thermodynamic efficiency or effectiveness is appli-
cable to any task without conceptual modifications. For example, miles per gallon
of gasoline is a measure of thermodynamic performance of a transportation task
by an automobile, and the larger the value of this measure, the better the perfor-
mance. Again, equivalent barrels of oil per ton of steel are a measure of thermo-
dynamic performance of a steelmaking task at a steel plant, and the smaller the
value of this measure, the better the performance. Clearly these two measures are
not interchangeable and have different limiting values. In contrast, the concept of
effectiveness can be applied to both an automobile and a steelmaking plant. The
result for each of these two tasks would be a number less than unity, with an upper
limit equal to unity. The upper limit of unity corresponds to perfect thermodynamic
performance, namely, to all processes involved in the task that are reversible, and it
is the only limit imposed by the laws of thermodynamics or, more generally, the laws
and theorems of nonstatistical quantum thermodynamics.

Being directly related to irreversibility, the thermodynamic efficiency or effec-
tiveness provides a realistic measure of the degree to which the performance of a
task can be improved. Other measures of efficiency may be misleading. To illus-
trate the last assertion, we consider a perfectly insulated heat exchanger in which
all the energy change of the primary stream is transferred to the secondary stream.
On defining efficiency as the energy increase of the secondary stream divided by
the energy decrease of the primary stream, we would find that this heat exchanger
is 100% efficient. Such a result is correct but misleading. It implies that the heat
exchanger is perfect and cannot be improved. However, if we define the effective-
ness as the ratio of the availability increase of the secondary stream divided by the
availability decrease of the primary stream, we find that the best exchanger is less
than 100% efficient and subject to improvement by reduction of the temperature
differences between the two streams. Clearly the second answer is realistic and, more
important, relevant to our concerns about efficient use of resources.

Another important characteristic of thermodynamic efficiency or effectiveness
is that it provides a realistic evaluation of tasks with dissimilar outputs. To see
this point, we consider a cyclic device that produces work W→ and heat Q→ at
temperature TQ, while using heat Q←

1 , from a source at temperature TQ′ > TQ. If
these are the only interactions, the energy and entropy balances are

Q←
1 = W→ + Q→, (1.72)

Q←
1

TQ′
+ Sirr = Q→

TQ
. (1.73)

If efficiency were defined as the energy out divided by the energy in, then this
efficiency would be unity here, regardless of whether most of Q←

1 is provided as
work or low-temperature heat Q→. We know, however, that heat is not equally
valuable as work. For example, if TQ were equal to the environmental temperature
TR∗ , then Q→ would be entirely useless and yet the energy ratio would count it as
equally useful as work.
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These difficulties are eliminated if we compare the availability of the two outputs
with the availability of the input, because then all interactions are evaluated on a
comparable basis. Specifically, the effectiveness of the cyclic device is

ε = W→ + Q→(1 − TR∗/TQ)
Q←

1 (1 − TR∗/TQ′)
= 1 − TR∗ Sirr

Q←
1 (1 − TR∗/TQ′)

, (1.74)

where, in writing the second form of Eqs. (1.74), we use Eqs. (1.72) and (73).
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[7] E. P. Gyftopoulos and E. Çubukçu, “Entropy: Thermodynamic definition and
quantum expression,” Phys. Rev. E 55, 3851–3858 (1997).

[8] D. F. Styer, “Insight into entropy,” Am. J. Phys. 68, 1095–1096 (2000).
[9] E. P. Gyftopoulos “Entropies of statistical mechanics and disorder versus the

entropy of thermodynamics and order,” J. Energy Resources Technol. 123, 110–
123 (2001).

[10] E. P. Gyftopoulos and G. P. Beretta, Thermodynamics: Foundations and Appli-
cations (Macmillan, New York, 1991; Dover, Mineola, NY, 2005).

[11] G. P. Beretta, E. P. Gyftopoulos, J. L. Park, and G. N. Hatsopoulos, “Quantum
thermodynamics: A new equation of motion for a single constituent of matter,”
Nuovo Cimento 82B, 169–191 (1984).

[12] G. P. Beretta, E. P. Gyftopoulos, and J. L. Park, “Quantum thermodynamics: A
new equation of motion for a general quantum system,” Nuovo Cimento 87B,
77–97 (1984).

[13] G. N. Hatsopoulos and J. H. Keenan, Principles of General Thermodynamics
(Wiley, New York, 1965).

[14] S. Carnot, Reflections on the Motive Power of Fire (Dover, New York, 1960).


	CONTENTS
	Contributor List 
	Foreword by Herman E. Daly
	Foreword by Jan Szargut
	Preface
	Introduction

	PART I: FOUNDATIONS
	1. Thermodynamics: Generalized Available Energy and Availability
or Exergy
	2. Energy and Exergy: Does One Need Both Concepts for a Study of
Resources Use?
	3. Accounting for Resource Use by Thermodynamics
	PART II: PRODUCTS AND PROCESSES
	4. Materials Separation and Recycling
	5. An Entropy-Based Metric for a Transformational Technology
Development
	6. Thermodynamic Analysis of Resources Used in Manufacturing
Processes
	7. Ultrapurity and Energy Use: Case Study of Semiconductor
Manufacturing
	8. Energy Resources and Use: The Present Situation, Possible
Sustainable Paths to the Future, and the Thermodynamic
Perspective
	PART III: LIFE-CYCLE ASSESSMENTS AND METRICS
	9. Using Thermodynamics and Statistics to Improve the Quality of
Life-Cycle Inventory Data
	10. Developing Sustainable Technology: Metrics From
Thermodynamics
	11. Entropy Production and Resource Consumption in Life-Cycle
Assessments
	12. Exergy and Material Flow in Industrial and Ecological Systems
	13. Synthesis of Material Flow Analysis and Input–Output Analysis
	PART IV: ECONOMIC SYSTEMS, SOCIAL SYSTEMS, INDUSTRIAL SYSTEMS, AND ECOSYSTEMS
	14. Early Development of Input–Output Analysis of Energy and
Ecologic Systems
	15. Exergoeconomics and Exergoenvironmental Analysis
	16. Entropy, Economics, and Policy
	17. Integration and Segregation in a Population – a
Thermodynamicist’s View
	18. Exergy Use in Ecosystem Analysis: Background and Challenges
	19. Thoughts on the Application of Thermodynamics to the
Development of Sustainability Science
	Appendix: Standard Chemical Exergy
	Index



