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INTRODUCTION

The purpose of this paper is to extend Liapunov’s direct method® to
autonomous nonlinear dynamic systems which may be nonstable in the
small but which are stable in the large. Such systems are usually re-
ferred to as being Lagrange stable.” The interest in Lagrange stable
systems stems {rom the following considerations.

Many dynamic systems of electrical, mechanical, or nuclear or of
some other nature can bé described by a set of n-state variables
X1,%3, . «,Xy. These variables can be visualized as the coordinates of a
point in an n-dimensional space or equivalently as the components of a
vector x in the same space.

Without loss of generality it can be assumed that the point x = 0 is
an equilibrium, or steady, state. One of the fundamental questions of
the theory of system dynamics concerns the type of stability of this
equilibrium state. Specifically, if at time t = 0 the system is perturbed
from its equilibrium [x(t = 0) # 0], the question arises as to whether or
not as t approaches infinity the variables of the system resume their
equilibrium values (the system is asympfotically stable), are bounded
(the system is stable), or diverge (the system is unstable),

This question canoften be elegantly answered by means of Liapunov’s
direct method if the dynamics of the system is adequately represented
by a set of ordinary differential equations.

In the literature, particularly the Russian literature, there are
many problems whose stability has been investigated by means of
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Liapunov’s direct method.*™® In all these problems, however, one finds
that the derived sufficient conditions for stability are always conditions
for asymptotic stability or stability in the immediate vicinity of the
equilibrium state. In addition, it has been shown!® that for the broad
class of nonlinear systems considered by Lur’e* and Letov® the derived
stability criteria require that the linearized version of the system
equations belong to a special class and be unconditionally stable. The
same requirement of unconditional linear stability is also inherent in
Welton’s cr1ter1on, which is the only criterion available for nuclear
reactor systems. ‘

In many applications where certain state variables must be kept
within very close tolerances, asymptotic and consequently linear sta-
bility is necessary. In other applications, however, designing. for
asymptotic stability may be an overrestrictive and needless objective.
The desired state of a system may be mathematically nonstable; yet the
system variables may be so bounded that the system performance is
acceptable. For example, many aircraft, nuclear-plants, and other sys-
tems exhibit this condition, but their performance is not considered as
undesirable. Such systems are classified as Lagrange stable.

In view of these remarks, it is of practical importance to examine
whether or not Liapunov’s dlrect method can also be used for the in-
vestigation of Lagrange-stable systems, Such an examination is the ob-
je.t:tive of this paper, which is organized as follows: A brief description
of Liapunov’s direct method and its extension to Lagrange-stable sys-
tems is given first, and then the method is successfully applied to ex-
amples taken from the fields of nuclear reactors and nonlinear control
systems. For these examples it is shown that, when Lagrange stability
is aceeptable, the design specifications are more rela,xed than they would
be if asymptotic stability were required.

LIAPUNOV'S DIRECT METHOD

Consider a physical system whose dynamics is represented by the
set of n ordinary nonlinear differential equations

dxx

Rk K (XX, %) k=1,2,....n (1)

or the equivalent vector equation
x = X(x) - ' (2)
In addition, suppose that x=0is an equilibrium state; i.e., X(0) = 0, The

type of stability of this state can be investigated by means of a positive
definite scalar function V(x) with the following properties:
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1. V(x) is continuous, together with its first partial derivatives, in
a certain open region  about the origin,

2, V(0)=0, V(=) =,

3. Outside the origin and always in @, V(x) is positive.

4. If V(x) = 0 (subject to Eq. 2),then V(x) is called a Liapunov func-
tion.

With these definitions, Liapunov’s main stability theorems are

I. Stability Theorem. If there exists in the neighborhood €2 of the
origin a Liapunov function V(x), then the origin is stable for all
perturbations lying in 2.

II, Asymptotic Stability Theorem. I, in addition to the re(iuirements
of theorem I, V(x) is negative definite, then the stability is
asymptotic,

© 1II, Instability Theorem. If V(x) >0 and V(x) assumes positive
" values arbitrarily closetothe origin, thenthe origin is unstable.

There are other variations of Liapunov’s main stability theorems.
For these, however, as well as the proofs and a general discussion of
theorems I to III, the reader is referred to the literature,!™ For the
purposes of this paper, it is sufficient to note that the application of
Liapunov’s stability theorems, as they are stated above, requires the
consideration of a region Q that includes the equilibrium state. This
requirement implies that the dynamic behavior of the system in the im-~
mediate vicinity of the equilibrium state is important.

As already indicated, there are many practical problems in which
the exact performance of the system near its equilibrium state is unim-
portant, It is therefore intriguing to examine whether ornot Liapunov’s
main theorems could be modified in such a way that (1) the viecinity of
the equilibrium state is excluded from the definitions of V(x) and V(x)
and (2) the requirements for Lagrange stability are less restrictive. It
can be shown that sucha modification is possible if the stability theorem
is stated as follows:

IV. Lagrange Stability Theorem. If there exists a positive definite
scalar function V(x) that is continuous, together with all its first
partial derivatives and with the property that Vi(x)— o as
|x[| — «, and if V(x) = — € < 0 (subject to Eq. 2)for all x outside
some bounded region M surrounding the equilibrium statex= 0,
then the system variables are ultimately bounded or the system
possesses Lagrange stability.

The proof of this theorem is also given in Ref. 2. Some illustrative
applications are given in the next section. ‘
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APPLICATIONS . S L

Réa.ctor with Two Temperature
Coefficients

Consider the step response of a two-region reactor with two tem-

perature coefficients of reactivity.* The normalized dynamlc equa-

tions® ¥ are

& ¢ao (I‘la 1Ty + I‘zasz) o (3)
dT, - S o
EeomTtie o B

flo) =e’—-1; o f(a) > 0

The equilibrium state is 0 =Ty =T, = 0, Welton’s criterion or Lur’e’s
conditions for stability yield thatthis state is asymptotically stable when

ry0gy t Tolagy < 0; ry@ygy + 10,8, < 0 : : o (8)

Elementary considerations reveal that the meaning. of the conditions
given in inequalities (6) is that the linearized version of Egs. 3 to 5 be
unconditionally stable for all values of ¢w.

It is interesting to examine what happens when cond1t1ons (6) are not
satisfied and therefore Welton’s or Lur’e’s sufficient criteria are not
constructive. For example, consider the case

ri@g Tryyg, = Ry >0
ri04gy + 08 = —Ry <0 | ' (7)

Iy + IToly :~R0 <0

It can be easily shown that when conditions (7) are satisfied, the linear-
ized version of Eqs. 3 to 5 is conditionally stable. Specifically the re-
- actor is linearly stable when

: )
¢ < gigz-(gi T g) (8)
1 , _

*This problem has been analyzed by several authors by means of Liapunov’s
direct method and other techniques. It is be ing reconsidered here to indicate the
difference in specifications for asymptotic and Lagrange stability.
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Subsequently it will be shown that the reactor is Lagrange stable for all
values of ¢.. To this effect, rearrange the system of Egs. 3 to 5 info
the equivalent system

F=x | | 9)
%=y , . (10)
y=—(g gy - F(O) x—¢Ry f0) (11)

F(0) = 818y + ¢oRee” > 0

The equilibrium state is also ¢ =x=y = 0. The ultimate boundedness
of the variables {¢,x,y) and consequently of the original-state variables
(0,Ty,Ty) is deduced [rom the following considerations.

First note that for x < 0 and for all values of o and y the system is
physically bounded; then examine what happens only for x > 0. Consider
the functions: '

(@) Vi =%[y + (g + o)X +f F(u) du]2 + (g1 + 22) PRy f flu) du (12)
) 0 0

This function is positive definite [V («) — =], and its time derivative is
- U )
V=9 Ry 1(0) [y + [ 1(0) ] (13)
The derivative is negative for all values of x in the following regions

(¢>0,y>0); (0<0,y<0)
[cr>0, -y < fan(u) du]; [0<0 y<——f F(u du] (14)

According to theorem IV the variables o, x, and y are boundedin the

regions determined by the inequalities of (14). This result is schemati-
cally shown in Fig. L.

5] 2

(b) V, =~;~[y + ¢LRy fg f(u) du] +% (g1gs + ¢ Ro)X* (15)
v, =— {Y + ¢, Ry J{;’ f(u) du] (g1 + g2)y + PRy £(0)]

~ uRy(@:8: + $uRo)x [ (@) du (16)

The derivative V, <0 for x >0, 0 <0,andy > ¢.R,/(g + g5) (see Fig. 2).
The reactor variables are bounded in this region. :

(c) V3=%[y %:ﬁj: F(u) du]2 (17)



232 | GYFTOPOULOS

yfj;""r(ar) do = 0

Fig. 1—Stability regions defined by Vi
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y +L“F(a) do = 0

Fig. 2-—Stability region defined by V.

‘-}’3 =_%§[y _ER{_i_ . v[ovor ) du] [Y + ¢9Ry f(O’)] (18)

- Note that for x> 0, 0> 0, and —y > [ F(u) du the derivative Vs < 0 be-
cause

Jy Fl) du = gig, + 9., 1(0) > ¢, R, £(0) 19)

Therefore the reactor variables are bounded in the region shown in
Fig. 3.
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a
y+LF(u)du=o o

Fig. 3-—Stability region defined by V.
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Fig, 4— Stability region defined by V.

(d) V, =§ [y + (gs + g)x]F + f(, f(u) du ' (20).

Vi=—ly + (g + g)x] [F(0) x + ¢_R; 1(0)] + x £(0) (21)

Fory>0,0<0,and x> kprz/ g8y, the derivative V4 is negative and the
reactor variables are bounded in the region shown in Fig. 4,
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Simultaneous consideration of V,, V,, V4, and V,; revéals that the
reactor variables are ultimately bounded throughout the state space
{(0,%,y) except for a region around the equilibrium state defined by

PRy PRy fﬁ '
o< x< sy < Yy > F(u) du 22
’ g8z y gt g’ y o ) , : @2)

In other words, the system possesses Lagrange stability when
riygs T raagy <05 ryay Ty <0
Of course, it must be emphasized that whether or not this reactor is of
any practical use depends on the size of the region defined by the in-
equalities of (21).
A General Control System

Consider the general class of systems that have been analyzed by

Lur’e and Letov. The dynamics of these systems can be described
either by the set of equations

%, = px, + (o) k=1,2,...,n (23)
6= Zk; Bx, — r 1(0) (24)

or by the set of equations
X, = Xt o k=1,2,...n (25)
G =2, BXy— po — (o) (26)

where x, and ¢ are the state variables; 7, r, B, B, O, and ry are con-
stant coefficients; Repy and Rer) < 0;and f(¢) is a nonlinear function be-
longing to the class of

(A) of(o)>0 for |o| > o*
f(g) =0 for jo} = o*

(Ay) oi(g)>0 for all ¢

Assume that these systems admit only one equilibrium state, which
18 Xy =% =... =X, =0 =0. Lur’e and Letov have proposed a variety of
asymptotic stability criteria that they derive by means of Liapunov’s
direct method. It can be shown that the least restrictive of all these
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eriteria requires that the linearized version of either Eqs. 23 and 24 or
Egs. 25 and 26 be unconditionally stable and of a special class. In par-
ticular, if

f(o) = ho + ¢(a); h = 05 o ¢(0) >0 ' (27

the linear approximations of Eqgs. 23 and 24or Egs. 25 and 26 must have
all their e1genva1ues in the left half complex plane for 41l positive
values of h. This requirement is very limiting and, in fact, is more re-
strictive than necessary for the stability of the linear approximation for
~a given set of values of h. The overrestriction can be overcome if the
problem is approached from the standpoint of Lagrangian stability.

For example, consider the system of Eqs. 25 and 26. This system
can be transformed into the canonical form

¥i = nyi— 0(@) i=12...,m1) (28)
ZfZﬂkyI 'ilk =1 | (29)

where the y,’s are the new canomcal varlables the A;’s are assumed
distinct and are the eigenvalues of the linear approximation of Egs. 25
and 26 for specific values of h, and the ki’s are the elements of the
(n+1) th column of the inverse of the special transformation matrix:

a1y Agp +-- A4l |
Apy Ay «-- 241
PO I - | 60
Ap, An,2 - ¢+ Ap il
1 1 ...1

Suppose that Rex; < 0 for all (i). This requirement may be satisfied
even when the linear approximation of Egs. 25to 26 is not unconditionally
stable. In addition, assume that ¢(z) is bounded for all values of
z[|¢(z)|< C = constant]. Then, the positive definite function

n+l
1 .
V== 2 y: (31)
2 / :
=1
admits a derivative

]

. n+i '
V=Z}1hiyz ¢(Z)Zy1< ZMYﬁClE yil (32)

This derivative becomes negative when V > Rﬁ, where R% is a constant
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such that the second-order terms in the right-hand side of ‘Eq. 32 pre-
dominate over the linear terms. Consequently the system described by
Eqs. 28 and 29 or Egs. 25 and 26 is Lagrange stable even though the
linear approximation may not be unconditionally stable, provided that
[¢(z)| <C.

Next, suppose that [z ¢(z) ~ 229 q > 1], that one of the eigenvalues is
positive (A; > 0}, and that all the others are in the left-half complex
plane [ReX; < 0; i=2,3,...,(n+1)]. This system can never be asymptoti-
~ cally stable. It is, however, Lagrange stable for the following reasons.
First, z is bounded. Indeed

otl il

li Z'2 = z 2 k'k~)ti iy A& ¢(Z) . (33)

=1 §=1

and since z ¢(z) varies faster than z?, there is a value zg such that for
|z|>2z, the second term in the r1ght hand side of Eq. 33 predominates
over the first and the derivative of z% becomes negative.

Second, ail the variables y,,ysy, . ..,¥,+1 are bounded because

ntl n+l

1 2 dt E yl 2 1Y1 Z ¥i (34)

and since z and ¢ (z) remain bounded, there isa value R? such that, when
V> Ri, the first term in the right-hand side of Eq. 34 predominates
over the second and the derivative of V, becomes negative.

Third, y; must be bounded because z and Y25 Y35 - « +s¥ny1 are bounded
and z is a linear combination of all the y,’s

This completes the proof that the system described by Egs. 25 and
26 is Lagrange stable even when the linear approximation is unstable
(A1 > 0), provided that the nonlinearity is such that (z P(z) ~ z2% g > 1),

CONCLUSIONS

Liapunov’s direct method.is used to establish sufficient conditions
for Lagrange stability of nonlinear systems around an equilibrium state.
These conditions guarantee the ultimate boundedness of the system vari-
ables without any concern about the behavior of the system in the im-
~ mediate vicinity of the equilibrium state and without precluding the pos-
sibility of the systems being globally asymptotically stable.

The applications presented indicate that the sufficient requirements
for Lagrange stability are less restrictive than the sufficient conditions
for global asymptotic stability or local asymptotic stability. This re-
sult can be expected to be true in general since away from the equilib-
rium state the behavior of the system is determlned by the nonlineari-
ties.
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Whether a Lagrange-stable system ié practical or not depends on

the size of the region around the equilibrium state outside of which the
system variables are bounded. This size indicates the maximum ampli-
tude of possible oscillations that the system may experience. If the am-
plitude of the oscillations is tolerable compared to the degree of accu-
racy required of the system variables, then Lagrange stability is just as
good as any other type of stability, and it should be accepted since it
does not limit the system design so much as the requirements for
asymptotic stability. '
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