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INTRODUCTION

This paper is concerned with the synthesis of test signals for the mea-
surement of dynamic characterigtics of nonlinear systems described
by a funectional expangion. : : :

The output of a nonlinear system camn, in general, be expanded into
ah infinite sum of functionals of the ifput!= Fach functional is a multi-
dimensional convolution integral depending upon the input and a kernel
that is characteristic of the system. The kerne\l_s’ describe the system
in the same sense that the impulse response characierizes a linear
system. p

The impulse response of a linear system can be measured by a
variety of well-known techniques. The measurement of the kernels of
a nonlinear system, however, is a more involved problem. Wiener?
proposéd a procedure for meéasuring the kernels of nonlinear systems
by eross correlation between input and output, provided that the input is
Gaugsian white noise. His expérimental procedure, although conceptually
simple, is tmpractical because it necessitates an infinite cross-
correlation time.

To awvoid the requirement of infinite cross-cdorrelaticn timme and at
thé same time be able to use the method of Wiener with only minor
modifications; it is of interest to devise periodic signals whose corre-
Jation functions, over one period and up to some order K, are approxi-
mately equal to those of Gaussian white noise. Such signals would re-
quire a cross-correlation time of the order of the settling time of the
systern under investigation, bit they would permit the méasurement of
only a limited numiber of kernels. It is evident that the finite cross-
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correlation time is a great advantage, whereas the limitation on the
number of kernels that can be measured is of no important concern
since in any practical probléem one is foreced to truncate any infinite
series expansion at a finite number of terms. '

As a first step in line with the above objective, a family of peripdic
test signals has been designed which allows the measurement of the
kernel hy(t) in systems whose input x(t) and output y(t} are related by
the functional expansion

¥ = 7 hylr) x(t—7) ar + [T [T hylry,7y) x(t—74) x{t—T,) dr, dr,

+ higher order functionals containing only an even
number of factors x{t — 7;) (1)

Although not all nonlinear systems can be represented exactly by Eq. 1,
such a representation is better than the often-assumed linedr approxi-
mation.

The following sections present the synthesis procedure and the
properties of the test signals, describe the experimental setup for the
measurement of the kernel hy(t) in Eq. 1, present some practical
applications: that require accurate knowledge of h,(t), and discuss a
possible direction in which the work might progress to enable one to
measure either hy(t) in the presence of hoth even- and odd-order
functionals or higher order kernels.

TEENARY PERIODIC TEST SIGNALS

Synthesis Procedure

The family of periodic test signals under consideration includes
ternary sequences defined as follows:

1. At any instant of time, the signal may assume only one of three
possible normalized values: +1, 0, or —1.

2. The signal is discontinuous dand may change value only 4t event
points having uniform spaciiig At.

3. The signal is perioedi¢ with period T = N At, where N = 3 — 1;
n = an integer,.

4. The jth bit is generated by the linear recursion formula

Cj =a4Cyy+a,Cy ... +2a,Cy_, (2)

where the right-hand side is reduced modulo-3 so that C; satis-
fies (1). The coefficients a; are integers having the value +1, 0,
or —1. Giver n, signals with period N At exist only for certain
sets® of coefficients a,, a,, ..., an.
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Given a proper set of coefficients, aj, &y, :..,an, the desired
periodic signal iz generated by starting with any string of n bits which
can be formed from the digits +1, 0, and —1, éxcept the string ef n
zeroes, and applying the recursion foarmula until the sequence repeats,
A typical signal with n = 2 and a; = a, = 1 is shown in Fig. 1.

n=2%N=3"-1=8 Cj = Cj_z= Cj—; (MODULO~3}
b x(1}

Fig. 1— Typieal periodic ternary signal.

Properties of Ternary Periodic Signals

Completeness It is clear from thensture of the recursion formula in
Eq. 2 that given n and a suitable set of coefficients, a,, ..., a,, the
periodic signal is determined as soon as any n successive bitg in the
sequence are selected. _

The number of strings of n bits that ean be formed by aliowing each
bit in the string to assume independently one of the three possible
values, +1, 0, or —1, is 5". One of the 3" possihilities is the string of
n zeroes. It is evident, however, that this possibility must be excluded
because, if it were considered as an initial string and the recursion
formula were applied to it, an endiess succession of zeroés would re-
sult. Consequently, one period of the repeating sequence cannot contain
a number of bits larger than 3" —1. Conversely, those sequences which
have the maximum possible number of bits, 3”1, cantain all the n-
digit strings that can be formed from the digits +1, 0, and -1, except
the string of n zeroes.

Symmetry Given n and & suitdble set of coefficients, ay, ..., a,,
suppose that one begins to generate a sequence of bits starting with
some initial string of digits, Cy, Cs, ..., Cn, where at l€ast one
of the C;’s # 0. The resulting sequence of period 3”1 rmust possess
completeness. Next, suppose that one starts with the string —Cy,
—Cy, -..,—C,. Since the recursion formula is linear, the resulting
sequence must be identical with the first except for an inversion of
sign; i.e., all +1’s and -1’s are interchanged with respect to the first
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sequence: Evidently the second sequence also possesses conipleteness,
and since it is generated by the same recursion formula, it roust be a
phase-shifted version of the first seqguencé. In fact, the phasé shift is
equal to (3"—1)/2 bits. In other words; in any complete seguence, the
second half is derivable from the first by interchanging the +1’s and —1’s.

Correlation Functions When dealing with periodic functions x(t) of
period T, one finds it convenient to define the kikorder correlation
function as

DT 15T <e s Ty) = f_’fT/fZ x(t) x(t+7y) ... x(t+7.) dt (8)

For the present ternary périodic signals, the first-order correla-
tion function; ¢;(7;), is a periodic function and varies as schematically
shown in TFig. 2. It is zero almost everywhere except at alternating

&)
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Fig. 2= First-order correlation function of ternary periodic signals,

positive and negative spikes of height 2 x 3°7!T/(3"-1) = 2T/3 for
n =1 and width 2At spaced T/2 apart. It is clear that if n is chosen
sufficiently large, the spikes may be made arbitrarily narrow compared
to the period T and that the correlation function, ¢{7;}, may be ap-
proximated by the analytical expression

2 -1
Pylrq) = 32,,—?1 Z (~1)" 6(’1’1 _g;_I‘) (4)
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The even-order correlation functions are zero everywhere. Indeed,
in view of symmetry,

fme %) x{t+7) .. xlt+Tg,,) dE =

~ [ k() xlt+7y) .. x(t+Tym) dt (5)

and consequently
L P S (6)

EXPERIMENTAL PROCEDURE

Measurement of the Linear Kernel

The measurement of the linear kernel of systems describable by
Eq. 1 is achieved by excitihg the system with a ternary periodic signal,
x(t}, and cross correlating the input with the correspondmg output.
This procedure is similar to the one proposed by Wiener® for Gaussian
white noise signals and by Balcomb et al.’ for binary signals. It is
schematically shown in Fig. 3.

SYSTEM
UMDER TEST

Fig. 8— Experimental arrangement for the measurement of hyla).

Indeed, if the ercss correlation is performed over one period
{Fig. 2}, the output of the integrator is

Sy xt—oy dt = [ xt—0) { f"hy(r) x(t—7) ar

+ j(;w j(;m hy{Ty, 79} x(t—T¢) X{t—79) d7y d7g

+ higher order functionals containing an even
number of factors x{t — 7;)] dt {7}
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If the order of integration is interchanged in the right-hand side of
Eq. 7, it is found that ’

fT yit) x(t—o) dt = fm hy(7) pi(T—0) dr

0 0

+ f fhz(ﬁﬂ'z) pa(Ty—0,73—0) dry d7y
A
% N AW ORI
4 0

m=2

X ¢2m(T1_U$ LR Tz-m*U) dT'{ . dT‘gm
2 - ]
< o+ 25 o () N
m=(

since ¢y, = 0 for all m. Note that if the period, T, of the ternary signal
is chosen to be at least twice as long as the settling time* of the linear
kernel, hy(7}, then the ocutput of the cross correlator is proportional to
(o). Consequently, hy(o) can be measured without appreciable error by
varying the delay o.

Actually, in a practical systemr one may have to cress correlate the
input and output over an integer nurhber of pericds because of the
inherent noise that may be present in the systém. Under these condi-
tions the preceding resuit remains unaltered, zpart from a constant
multiplier, and the inherent noise cross correlates out.

Experimental Equipment

Realization of Input Signal Ternary pericdic Signalsd can be
readily realized Wwith simple equipment. In particular, these signals
can be generated with a punched-paper-tape reader with two channels.

One possible method of generating the desired three-level input is
shown schematically in Fig. 4. The first channel {A) of the two-channel
paper-tape stores the absolute value of the input x(t), which means that
the output of this channel is either +1 or 0. This output is applied to a
relay-controlled switch. The sign of x(t) is stored in the seecond chan-
nel (B), which means that the output of this channel is positive if x(t) =
+1 and negative if x(t}) =—1. The output of channel B is applied to the
coil of the relay, and the switch is driven either to the +1 or —1 input

*The settling time is defined as the time Ty for which |hi(t > T,}| = €, where
€ is an arbitrarily small positive numbex.
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of the summing amplifier. When x(t) = 0, the polarity of the coil voltage
is immaterial since the input to the amplifier is zero in either case.
The desired signal x(t) appears at the output of the amplifier.

SWITCH AT M IF x(f) = —1
SWITCH AT P IF x(f) =+1

B

Fig, 4— Realization of terpary test signals.

Cross Correlator The computation of the cross-correlation function
between input and output is also readily implemented by a relay-con-
trolled switch. The experimental arrangement is shown in Fig. 5.

(1)

¥

*(t—a}

STt 0) ) b

Y

SWIECH AT MIF st o) =—1
SWITCH ATQ IF x{t—d} =0
SWITCH AT PIF x(t—o) =+1

Fig, 5— Analog computation of eross-correlation function,

The output y(t) of the system under test feeds the switch of a three-
position relay. The delayed input, x(t- o), which has the value +1, -1,
or 0, is used to energize the coil of the relay. The switeh is driven to
the +1 or —1 input of the integrator or to the open position, depending
upon whether the coil voltage x{t—o) is positive, negative, or zero,
respectively. Clearly, the input to the integrator isprecisely the product
x{t — oly{t); therefore the value of the cross-correlation function for
7T = ¢ appears at the oufput.

341



Similar equipment has been used with considerable success by
Balcomb et z1.,” who utilized bindry sighals fo meagure the impulse
response of reactor systems.

PRACTICAL APPLICATIONS

This paper has been concerned with the problem of determining the
linear kernel &, in systems whose nonlinearities are characterized by
even-order kernels hy, by, ete. Since the nonlinear gystem is deiined
by the set of kernels as a whole, and not just by h,, the question arises
as to whether or not there is any practical value in knowing just the
linear kernel. Although the answer to this question depends largely
upon the nature of the system underinvestigation, there is a large class
of systems in which the linear approximation of the system is of
particular interest.

Small Amplitude Response and Stability

The first step in analyzing a nonlinear system is to examine its
behavior in the vicinity of its equilibrium state(s). This amounts to
truncating the funectional expansion of the oaiput after the linear term.
The trusncation is justified when the input is restricted to appropriately
small amplitudes. In addition, the stability properties of the first
kernel are indicative of the loedl and, in Some cases, the global sta-
bility of the system.®

In attempting to measure the linear kernel, one may not be able to
treat the system as linear. One reason may be that the presence of
inherent noise requires that the amplitude of the input signal be outside
the region of validity of ihe linear approximation. Under these condi-
tions ternary periodic sequences can be used as test input signals
without any restrictions on amplitude, provided that the nonlinear
system is describable by Eqg. 1.

Volierra Integral Equations

There are some nonlinear systems (e.g., the zero-power nuclear
redctor) in which the ouiput is given as the solution of a Volterra
integral equation of the second kind. Such eguations can always be
solved by the method of successive approximation, and after some
algebra the output y{t) can be written as an infinite sum of functionals
of the input x{i). The expansion has thée feature that the kernels of the
higher order functionals are given explicitly in terms of the linear
kernel, It follows that, if the lifiear kérnel can be detetmined experi-
mentally, all the other kernels will be known as well.
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PLANS FOR FUTURE WORK

Work is currenily under way on the desighof a signal that will allow
the measurement of the linear kernel h, in systems whose nonlineari-
ties are characterized by a second- and a third-order kernel, h, and
h;, respectively. ¥For h; to be determined in such systems, a periodic
input is desired whose third-order correlation function aver one period
is a close approximation to that of Galssian white noise,

The third-order correlation function of Gaussian white noise of
spectral density A is given by the expression

¢3(T1,72,73) = A [8(1y) 8{my—T3) + 8(7s) 8(ri—T3) + 8(75) 8{ry—7y)] (9

This equation says that ¢s(7y,75,7;) assumes a peak value when 7| =
Ty=Ty= 0, that it assumes one-third of that peak value when one of
the 7°s is equal to zero and the remaining are equal but different from
zero, and that it is equal to zerofor any other combination of the T’s.

The ternary periodic signals developed previously in this paper
have the property that the third-order correlation function b3 T1,To,T3)
has its peak value at (0,0,0) and also the property that

BT =2 500,00 740 (10)

However, the function ¢; is not zero at all the points at which the cor-
responding function of Gaussian white noise iszero. An atfempt is being
made to modify thie present ternary signals in order to achieve, if
possible, the desired idealized behavior of the third-order correla-
tion function. ’

It is easily verified that if there is a periodic signal that has a
third-order correlation function similar to that of Gaussian white

SYSTEM
URNDER TEST

Fig. 6— Experimental arrangement for the measurement of hy(oy,os).
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noise, then it would be possible with a cross correlation to measure
also the kernel h, in systems characterized by h; and h,. The measure-
ment could be achieved by a cross-correlation meéthed like that shown

in Fig, 6.
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DISCUSSION

DOUGLAS BALCOMB {Los Alamos Scientific Laboratory): Have

for their higher order properties?

HOOPER: I haven’t looked into the higher order correlation funé-
tions of this type of chain,

STEPHEN MARGOLIS (Westinghouse Electric Corporation, Bettis):
If ome is just trying to measure the first-order kernel, what are the
advantages of ternary over binary noise? Just a comparison between
the tweo,

HOOPER: Dty you wmean simply measuring the kernel of a linear
system or do you refer to measuring the kernel by in a nonlinear
system?

MARGGLIS: Measuring the kernel in a nonlinear systera,

HOOPER: The binayy signals do not have the desired second-order
correlation function, namely, the one that is zero everywhere, Ternary
signals do, and, furthermore, their first-order corrslation, oy auto-
correlation function, iz exactly zero between the peaks, whereas jor
binary signals this function has some small nonzéro value.
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PETER BENTLEY (United Kingdom Atomic Energy Authority,

Risley): Can you tell me please how you decide on the values of &y, a,,
“ete., in forming the chains?

HOOPER: For my own work I have simply generated some chains
by trial and error. The article by B. Elspas in the IRE Transactions on
Circuit Theory, 1959, gives an expression for predicting, given n, the
mumber of chains of length 3"—1 which can be formed. Generally
speaking, the longer the chain, the more chains there are of that length.
The article by Elspas tabulates, up through n = 4, all the sets of coef-
ficients ay, a,, ... , a, which generate chains of length 3°—1.
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