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INTRODUCTION

Designing a safe muclear plant or maintaining
the safety margin of an operating plant which is
statically sound requires an effective understand-
ing of the dynamics of the reacfor and its asso-
ciated components and equipmeni. Such an
anderstanding is necessary in order fo ensure
that the constraints, imposed either by the ma-
terials of the plant components or by the environ-
ment in which the plant operates, will not be
exceeded at any time. :

The constraints that are inherent in various
materials in conjunction with the environmental
cenditions are discussed in other chapters.
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The purpose of this chapter isto introduce some
general mathematical techniques and experimental
procedures that are of import fo the problem of
understanding the dynamics of nuclear reactors.
How these techniques and procedures have been
implemented and put to practical use for speeific
reactors is discussed in the chapters on the kine—
tics of specific reactor types,

The attempt to understand nuclear reactor dy-
namics, or for that matter the dynamics of any
physical system, involves several closely inter-
related steps. The first step is to select a set of
variables, the state variables, thai are adequate
to characterize the physical processes taking place
during the operation of the system. Typicalnuclear
plant state variables are the neutron density, the
eoolant temperature, the control rod position, ete.
The state variables must be directly or indirectly
measurable ahd must be directly or indirectly re-
lated to the constraints imposed by the materials
and the properties of the environment of the plant.
In addition, the state variables must alsobe chosen
80 as to preserve a reasonable balance between the
desired simplicity of characterization of the sys-
tem and fthe required detail of characterization.

It must be emphasized that the probiem of se-
lection of state variables is extremely important.
From the experimental point of view, the choiceof
the state variables is influenced by the available
instrumentation for the plant since, in principle,
all design specifications should be achieved by
monitoring and controlling these variables. From
the analytical point of view, the selecied state
variables specify the level of mathematical so-
phistication necessary for the theoretical visuali~
zatign of the plant.

The second step in the process of understanding
reactor dynamics is to find the time-dependent
equations that interrelate the different variables.
If all physical processes that parfake in the opera-
tion of the system are known and ifthe appropriate
state variables have been chosen, this step is re-
latively easy. The relations between variables
are usually based onwell-founded conversation laws
such as the conservation of energy, mass, elemen-
tary particles, momentum, etc. at any instant of
time and at every position in the nuclearplant and,
therefore, time-dependent balance equations can
be written fairly readily.

The third step is to solve the dynamic equations
either analytically or with a computer. The objec-
tive of this step is either to establish results that
can be implemented experimentally, thereby veri-
fying the practicality of the equations, orto predict
the range of values of the influential design param-
eters so that limitations imposed bythe constraints
can be satisfied. This is a purely mathematical and

not a physical problem and it is one of the most

difficult. Even for relatively simple systems, the
establishment of general solutions is practically
impossible. Thus one i forcedto consider approxi-
mations either in the detail of the characterization
of the system or in the range and form of variation
of the parameters and variables involved. Approxi-
mationg lead to practical results provided the
results are used in their range of validity. Ap-
proximations and the evaluation of their range of
validity require a thorough understanding of the
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physics of the system.

Finally, the practical value of any and all of the
preceding steps must be justified by experiment,
as already indicated. Any physical concepts or
mathematical models or any analytical or computer
results, regardless of their degree of elegance
and sophistication, are of no consequence, parti-
cularly in questions of nuclear safety, if they have
not been or cannot be justified and repeatedly veri~
fied by experiment.

The subsequent sections indicate briefly how
these four general steps are specifically imple~
mented when nuclear reactor safety is the primavy
concern,

1 NUCLEAR REACTOQOR DYNAMICS

1.1 General Remarks

From the standpoint of reactor safety, the most
important variable is the energy stored in the re-
actor and its spatial distribution because it can be
directly related o all other variables and con-
straints. In the final analysis, it is the sitored
energy, its ‘distribution between fuel, moderator,
and coolant and its time rate of change that deter-
mine the consequences of a serious accident.

Even though the stored energy is such a key
variable in reactor safety, it has not been possible
to measure it and control it directly. Instead, the
energy behavior is inferred from measurements of
the neutron population in the reactor, the tempera-
tures of different components, the pressure, etc.
The neutron population is indicative of the time
derivative of the energy réleased in the reactor
while temperafures and cother thermodynamic vari-
ables are measures of the energy stored inthe vari-
ous regions of the reactor,

The analysis of the time behavior ofthe neutron
population in a reactor can be treated by a number
of alternative models. The common basis of all
these models is that they are analytical statements

 of the fundamental equality:

Rate of change Rate Rate
of neutron = | of neutron | — | of neatron
population prodiiction destruction

(1-1)

The difference between models lies inthe theoreti- .

cal concepts that are used fo express quantitatively
the various physical processes that affect the rates
of production and destruction. Similar rate equali~
ties can also be used for the other variables which

are useful in the study ofthe behavior of the energy

stored in the reactor. -

The most general method of apalytically im- '

plementing Eq. (1-1} is by means of transport

theory. This theory allows a precise and detailed”

representation of all conceivable interactions that
neutrons undergo in a reactor with a minimum rum-
ber of assumptions. The equations that result are
very difficult to handle analytically orto implement
experimentally because of their generality. Under
certain conditions, however, they can be reducff?d
to simpler forms and thus be related in an apyroxr=
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mate way to the energy stored in the reactor. Oné
of these simpler forms is the space-independent
conventional system of equations of reactor kine-
tics, which proved a productive tool in studies of
reactor dynamics.

The puirpose of this section istoderivethe con-
ventional form of reactor kinetics equations starting
from the basic notions of transport theory. The
value of this approach is that all the factors that
influence the dynamics of the reactor are put in
evidence, the exact meaning of such counvenient
parameters as reactivity, neutron lifetime, coei-
ficienis of reactivity, etc., canbe readily indicated
and the assumptions and limitations inherent inthe
conventional form of reactor kinetics are estab-
lished. The derivation proceeds along the linesin-
dicated by A. F. Henry [1]with some modifications.

1.2 Neutron Kinetics—Transport Theory

Consider a reactor in which the fuel is sta-
tionary. For mathematical simplicity and without
any loss of generality, assume thaf there is only
one species of fissionable material and thai there
is a very large number of neutrons in the reactor.
The last assumption implies that statistical varia-
tions are ignored.

The time-dependent balance equations for the
neutron population and {the delayed neutron precur-
80TS are:

N, E, 9, 1) —f ae’

dE w(EN1-BIv'EdT, 7, ONGE, E7, 07,1)

. f dEV'S, (B - E, § - 6, ONG, B, &, u}
]

T

+r LEUEICE, 1)+ S E, 4,0

i=1

v - grad N(, E, ﬁ, t) — vE,(f, E, tIN{7, E, ﬁ, t)

%Ci(f’, 0 :f}dﬁ’

f JEWEI Bv EdT, B, ONG, B, G, 0~ A G0 1),
4]

{1-2)

1 =1,2,...m,

{1-3)
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where Cy(r, t) delayed neutron pre-
cursor concenirations
E ’ . relative neutronenergy
fiE}, (1=0, 1,...m) prompt and delayed
neutron energy spec-
trum

neutron n_density in the
(T, E, a, t)—space
sourceg_denmty in the
(r, E, &, t}—space

N(T, B, 0, 1)

ST, E, 0, t)

v_, neutron speed

vi2 neutron velocity

Bis B . delayed neutron frac-
tions

Xy delayed neutron decay
constanis

v(E) number of neutrons per
fission, of energy E

f(r, E, t) fission cross section

(T, E - K, e a, t} scattering cross sec-
tion
Et(r, E, t) total cross section
The meaning of Egs. (1-2) and (1-3) may be un-
derstood as follows. Neutron interactions depend
on the relative energy and direction of motion of
neutrons with respect to the target nuclei. The
neutron density, N(T, E, a, t}, is the number of
neutrons per unit volume, per umit energy and per
unit solid angle that are at the positionT of the re-
actor, have a relative energy E and a relative di-
rection of motion € at time t. _In 2 small volume
AV, centered around the pomt T, the time rate of
change of neutrons that have energies between E
and E + AE and directions of motion between O and
d+adis

AVAEAG fi NG, E, 8, 0 . (1-4)

Neutrons are born in the elementary volume
AVAEAT of the phase space (T, E, 0) through the
produciion mechanisms:

prompt fisstons,

elastic and inelastic scattering collisions, .

decay of delayed neutron precursors, and

external neutron sources.
Thus, the rate of production in AVAEAR can be
written as:

f dﬁ‘{fﬂ(EydE’u(F WL - BV AL B, ONG, B, 71
;" 0 )

{prompt fissions)

+f dE‘S. 4, B - B, & - €, ONG, B/, &, :)}
0 .

(scattering collisions)

" Zl“ MEECE )+ SEE, 8,9

T
i=1

(delayed neuntrons)

AVAEAG |

{source)}

(1-5)

provided that both fission neutrons and delayed neu-
trons are emitted isotropically and all fission frag-
=
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" ments remaininthe immediate vicinity of the fission
event that produces them. The cross sections are
taken explicitly dependent on time in order to ac-
count for externally introduced changes inthe reac-
tor materials.

Orn the other hand, neutrens are lost from the
elementary volume AVAEAQ through the destruc-
tion mechanisms:

leakage, and

absorption, including scattering-out collisions.
Thus the rate of destruction can be written as

fflv - grad NI, E, Q, 1) +

{leakage)

+vE(F E, 0N E, &, 1] AVAEAG .

{total absorption)
(1-6)

it is evident that the combination of expressions
(1-4) to {1-6), as indicdted by the prineciple of con-
servation of particles, Eq.{1-1), yieldsthe balance
Eq. (1-2).

A similar procedure can be used fo verify the
delayed neutron precursor Egs. (1-3).

Equations (1-2) and (1-3) are basic and quite
general. Their generality, however, rendersthem
extremely difficult to use in this form for practical
studies. The difficulties stem both from the depen-
dence of the equations on seven independent
variables, (T, E, @, t}, and from the fact that the
macroscopic ¢ross sections are complicated im-
plicit functions of the behavior of the neutron pop-.
ulation throughout the entire reactor. Indeed, the
macroscopic cross sections depend on the densitiss
of the reactor materials. These densgities are de-
termined by the energy stored in the reactor which
in turn is_related to the integral of the neutron
density, N{r E, Q t}), andtothe figsion crogs see-
tion, Z{(T, E, t),a8 well as tothe mechanisms that
are used to extract energy from the reactor. The
exact functional relationship between N(T, E, 0, )
and the cross sections is therefore very mvolved
and it is further complicated by the fact that ap-
proximately 10% of the fission energy is associated
with long range radiations which may deposit their
energy at positions far away from where the fis-
stons occur,

In addition to all these difficulties, it must be
recognized that the density N(T, E, @, t) can not be
measured readily by experiment and consequently,
even though it is the most general and appropriate
attribute of the neutron population in the reactor,
its practicality is questionable.

In view of these remarks, it is clear that addi-
tional simplifying assumptions and approximations
are necessary to reduce Egs. (1-2) and (1-3) to a
form that is more amenable toanalysis and experi-
mental interpretation. The reduction can be
achieved by a variety of mathematical techniques.
Which techniques are appropriate is a gquestion of
expediency and the answer depends on the reactor
type and the particular aspect of reactordynamics
that is under investigation. For example, series
expansions in terms of a complete set of eigen-
functions, perturbation or variational methods,
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multi-group calculations, efc., are different tech-
niques that have been used and are more or less
suitable for extraciing specific information from
the transport theory equations [1-5].

Another approach to the problem of simplifica-
tion of Egs. (1-2) and {(1-3) is to proceed as in the
following: section.

1.3 Reactor Kinétics—Conventional Form

As already emphasized, the mathematical com-
plexity of the kinetics equations, derived from
transport theory, is due to their explicit or im-
plicit dependence on the neutron energy, direction
of motion and position. The kinetics equations would
be, conceptually at least, easier to handle if they
were dependent only on time. Consequently, it is
practical to integrate (average) the energy, direc-
tion and position variables out of the transport
theory equations. The result of the integration is
a set of ordinary differential equations with respect
to time, )

The question is how to perform the averaging,
If the dependence of the functions in Egs. (1-2) and
{1~3) on enexgy, direction and position were com-
pletely known (viz, the neutron and delayéd neutron
precursor densities were known!), then these de-
pendences could be replaced in Eqs. (1-2) and (1-3)
and the equations reduced to a set of ordinary in<
tegrodifferéntial equations with respect totime. Of
course, this is not the case and one has to approxi-
mate the dependences and then substitute them into
the equations. The result of this replacement is
that the ordinary integrodifferential equations that
ensue are also approximate and the degree of ap-
proximation is of the sameé order of magnitude ag
the order of approximation of the energy, divection
and position dependences.

The error in the ordinary equations that are
sought, with respect fo the error inthe approxima-
tion of the various undesirable dependences, can
be reduced if the unknown functions in Egs. {1-2)
and {(1-3) are first multiplied by some weighting
factors and then the equations are integrated with
respect to energy, direction and position over the
entire reactor. The weighting factors sre usually
taken from the exact solutions of equationsthat are
adjoint to Egs. {1-2) and (1-3). In many cases the
adjoint solutions are not known either and if is nec-
essary to use approximate weighting factorsas weil
as energy, direction and position dependences and
then iniegrate. This integration procedure iscalled
bilinear averaging and it implies that the error In
the resulting time-dependent equations is of second
order with respect to the errors made in the
approximations of the various dependences and
weighting factors.

Consider next how the preceding concepts are
purposefully used to derive the conventionat form

of reactor kinetics from the basic eguations of ‘

transport theory.

To this end, consider the source-free adjoint
equation, corresponding to some arbltrary critical
state of the reactor:

[dﬁ’f dg” [v'z“ﬁ’, E’ - E, G -0
Q° 0

St g T g £ T S
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i

LI N 4 E')] NE @ B, 69

v . grad Ng(f, E, ©) - vE,(, EINF@L B, G) -

(1-7)

where

F(E) = @)1 - p) E 1B 8
i=1

Suppose that Eq. (1~7) can be*solved and that the
adjoint, steady—state density No(r E, Q)is aknown
function of (¥, E, Q) Express the time-dependent
neutron deasity N(T, E, O, t) as the product of a
time- dependent functlon and a function whose inte-
gral over all (r, E, n) is bounded for all values of
time t. Specifically:

NI E, 6, 1) = PONGK, E, G, 0, (1-8)

- [ dar f dB f dNG(T, B, §, t) <M - constant.
u (1] Q

{1-9)

Note that Egs. {1-8) and (i-9) do not involve any
assumptions. They aye merely definitions of the

functions P(t) and No(r E, G, t) that are, concept-

ually at least, easy to implement, The essence of
these definitions is that any growth tendencies of

N(T, E, §, 1) can be expressed as a function of

time, P(t), only and that the shape of N{T, E, o, t}
within the reactor and in the energy and selid-angle
spaces can be described by the shape function
No(r E, G, t) which may vary with time but in such
a manner that both the function and its integral over
(%, E, ﬂ.) remain finite at all times.

Next substitute Eq. (1-8) into Eqs. (1-2) and
(1-3) and multiply both mides of the equations
by NE &r E, 9) and both sides of Eq.(1-7) by
P(t)No(r, E, ©, t). Then integrate the resulting
equations over the entire volume of the reactor,
over all energies and over all solid angles to find:

m

Ao o N aln(AF)
GP0 = 228 Py chlm +0ft) - TR P
(1-10)
% Cilt) = (B/APW) - LC,lD) + [aln(AF)/aC;(t)
121,2,...m, (1_11)
where if

[du...:[d?f dEfdfi...,
u v 4] Q-
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p = plt)

- ;V[du No(, E, @)
g+

fE) f g [ dE W (EW SN, B, O, 1)
dr §
0
+[ da f dEv'535 No(f, B2, &7, )
’ 0

= VB Nk, Y, &7 0 7
~NE&E B, Oy - grad No(F, E, G, o
~Noff, E, &, 05v - grad No &, E, ) (1-19)

854 represents the difference between the time-
dependent and time-independent cross sections,

f:(8)

[ do- f dE (B3 B
’ 0

NG, B, G°, 1)

(1-13)
A = Al - ;[duNEf(F, E, DN B, 2, 1) (1-14)
B - 2 Bi- (1-15)
B = @)

Bi . 1\5) .
= — duN g
Ff“ 3 E, 6 o— ‘

x [ AEEW S, B, ONo, B7,ofl', o
0

{1-16)
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FAC{t) = a—f_ f duNGE, B, DFEICE, 0 (1-17)

FAQ{t) - [ duN i@ B, 9SE E, 6, 0 . {1-18)

Equations (1-10) and {1-11) can be reduced toa set
of ordinary differential equations with respect to
time by neglecting the term [oln(AF)/9t]. Thus*

m

Pl p-B 2: i+ '
T Pif) + ‘ ACilt) + Q) {1-193

iy B o

5 TR Pi) - ACilty, 1= 1,2, . m. (1-20)

These equations are the conventional reactor kine-
tics equations that were sought. The next question
is what physical meaning, if any, can be atiributed
to the various quantities appearing in these equa-
tions?

To answer the question note first that, apart from
the omission of the logarithmic term, these equa-
tions would be exact if the calculations implied by
the formal definttions of p, B and Acould be carried
out. As already gmpha:,sized, in general this 1s not
possible and N(r, E, {2) and Np{%, E,Q, t) must be
approximated. Thus, g B and A are known only
approximately and therefore Egs. (1-19} and (1~20)
are approximate,

One approximation that is often used is to as-
sume that the neutrons in the reactor are describ-
able by a cne-group, age-diffusion theory model,
Thug, the neutron densities NHT, E, ) and Nglr,
E, 0, t) become independent of energy and direc-
tion. In the calculations of p, A and fj the density
Nglr, t) is replaced by the steady-state shape func-~
tion Ng(r). In the context of thesé assumptions, the
growth function P(t) is interpreted as proportional
to the average reactor power and is experimentally
associated with the output of a peiitron counter in
any position around or ingide the reactor. The
cuantity p is interpreted as the reactivity and re~
lated to the multiplication factor; A is taken as the
mezn prompt or asymptotic neutron generation life~
time and B; as the effective delayed neutron frac~
tions. The prompt neutron lifetime A and the
effective fractions fi become time invariants of the
particular reactor under consideration, when the
fission cross section is independent of time.

The physical interpretations, however, of P,
p, A and Bi and the invariance of A and Bj cannot
be carried outside the context of the one-group age-
diffusion theory model which is representative of
only a few practical situations.

To see this clearly note that the normalization

*Note that the omission of the term Jln{ AF/dL)
can be avoided by suitzble redefinition of p and Aj.
The redefinitions are pj = ¢ ~ AJIn(AF) /o1 and A; =
Aj - ln(AF)/at.
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factor ¥ is arbitrary. Consegquently, even though
the kinetics equations ave approximately independ-
ent of F, the quantities p, A, and Bi which are de-
pendent on ¥ cannot be measured independently of
each other and therefore they cannot be considered,
in general, as physically meaningful or invariant
parameters. The arbitrary character of F and its
consequences basically stem fromthe fact that what
constitutes a neutron production or a nepiron de-
struction process is entirely a matter of personal
cholce. Specifically, the quantity that determines
the behavior of the neutron population in the reactor
ig the difference between the production and de-
struction processes. This difference can be sep-
arated into two parts in an infinite pumber of ways.
To each way of separation corresponds a normali-~
zation facior F and different definitions of p, A and
gi. Therefore, p, A and B; cannot be physically
meaningful by themselves.

Even if a choice of F is made once and for all,
the coefficients f; are not identical with the corre-

. sponding physical quantities that are established

from experimental observations of the neutron de~
cay of fission products. Their values depend not
only on the particular reactor under consideration
but also on the prevailing operating conditions.
They may differ irom the physical quantities by 20
to 30%.

Given a choice of F, the conventional equations
could be exact if

9 (AF) = 0
a
ot

%fduN;f(r’, B, ONo(D, B, G, 1) - 0 (1-21}
u

and p, A, and ; can be calculated exactly. Equa~
tion {1-21) is true only when the time dependence
of the neutron density N(r, E, ,1)is troly separa-
ble from the other variables. Separability of varia-
bles is possible only whenthe reactivity is constant,
the source term is negligible and the reactor is on
an asymptotic period. Under these conditions B3
and A are also invariant and exactly calculable if
the neutron spectram with respect to the reactor
materials and the neutron dependence on direction
are known. Under these conditions the growth func-
tion P{t) is representative of the average reactor
power in the sense that the output of any counter at
any position of the reactor is proporiional to the
average reactor power.

Under all other operating conditions, the con-
ventional equations are approximate because the
shape function Ny(¥, E, Q, tyandihe exact variation
of the cross sections are not known and they must
be approximated for the caleulation of the bilinear
averages p, A, and Bi, and because the term

Jln( AF) /ot is omitted.

In view of the preceding remarks, itis imporiant
to examine the value of the conventional eguations
for analytical studies and for comparisons of theory
with experiment. By analytical stndies it is meant
studies of the solutions, or the properties of the
solutions, of equations of the form (1-19) and (1-20)
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without specific reference to any particular reactor
or to any physical requirements and limitations for
experimentally achieving these solutions or prop-
erties.

For general analytical studies, the conventional
equations are extremely useful. Toseethis clearly,
consider the coefficients of P(1) in Egs. (1-19) and
{1-20) as arbitrary functionals of time and the re-
actor state variables, If the reactor isnotincreds—
ingly forced externally, these functionals must
remain finite or bounded at all times sincethe shape
function is selected so that all growth tendencies
of the neufron density are represented by P(t).
Physically, this assumption of boundedness is just-
ified because the growth of the neutron densityof a
chain reacting system is governed by the number
of excess neutrons per neutron causing fission.
This number can never be, onthe average, greater
than~1.5 and, therefore, no matter what the func-
tional dependence of the coefficients of P(t) in Egs.
(1-19) and (1~20) or(1-10)and(1-11) are, these co-
efficients must be ultimately bounded functions of
time. Thus, by assigning tothe coefficients abroad
variety of reasonable bounded functional represen-
tations it is possible to explore the general prop-
erties of P(t) that result as solutions of the
differential Egs. (1-19) and(1-20) and thus establish
many general trends of reactor dynamics, such as
boundedness, stability, and ovérall transient re-
sponse. These general trends are extremelyuseful
because they provide the reactor designer or op~
erator with a betfer understanding of the time be~
havior of a large variety of reactor operations.

The value of the conventional kinetics equations
for comparisons between theory and experiment,
however, cammot be qualified in general but must
be assessed in the context of the particular experi-
mental conditions under consideration.

When the variations of the state variablesofthe
reactor are small, then 8 and A can be approxi-
mated by constant values derived from asymptotic
calculations (for example, two-group theory) and
g can be approximated by first-order approxima-
tions of the four-factor formuia. The growthfactor
is interpreted as average power and associated
with the output of a counter around or in the reac-
tor. Under thege conditions good agrecment between
theory and experiment is established. For many
reactor types, reactivity changes of a few tenths
of B or less fall into this category. The linearized
version of the kinetics equations is an adequate
representation of the dynamics of the reactor, and
the behavior and distribution of the energy stored
in the reactor can be predicted to a satisfactory
approximation and correlated with experiment.
This is the reason why oscillation, autocorrelation
or crosscorrelation analysis and tests, which are
discussed in See. 3, have proved such productive
concepts and fools in the study of reactor dynamics.

When the variation of the state variables of the
reactor is large, then the physical meaning of the
conventional equations isbeclouded and comparison
of theory and experiment consists more of semi~
empirical fitting of experimental results than of good
theoretical predictions of experimental data, par-
ticularly if the experimental data are in the form
of time traces of the outputs of one or more count-
ers around or inside the reactor, This is due to at
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least two facts,

First, theerror introducedthrough the omission
of the term Jln{AF)/3t, if this term is omitted, is
in general of the same order of magnitude as the
error involved in approximating the nonlinear Eqgs.
(1-19) and (1-20) by a set of linear equations with
constant coefficients [5]. This error becomes par-
ticularly important during fasi transients such as
the self-limiting, short period SPERT excursions.

Second, all the quantities involved in Egs. (1-19)
and (1-20) cannot be assigned exact physical mean-
ings. For example, suppose that P{t) is interpreted
ag indicative of the average power of the reactor
and it is associated with the record of the output of
a counter. Any correlation of experimental and
theoretical values during severe transients, where
large variations of state variables are involved
would be at best fortuitous. Experimentally; two
identical counter records may arise from entirely
differént neutron density distributions as sche-
matically shown in Fig. 1~-1. Theoretically, differ-
ent neutron density distributions lead to different
values of p, A andffj and different solutions P(t).
Hence the difficulty of assuming that P(t) is the
average reactor power.

For large perifurbations of the state variables,
it is more appropriate to abandon the concepts of
the conventional kinetics equations and work with
other types of approximations of Eqs. (1-2) and
{1-3) which usually require elaborate compuier
codes. Not mwuch work has been done in this area.
However, the space-time fiux synthesis procedures
developed by Kaplan [6] and the space-time solu~
tion of a two-group, diffusion approximation of
Egs. (1-2) and (1-3) for boiling water reactors
discussed by Wolfe and Greebler [7] are essential
steps in the right direction. (3ee also the discus-
sion of the STAE codes in Sec. 5.3 of the chapter
on the Kinetics of Solid-Moderator Reactors.)

In spite of the aforementioned difficulties, the
conventional kinetics eguations are offen used to
correlate experimental data pertinent to large ex-
cursions. In these correlations, A and fjaretaken
aB invariants, p is expressed in terms of some ad-
justable constants and as a function of power or
stored energy, P(t) is ioterpreted as the power
and associated with the ouiput of a counter. The
correlations are more or less successful because
the many uncertainties involved in the calculations
permit the necessary adjustment of the constants
to make theory fitthe experimental data. Of course,
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the subject is by no means well understood yet and
more experimentation is needed fo permit the es-
tablishmeni of correlations that might be valid
for different classes of reactors. There isno doubt
that, from a practical standpoint, good semi-em-
pirical correlations are as useful aspure theoreti-
cal results.

For a detailed discussion of the useofthe kine-
tics equations in the interpretation of experiments
the reader is referred to reference {1].

1.4 Prompt Neutron Lifetime

Ag already indicated, the prompt neutron life-
time is a concept that is physic ally meaningful only
when the reactor is on an asymptotic period. (For
a detailed discission see also reference[8]). Itcan
then be measured by a variety of small perturba-
tion techniques such as 1/v-poisons, oscillation
tests, statistical correlations of neutron fluctua-
tions or pulsed neutron experiments. Thevalues of
A that are thus established range from milliseconds
for heavy water reactors io fractions of a micro-
second for fast assemblies.

Even though the prompt neutron lifetime is vari-
able during severe transients and it affects the
kinetics equations only in terms of the ratios p/A
and fj/A and not by itself, it is inferesting to ex-
amine what significance may be assigned to the vaiue
of the prompt lifetime derived by means of small
perturbation techniques and how this value influ-
ences the problems of reactor control and safety.

. From the standpoint of controllability during
normal reasctor operations, the magnitude of the
prompt néutren lifetime is unimportant. The im-
portant reactor time constant, in this regime of
normal reactor operation, is determined by the
effective delayed neutron precursor constants Bi
and A and it is several orders of magnitide longer
than A. Typical values of this time constant are of
the order of tenths of a second. Consequently, in
this regard, fast, intermediate and thermal reac-
tors present the same operational control problems.

From the standpoint of the power level beyond
which stability with respect to small perturbations
ig lost, the prompt neutron lifetime may be im-
portant. For example, for reactors with relatively
long heat transfer time constants, such zs oXide
fuel reactors, the smaller the value of A the higher
the value of the power level at which the reactor
dynamic behavior becomes unstable with respectio
small perturbations [8]. Thus, everything else be-
ing equal, a reactor with a short prompt neutron
1lifetime has a higher upper limit of the power level
for linear stabilitythana reactor withalong prompt
neutron Hfetime. It should be pointed out, however,
that instability levels derived from considerations
of small perturbations do not necessarily imply
that the reactor variables will grow without limit
(see also Sec. 2).

From the standpoint of ultimate reactor safety,
it is not clear whether the value of the prompt neu~
tron lifetime can be assigned any particular signi-
ficance or not, Whether a short or long prompt
neutron lifetime is the most desirable depends on
what is considered io be the most important design
criterion. For example, if a reactor is fo be con~
trolled externally, say by conirol rods, then there
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is no doubt that, for larpge changes of p compared
to B (o/F > 1), a smaller value of the prompt neu-
tron lifetime leads to a more difficult problem of
cobtrolling or shutting down the reactor. In this
regard, thermal reactors are better than fast re-
actors. On the othér hand, il the reactor has an
inherent physical safeguard mechanism, then the
vaiue of the prompt nentron lifetime may or may
not be relevant to the ultimate safetyofthe reactor.
Specifically, given an inherent shutdown mech-
anism, the significant safety criterion is the tofal
energy, at the end of a self-limited power burst,
stored in the region or regions that introduce the
shuidown reactivity effect, If the shuidown reactiv-
ity eifect is of the form [-oEP®)for [0E () - bE2 (b,
where E(t) the stored energy as a function of time
and o, b, n constants, then the totalenergy siored
at the end of the burst is independent of the value
of the prompt neutron lifetime. In other words,
reactors with the same constants (o, n) and the
sare admissible total energy storage can safely
withstand the same amount of reactivity, regard-
less of whether they are thermal or fast. If, how-
ever, the shutdown reactivity effect is of the form
[-oER{t-T)], where T s a pure time delaybetween
the release of energy inthe reacior and the appear-
ance of energy storage in the regionthat introduces
the shutdown reactivity effect, thenthe total energy
stored at the end of a power burst is larger the
shorter the prompt neutronlifetime. These general
results are discussed in more detail in the chapter
on Mathematical Models of Fast Transients.

Finally, [rom the standpoint of pogsible assem-
bling rates the prompt neutronlifetime may be used
as a measure of the maximum assembling raie that
can be tolerated. It turnsoutihat, givenan energy-
dependent shutdown mechanism, the shorter the
asymptotic prompt neutron lifetime the higher the
maximum tolerable assembling rate. A qualitative
discugsion of this result is alsogiveninthe chapter
on Fast Transients. In addition, a discussionofthe
role of prompt neutron lifetime in fast reactor acei-
dents is given in the chapter on Fast Reactor
Kinetics. :

In closing this discusgion it must be emphasized
that the value of A derived by small perturbation
techniques is not unique. The lack of unigueness
stems from the fact that each reactor canbe critl-
cal for a large variety of combinations of its state

variables and the reactor constituents. To each

critical stafe corresponds a different prompt neu-
tron lifetime, Which value is moreappropriate, or
a betterapproximation for a given problem, depends
on the particular type of experiment that one tries
to interpret theoretically, This question 1s dis-
cussed in reference {1].

1.5 Reactivity

Regardless of whether fi and A are approxi-
mated by some constant values or are considered
as varlables, the other gquantity that determines
the time behavior of P(t), the growth factor of the
neutron density, is the resactivity p that s defined
by Eq. (1-12). When p is equal to zeTo* then fthere

*Strictly speaking it must be required that
py = p ~ AdIn(AF)/3t = 0.

£
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are no time-dependent changes in the reactor, or
in other words the reactor is critical because

m

d
I P{o +Z Ci | =0. {1-22)

i

When p is different from zero, then P(t) also varies
as a function of time.

it is of interest to examine the physical mech-
anisms that are responsible for the changes of the
reactivity p and how these changes can be approxi-
mated or exactly calculated interms of measurable
reactor state variables,

Inspection of Eq. (1-12) which. is the formalde-
finition of reactivity, Indicates that the changes in
reactivity with respect to an arbitrarycritical ref-
erence level can be stimulated by the following
factors:

variations in the neutron relative energy spec-

trum,

variations of the macroscopic fission, absorp-

tion and scattering cross sections, and

variations of the spatial neuiron distribution.

These factors are in turn dependent on varia-
tions of the material composition of the reactor,
guch as varlations in fuel, moderator, coolant and
structure, and variations of the energy stored in
these materials, The dependénce of reactivity on
the composition of the materials of the reactor
stems from the fact that these materials determine
the microscoplc cross sections that moust be used
in Eq. (1-12), The dependence of reactivity on the
energy stored in these materials is introduced by
the fact that this energy determines the thermal
agitation and the thermodynamic state of the vari-
ous target nuclei, Changes in the thermalagitation
alter the relatlve energy spectrum of the reacting
netutrons and changes of the thermodynamic state
result in variations of the relative target nuclel
volume densities which in turn result in variations
of the macroscopic cross sections.

Attempts to compute reactivity from Eq. (1-12)
lead immediately to the same difficulties that ear-
Her forced the restatement of the transport theory
equations in the form of the conventional kinetics
equations. In fact, the quantity p lumps togetherin
one parameter amajorfrictionof the computational
weaknesses, There are, however, several steps
that can be taken which yiéld very useful practical
results without excessive errors.

As a first step, itis found expedientnot to com-
pute the reactivity over the entire reactor at once
and not to consider simultaneously all the factors
that stimulate reactivity changes. Insiead, attempts
are made to calculate reactivity changes eitherover
distinct reactor regions such as the fuel, the cool-
ant or the moderator or overdistinct physical proc—
esses such as aspectral shifts, veid changes,
geometric changes, ete., and then to superimpose
the different reactivity changes that are so com-
puted. The tacit assumption behind such computa-
tional schemes is that the various reactor regions
or physical processes that contribute to reactivity
are weakly coupledtoeachotherasfaras reactivity
changes are concerned. This assumption is justi-
fiec‘i for small changes of reactivity but may lead
to intolerable errors for large changes of reactivity,
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In the contexi of this approach to the problem
of calculation of reactivity, the various types of
reactivity changes are classifled in terms of the
particular region or physical process under con-
sideration. Thus, terms are used Hke thefuel, the
moderator, or the void reactivity effect, efc.

Even with this expedient isolation of the varlous
contributions to reaciivity, however, the computa~-
tlonal difficulties are not over, The reason ig that
the energy stored in the various reactor regions is
not. readily measurable experimentally and analyt-
ically its time-dependent behavior is governed not
only by the nuclear interactions but also by the vari-
ous heat transmission processes thatpartake Inthe
operation of the reactor. As a second step in the
calculation and in order to avoid these difficulties,
it is found practical not to relate the previously
mentioned reactivity changes or effects directly to
the energy stored in the varlous reactor regions
but to other equivalent and measurable thermody-
namic variables, Such thermodynamic variables
are the fuel or coolant temperature, the void con-
centration, the coolant pressure or flow, stc.

This approach to the problem of calculation of
reactivity introduces another possible classifica-
tion of reactivity changes in terms of thermody-
namic variables, For example, terms are usedlike
fuel temperature reactivity, moderator tempera-
ture reactivity, void reactivity, etc.

The relafion between measurable thermody-
dynamic variables and corresponding reactivity
changes is nonlinear. TFor small relative changes
of the thermodynamic variables, however, the hon-
linear relation betweén a particular variable and
reactivity can be approximated by a linear relation
such that the reactivity change in guestion pi(t)
takes the form

pilt) = aifslt), 1-23)

where 6;{t) is a measure of the change of the therm-
odynamie variable characteristic of the particular
replon or process with respect {0 the critical ref-
erence reactor and ¢; is a constant of proportion-
ality.. The constants of proportlopality o are
clasgified as coefficlents of reaciivity and thus
terms are used like the fugl temperature coeffi-
clent of reactivity, the void coefficient of reactiv-
ity, the Doppler coefficlent of rvedctivity, ete.

For large changes of the thermodynamic vari-
ables, the coefficients of reactivity cannotbe taken
ag constant, They are functions of all the thermo—
dynamlic variables, This is another way of saying
that the various reactivity changes are coupled to
each other, Tr practice, however, the coefficients
of reactlvity are often approximated by functions
that depend on cnly one variable. Thus, for large
reactivity changes Eq. (1-23) becomes:

pilt) = a0 eslt) - {1-232)

Finally, the third step in the calculation of re-
activity is to esfablish a relationship between the
measures of the change of {he thermodynamic var-
iables d;{t) and the energy stored inthe reactor or,
what is equivalent, the difference between the fls-
sion energy and the energy carried away by the
coolant, This is also a difficulttask involgi\ng com-
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plicated computations. In practice, the 6;(t) are
usually expressed in terms of P(i). To this end,
the enerpy balance equations are written for each
position of the reactor., These equatjons are, in
general, partial integrodifferential equations sim-
ilar to Egs. (1-2) and (1-3) and the thermodynamic
variables appeéar as functions of both space and
time, The bilinear averaging procedure, described
in Sec, 1.3, can be used to reduce the energy-
balance equations into a set of ordinary, time-
dependent differential equations of the form:

dosit
i;“ = P, @, i,j-1,2,...0, @-29

where n is the number of the thermodynamic vari-
ables appearing in the energy-balance equations
and §;({t) are the averaged measures of the change
of these variables, In other words, in principle,
by solving the set of Egs. (1-24), the 6;(t) can be
expressed as functionals of P(t) which in turnis
related to the energy stored in the reactor.

The functions {j(P{t), #;{f}}are, In general, non-
lincar. For practical purposes they are often ap-
proximsated by first order or linear equations and
thus:

dg; °
S = a{P{t) - Pyl + E bijgj(t) , bt =1,2,...n,
: (1-25)

where aj and by; are constants. Through an appro=
priate transformation of variables, the set of Egs.
(L-25) can always be transformed into a canonical
form such that all the thermodynamic variables are
decoupled. Specifically, if the new variables are
denoted by 8(f), then Egs, (1-25) can always be
transformed into the form:*

de’

id»t(i) - AP -Pg - g8y, i - 1,2, ..,

{1-26)

where 2’y and g are new constants resulting from
ay and byj through the performed transformation of
variables, The reason for casting Egs, {1~25) into
the form of Ege. (L-26) is that the latler provide
another very important classification of reactlvity
changes in terms of the constants gi. If g}is large
(L/g} small), then the reactlvity change associated
with @] Is classified as ‘‘prompt.” If giis small
(1/g'jis large), thenthe reactivity change associated
with ¢% is classified as “delayed.’”” As it will'be~
come apparent inSec, 2, the promptness or delayed-
ness of a reactivity change plays a very important
role in the dynamic behavior of the reactor.

The justification for the clasaification of re~
activity as prompt or delayed dependingon whether
g% is large or small, respectively, can be under-
stood by considering a step change Pp - Py, of
P(t)-Pg. I[ndeed then, the solution of Egs. (1-26)1s

*Note that the same transformationof variables
must also be used in the expressions for reactivity
changes, Thus, In the linear approximation, new
coefficients of reactivity ¢, with respect to the
new variables 65 (), will result,
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_gilt
o:t0) - a;(P - Polt 1_:_? { - L2...n.

a-27)

if g% is large, then the step change contributes very
rapidly to the change of §5(t) and therefore to the
reactivity change &';0% (t) and hence the classifica-
tion of this reactivity as prompt is appropriate,
On the other hand, if g'i is small, the step change
requires a relatively long time to be felt. by #54)
and the corresponding reactivity contribution and
hence the classificatlon of this reactivity as delayed.
In an asymptotic experiment where P(t) represents
the true average power, the term a'j(Pi- Pgitin
Eg. (L-27) is the average energy stored in the ith
region and the promptness or delayedness of a re~-
activity change can be thought of as a measure af
the effectiveness of the stored energy to produce a
sizable reactivity change in a relatively short or
lohg time,

As a reference measure of the magnitude of the
inverse time constants g, it is customary to use
gome value of the prompt neutron lifetime. When
(1/g") is smaller than or comparable to the prompt
neutron lfetime, the corresponding reactivity
change is classified as prompt. When (1/ gy) is
much Iarger than the prompt neutron lifetime then
the corresponding reactivity change is classified
ag delayed,

It is clear that the values of the inverse time
constants g'i are not unique but depend on the op-
erating conditions prevailing in the . reactor, Of
particular importance, in this respect, are the:
heat transfer processes that carry the heat pro-
duced by fission away from the reactor.

For example, if thers {3 good heat transferbe-
tween the fuel and the cooclant, then reactivity
changes due to the coolant are relatively prompi.
On the other hand, if the heat transfer between the
fuel and the coolant deteriorates as the power In-
ereases, then the coolant reactivity changes hecome
delayed. Similar remarks can be made ahout the
fuel. For example, if there is heat transfer from
the fuel to the coolant the fuel has a certain time
constant, If, bowever, the heat transfer is infer-
rupled efther by failures in the fuel-cladding inter-
face or by the blanketing of thé fuel-coolant
interface with a poor heat conduction layer, then
all the flssion epergy remains in the fuel and the
fuel reactivity changes are felt immediately; the
fuel time constant becomes much smaller than the
prompt neutron lifetime.

In sumrary, the difficulties involved in the
caleulation of the reactivity given by Eq. (1-12)
make it necessary to impose various simplifica-
tlons and approximations. These simplifications
iead to the concepts of various types of reactivily
changes or reactivity effects and coefficlents of
reactivity. It is clear that the separation of reac-
tivity into the different cornponents is completely
arbitrary. This Is the reason why different reactor
designers characterize their reactors by a variety
of reactivity coefficients and effects.

A detailed description of the various reactivity
effects and coefficlents and specificpracedures for
their computation in terms of the thermodypamic
variables is given in the chapters on the Reactor
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Core and the Doppler Coefficient and the chapters
on the kineties of different reactor types.

Even though the computation of reactivity is
facilitated by the introduction of the different re-
actlvity effects and reactivity coefficients, it is
important to recognize that, aparf from the limi-
tations of the procedure that have already been
outlined, there are other significant implications
that should not be overlooked.

For example, supposSe that the only reactivity
effect of interest is due to density changes of the
‘moderator. In addition assume that this density
varies at the nth power of the temperature of the
moderator at each position of the reacior. If the
neutron distribution in the resctor is independent
of the moderator temperature, then the over-all
reactivity effect caleilated by using Eq, (1-12) will
depend on the nth power of some appropriate aver-
age temperature of the moderator. If, however,
the neutron dlstri_butionis affected by the moderator
temperature, which might be the case during severe
transients, then the over-all reactivity will depend
on some average moderator temperature raisedtoa
power different from n. This example isimportant
because it implies that what is calculated or meas-
ured microscopically may not necessarily apply di-
rectly to a particular severe reactor transient or
to a particular reactor type.

Another important implication of the computa-
tionally expédient séparation of reactivity into dif-
ferent effects is that sometimes some of these
effects and the corresponding coefficients ¢annot
be mesdsured individually, For example, consider
a heterogeneous reacter which experiences reac-
tivity changes due to the Doppler effect and. to fuel
expansion, Both these effects depend on the tem-
perature of the fusl, Any reactor experiment that
affects the fuel temperature will disclose both ef-
fects at once. Only speclal experimental arrange-
ments might allow the measurement of each
individual effect but then these arrangements do
not correspond to the reactor in question. Similar
comments can be made about other reactivity ef-
fects and reactivity coefficients. -

Finally, a few remarks are necessary regarding
the omission or inclusion of the term AdIn{AF)/st
in the definition of reactivity. If is clear that this
ierm dépends primarily on the rate of change of
the shipe function Ng(F, E, Q, t), see Eq. {1-14).
If the shape changes are rapidasa function of time,
then this term is important. If shape changes are
slow then this term may be neglected.

In attempting to approximate the effects of the
rate of change of the shape function on reactivity
by means of thermodynamic variables, some cau-
tion must be exercised with regard to what con-
stitutes a proper approximation. To be specific,
suppose that the macroscopic cross sections vary
proportionately to some power kof arepresentative
reactor temperature fyy,(t), andthatthe shape func-
tion varies in proportion to some other power £ of
the same temperature. Then the reactivity effect
experienced by the reactor is

PL = p— AdI(AR)/at ~ a6 () + b1 (D[de, 1)/dt,

(1-28)

=
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where a, b = constants. The meaning of Eq. (1-28)
is that the dependence of the rate effects on the
thermodynamic variabies is different than the de-
pendence of cross section eftects. This result is
different than the suggestion made in the literature
[10] accoiding to which, if p is approximated by,
say, adp(t), then the rate effect should betaken as
Bd6(t)/dt.

2 ANALYTICAL TECHNIQUES USEDIN REACTOR
SAFTETY STUDIES

2,1 General Bemarks

The gross dynamic behavior of a nuclear power
plant may be réepresented by a set of ordinary dif-
ferential equations, such as Egs. {1-19) and(1-20),
in conjunction with the equations that relate the
variations of the quantities p, A and g8, to the
changes of the state of the reactor or, ultimately,
to the energy stored in the reactor.

As already pointed out, in attempting to use
these equations for analytical studies, serious
questions of interpretation and computability of
various quantities arise. For example, one question
of interpretation is whether P(t), p, A andf; can be
agsigned specific physical meanings. Regardless
of the interpretation that is adopted, these guanti-
ties will be reférred to in this section by their
accepted names (power, reactivity, etc.) keeping
in mind the comments of Seéc, 1.

Concerning the question of computability, it is
evident that the computiation of the integrals defin-
ing p, A andfF; during a Severetransient encounters
major difficulties because, in general, it is not
possible to know the exact form of the integrands.

Disregarding these questions, the analytical
problem of reactor safety may be approachedfrom
a purely mathematical point of view, that is, as
the solution of a set of differential or integrodif-
ferential equations of the form given by Eqgs.{1-19)
and (1-20). If in so doing general requirementscan
be derived which:

when satisfied, gpuaraotee the safe operation of

the plant,

can be tested by means of simple nonhazard-

ous experiments, and

are insensitive to small perturbations of the

physical constants of the system,
then the questions of interpretation and computa-
hility lose their importance. It is the purpoese of
this section to show that this is indeed sometimes
possible and to present a number of specifications
that a large variety of safe reactors should satisfy.

In order to present some general mathematical
techniqués that are, or can he, used in the con-
ceptual solution of the kinetics equations, in the
following discussion it is assumed that the ratios
Ei/ A are physical invariants of each reactor and
that reactivity can be expressed as a function or
functional of the power or the stored energy.* The
discussion is also limited to dynamic problems

*In order {o improve the approximation im-
plied by the assumed constancy of Bi/A the term
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ocourring over periods of fime of the order of
minutes or less.

The assumption about. the donstancy of Bi/ Adoes
not affect the qualitative aspects of the resultsthat
will be derived.¥* Also, the assumption about the
dependence of reactivity on power is theoretically
justifiable and it is consistent with the miajority of
the existing experimental evidence.

2.2 Linear Version of Reactor Kinetics

In the context of the previous comments, one
simple form that the kinetics equations may takeis

m

&P _p-B 2:
ar _p-8 C.
& A P+ AC+ Q

i

(2-1)

ac, B i}
i Pip \Cp, =124 -
dt A Al m o (2-2)

£
p = Pet j- flt - APl - Poldr, {2-3)
X ‘

where Pg is a reference steady-state power level,
pe is the exiernally introduced reactivity, applied
during t = 0, and f(t) is a kernel determined, in
general, from the various coefficients of reactivity
and the time constants associated with eachcoeffi-
cient.*** The kernel f{t) = 0 fort < 0.

The iotegral in Bd. { 2-3) accounts for reactivity
introduced by the various reactivity effects which
ate experienced whenever the reactor changes its
state. The implication of this integral is that all
canses of reactivity change, such as temperatures
for example, are related to power by linear dif-
ferential equations with constant coefficients and
that they are related to reactivity effects by means
of constant coefficients of reactivity. This linear
interdependence between aliprocesses contributing
to reactivity is an approximation and it is appro-
priate for small changes of power.

Equation (2-1} is nontinear. The explicit solu~
tion of the system of Egs. (2-1) through (2-3) is a
formidable, if not impossible task. Specific solu-
tions can be found, however, by considering limited
regimes of reactivity variation¥*¥¥

Jln( AF)/ot may be retained in the equationfor P(1),
so that reactivity is p1 =p = AJIn(AF}/5t, but
omitted from the delayed neutron precursor equa-
tions.

**The reasop for this is that, when the sola~
tions of the kinetics equations are bounded, the
reactor system belongs to the class of systems
that are classified mathematically as “*structurally
stable® with regard {o the delayed neutronpreécur-
sors. In other words, under this condition,
variations of the values of Bi/A do not affect the
qualitative properties of the solutions of the reactor
equations.

#*2]f the reactor is controlled by an external
control system, the kernel f(t) may also include the
characteristios of the controllss.
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2.2.1 Slow Starfup

As an example, consider the process of reactor
startup, During startup the variation of the energy
stored in the rezctor systemis very small and feed-
back effects are negligible, provided that the re-
actor is brought fo power over a time interval of a
few miniates, Thus, if the externally introduced
reactivity is applied stepwiseatt=0, the reactivity
experienced hy the reactor may be approximated
by

p = porp-. po = 0 U<O, (2-4)
where po is the step reactivity and p_ is the re-
activity when the reactor i3 shutdown. The reactor
equations under these conditions reduce to the ap-
proximate form:

P porp-B Zm :
i i——!‘\‘—“— P+ / yCi+ Qg (2-D)

i

4G _ E P - aGy

- {2 1,2,...m, {2-6

where Qg i8 & constant source. lfbefore gtartup the
reactor is at equilibrium, the balance egquations
are:

- m

U E"_-T_—B Py E ACio + Qo

i =1,2,...m,

(2-7)

(2-8)

where Pg and Cip are the steady state values. The
golution of the set of Egs. (2-5) and {2~6) can he
eagily found in terms of Laplace transforms [111:

ST:' — PQ = E—ﬂ—tv%_—:-g l—) + E Aiai‘?‘aﬂ (2—9)

sC; - Ci (2-10)

B, i- 12, m.
A
1 C; is eliminated from Egs. (2-9) and (2-10) and

the sieady state conditions (2-7) and(2-8)areused,
then it is found that:

PU(A + E "S_E:—.l_l> + AQy
RN S E

i

P -
m TB—S -
As E o -
N - S+ A3 (PU+P)
H

ek RGome representatlve digital computer codes
for numerical solution of the Space—independent
kinetica equations, Egs. (2-1) and (2-2); are des-
cribed in Appendix I of this chapter.Appendixi wag
prepared by Harold Greenspan of Argonné National
Lahoratory.
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The inverse transform of P gives the time-dependent

function P(t). The general features of P{t) depend
on the roots of the denominator of P. This denomi-
nator is related to the well-known inhour equation.
Indeed, when the source level iszero(Qg= p_=0),
the reactor is initially critical andthe inhout equa-
tion for step reactivity changes determinesthe roots
of the denominator of B:

-.éis

S+Ail

pg = AS + {2-12)

i

For pg > 0, Eq. (2-12) admits one positive root
and m negative roots, The negative roots corre-
spond to exponentially decaying terms in P(t). The
positive root corresponds to an exponentially ris—
ing term in P(t). The inverse of the positive root
is usually referred to as the asymptotic period.
When pg < 0, all roots are negative and the critical
reactor is shutdown, For details about the inverse
transform of P and the experimental interpretation
of the inhour equation, the reader is referred to
the literature [12, 13].

It is important to realize that the assumption
that the feedback effects are negligible is meaning-
ful only when the step changes in reactivity are of
the order of cents and the approximation is used
only over a limited peried of time, Alscit must be
realized that, in the presence of a noisy source
term different from zero, the problem of calculat-
ing the power behavior is one of probabilistic esti-
matfion rather than of a deterministic computation
[14] (see also Criticality chapter).

The zero feedback approximation is useful be-
cause it provides the operator of a reactor with a
good insight into the temporal behavior of the re-
sctor during a slow startup and it constifutes a
simple technique for the calibration of the reactivity
worth of different reactor components.

2,2,2 Small Perturbations of Reactivity

Ancther example of limited reactivity variation
is the case when the externally introduced reac-
 tivity is perturbed in such a way that the changes
of ail state variables of the reactor are sufficiently
small that nonlinear effects can be negliected. Thus
if before the reactivity perturbation is introduced,
the reactor is at acritical or operating steady state
and if, after the perturbation, each of the state
variables is writien as the sum of the steady-state
value plus an increment, then Egs. (2-1) through
{2-3) reduce to the form:

ip P F:
S f [ f(t - ApiHdr
Z rei, Q= 0. (2-18)
o =
E% %pﬁ.\icl, i=1,2,...m, (2-14)
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where the lower case letters denote the increments
with respect to the steady-state values and where
second or higher order terms have beenneglected,
Note that Eqs. (2-13) and{2--14) constitute the linear
version or the first approximation of reactor kine-
tics equations of any form,. In other words, if the
variations of all the state variables are small
encugh, then the dynamics of any reactor can be
represented by the set of Egs. (2-13) and (2-14).
Of course, to each reactor and each particular
operating point there will correspond a different
kernel f(t).

Considering pg as the input and p as the output
of the reactor system, the solution of Eqgs. (2-13)
and {2-14) in terms of Laplace transforms is;

PgR{s)
P - H 2.
o T T PRETE C O (219
where
Ris) - — L
mo (2-16)
As + B .
8 + A-i

i

is the normalized zero power reactor transfer func-
tion and F(=) is the Laplace transform of f(t) [11,
13]. Equation (2-15) iz shown in Fig. 2-1 by means
of block diagrams.

The inverse transform of P can be wriften as:

¢ .
plty = f hit — r)pe(r.}dr R
0.

where h(t) is the inverse fransform of H{s) or the
reactor system impuise response, The transform
H(s) is the reactor transfer function at power. The
meaning of Egs. (2-15) or (2-17) is that, for the
types of reactivity variations specified above, the
time-dependent power inc¢rement can be explicifly
calculated provided that the reactor transfer func-
tion H{8) or the equivalent impulse response Kt)is
known.

The general features of p(t) for a given well-
behaved pg(t) depend on the poles of the transfer
function H(s), vamely, on the location of the roots
of the characteristic eguation:

{(2-17)

1 - PgR(s)F(s) - (2-18)

These poles are often also referredio agthe eigen-
values of the first approximation. Note that, inthe

ol

B,Ris) o

F(s})

FIG, 2-1 Block diagram of Eq. (2-15)
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present case, they depend on the value of the
steady-state power, Pg.

i the poles are in the left half of the complex
plane, the solution pt) is asymptotically stable
and after a long time reaches the value

PoRis)

P m = [sge Wj‘m. (2-19)

A necessary but not sufficient condition for the
existence of a physically meaningful limif is that:

o0

F(0} :f fd <0 . (2-20)
0

1o terms of reactivity coefficients and agsociated
time constants, the meaning of inequality {2-20} is
that the sum of the weighted coefficients of reac-
tivity must be negative, The weighting factors are
the time constants of, andthe fractions of the energy
stored in, the various regions of the reactor that
are responsible for coniributions to reactivity,

To see this argument clearly, consider the lin-
earized version of the kinetics equations writien
explicitly in terms of all the state variables that
are periinent to the calculation of the feedback re-
activity. These equafions can always be written in
the canonical form (see also Sec. 1.5):

dp Pg E% Py - - -
Fra pe = P+ x T8 + E AjCi (2-21)
i T

dci Ei

SO Pl ey, 1= L,2,.. —
5 X p - AiC 1 mo(2-22)
dg; .

- ap-gdi. )= i,2,...80, {2-23}

where #; are the increments of the canonical therm-~
odynamic variabies and 1 the coefficients of reac-
tivity corresponding to thése variables. The system
of Egs. {2-21} through (2-23) is completely equiva-
lent to Egs. (2~13) and {2-14). In particular:

n

o - 2 e B (2-24)

i

F{0} mf fdt = Z Tilay/g)  (2-28)
4]

j

Equation (2-25) proves the statement that inequa-
jity (2-20} requires the sum of the weighted coef-
ficents of reactivity tobenegative with the weighting
factors being the time constants, 1/gj, and the
measures, 8, of the fractionsof the to}tal EneTgy
stored in the various regions, j.

This important requirement is alsc necessary
even when the feedback reactivity is not a linear
ﬁmﬁc_i_:}ional of power, provided that to each critical
state of the reactor there corresponds one and only

£, P. GYFTOPOULOS

one combination of values of the state variables.
In other words, suppose that a reactor is critical
and then it s excited by an external reactivity, pe.
1f there is one and only one sei of changes of the
reactor variables which compengate for pgandlead
to anoiber critical state, then it is necessary that
inequality (2-20) be satisfied.

If the poles of the transfer function H(s) are in
the right half of the complex plane, the solution
pit) of the linearized equations is unstable. This
instability, however, is true both mathematically
and physically only for small changes of the reactor
variables. It must be recognized that the ultimate
behavior of the power is governed by the nonline-
arities that have been neglected; whern the power
is growing the assumed conditions for linearization
are no longer valid. Nonlinear effects will be dis-
cussed later.

The problem of finding the roots of Eg. {2-18},
pamely, the problem of investigating the stability
of linear systeins, is discussed in many texthooks
[15, 16]. The techniques that have been developed
for this purpose are Bode diagrams, Nyquist plots,
the root locus, etc. All these technigues lead to
identical results cast in different forms, and the
choice among them is a matter of convenience or
personal preference. These techniques will not be
discussed in detail here. It suffices only ioc note
that in the case of a nuclear reactor the poles are
a function of the steady state power P, and there-
fore, even though the reactor may be linearly stable
for a range of values of Po, it may become linearly
unstable for values of Pg outside this range.

1n view of the approximate nature and limited
range of applicability of Egs. (2-13) and (2-14),
the justifiable question is often raised about the
real importance of the linearized or transfer func-
tion approach to the problem of reactey dynamics
apalysis, -or, stated differently, about the connec-

“fion, if any, between the exact solution andthe one

derived from the linearized model.
Several remarks are appropriate with regard
to this question. First, the solution of the lineax-

ized equafions, either in the frequency Gomain

[Eq. (2-15)] or in the time domain [Eg. (2-1T)}
suggests definite and easily implementable experi-
mental procedures which permit the determination
of H(s) or the equivalent h{t), as well ag R(s) and
F(s). These procedures are discussed later.
Second, from a purely mathematical standpoint
{as discussed in many textbooks), much informa-
tion can be gained from the linear approximation
about the nonlinear solution. Tor example, if one
requires asymptotic stability, then the solution of
the first approximation must necessarily be asymp-
totically stable. Also, if one is interested in the
solutions for small perfurbations, the linear soiu-
tions in many cases yield an adequate approxima-
tion, Of course, the magnitude of petturbations for
which the linear equations are valid, even though
mathematically well defined, {17, 18] i often dif-
fieult to evaluate quantitatively in practice because
of lack of information about the exact form of the
nonlinearities or the complexity of the problem.
As a rule of thumb, for muiclear reactors, varia-
tions of the order of tenths of the steady-state
values of the state variables may generaliy be con-
sidered as adequately represented by linear
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approximations. Beyond thaf level the nonlineari-
ties become important.

2.3 Nonlinear Reactor Kinetics—Welton’s Suffi-
cient Criterion of Stability

Consider again the set of Egs. (2-1) through
(2~-3) in which feedback reactivity is a linear func-
tional of power.  As already stated, no general
analytical solution for these equations has been
derived. Specific results have been found only by
means of computer codes or analog simulators.
Even though thére is no gemeral analytical solu-
tion, techniques are available for the investigation
of the stability of the solutions,

For example, Welton [19, 20] has derived a
sufficient eriterion whichguaranteesthe asymptotic
stability of the reactor power to all bounded vari-
ations of external reactivity for all steady state
- power levels P,. This criterion states that, if

Re Fjw) = f fitlcosetdt <0,  (2-26)
Q .

then the reactor is asymptotically stable. In other
words, if the real part of the Laplacetransform of
the feedback kernel along the jw-axis is non-
positive, then this is sufficient to assure asymptotic
stability of the reactor power with respect to all
bounded variations of external reactivily. The
meaning of the criferion is that the phase of the
negative feedback transfer function [-F(8)] along
the jo-axis is between -~90° and +80°. In simple
practical terms this impliés that the linearized
version of the dynamic equations of the reactor
without delayed neutrons should admit stable solu-
tions at all power levels P, and that the negative
feedback transfer function belongs tothe restricted
class of positive real functions or input impedance
type of functions of passive electric networks.
Weltor’s criterion is very appealing because it
relates nonlinear stability to properties that char-
acterize the linear behavior of the reactor. Un-
fortunately, though, this sufficient criterion is
over-restri¢tive for several reasons,

First, the reactor can he linearly stable
without delayed neutrons éven if the negative
feedback iransfer function is not a positive real
function,

Second, the sufficient criterion is non-con-
structive even for simple reactor systems since
both theoretical considerations and a variety of
experimental results indicate that most reactors
do become linearly umstable after the steady
state power reaches a particular level. In view
of the fact that the criterion is only sufficient,
there is no a priori reason to believe that re-
actors which are not linearly stable atall power
levels are necessarily nonlinearly unstable. As
a matter of fact, there is a Iot of experimental
evidence to the contrary,

Third, it is not realistic to require that the

‘reactor be stable at all possible power levels
since this can never be achieved inpractice due
to constraints imposed by the reactor materials.
It i3, therefore, important to examine whether,

from the analytical standpoint, it is possible to es~
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tablish less restrictive requirements whichareap-
plicable to a larger wvariety of reactors than
Welton’s criterion.

To this end many authors [21-23] have consid-
ered Liapumov’s direct method as an aliernate ap-
prozch to the problem of reactor stability. Itturns
out that in most of the specific reactor problems
that have beentreated inthe literature by Liapunov’s
direct method, the derived requirements for
asymptotic stability are 4t best equivalentto, ifnot
more restrictive than, Welton’s criterion, This
fact has not been generally recognized. It is not
the purpose of the present chapter to go into a de-
tailed proof of the preceding statement. Briefly,
it may be said thai Liapunov’s method has been
applied to reactor dynamics by neglecting delayed
neutrons and transforming the remaining equations
into a canonical form similar {o that proposed by
Lur’e and Letov [24]. Thus, sufficient conditions
for stability are derived by means of a variety of
Liapunov functions of the same type used by Lar’e
and discussed by Popov [25] and others. It can be
shown [26] that the sufficient requirements thus
derived are at best equivalent to Welton’s.

It is felt that the restrictive results derived so
far by Liapunov’s method do not necessarily rep-
resent an inherent limitation .of the method but
rather a shortcoming of the procedures that were
used for its implementation. Liapunov’s method is
both unique and powerful and should be further pur-
sued for the analysis of questions of nonlinear
reactor dynamics,

Whether Lispunov’s method or any other tech-
nigue is used for analysis of reactor stability,
there are a number of important practical aspects
that must be incorporated in the analysis in order
to arrive at useful results. These are discussed
in the following sections.

2.4 Some Practical] Congiderations of Nonlinear
Reactor Kinetics

2.4.1 General Remarks

From the discussgion in the preceding section,
it follows that analytical results onnonlinedr reac—
tor stability are not satisfactory. It is the mirpose
of this section todiscuss a number of changes which
might be introduced in the approach to theproblem
of analysis of reactor stability in order to arrive
at some practical results.

2.4.2 The Practical Importance of Delayed
Neutrons

In most analyses of reactor dynamics, the de~
layed neutrons are neglected from the kinetics
equations, In other words, for analysis purposes,
it is assumed that Bj = A; = 0. The motivation for
this omission is the fact that the complexity of the
equations is greaily reduced. The justification for
the omission is that if a Teactor is linearly stable
without delayed neutrons, it is even more stable
when the delayed neutron precursors are taken into
account, This fact has been proved several times
in the literature. In addition, it can be also rig-
orously shown that in the presence of feedback ef-
fects, if a reactor can be proven to be nonlinearly
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stable without delayed neutrons, then it is meore
stable when delayed neutrons are included in the
apalysis [27]. Mechanically speaking, the delayed
neutions always add extra dumping into the system.

From the practical standpoint, however, the
omigsion of delayed neutrons is a gross oversim-
plification. First, itturnsoutthat analytical regults
derived without delayed nentrons may be so con-
servative that they are impractical. To appreciate
this fact, suppose that a reacfor becomes lineatly
unstable after a certain critical steady-state power
level Ppp. Assume that this critical level is estab-
lished through analysis of the reactor model without
delayed neutrons and that its valueis A, Next, sup-
pose that the same analysis is carried out with the
delayed neutron precursor equations includedinthe
linearized kinetics equations. It can be readily
shown that, in general, the value of the critical
power level is B > A. In fact, in reactors with
relatively long heat transmission time constants
(of the order of a fraction of a second and above)
and prompt lifetimes smaller than 10-% sec, the
difference” between B and A may be one order of
magnitude or more [9]. Needless to emphasize,
thiz is such a substantial difference that the con-
servative estimate becomes impractical.

Another reascn that renders the omission of
delayed neutrons impractical is that any experi-
mental verification of theoretical results will nec-
essarily include the effects of delayed neutrons.

2.4.3 The Admissible Operating Power Levels

Many analyses of nonlinear reactor dynamics
attempt to establish requirements for stability at
all possible operating power levels Pyl 0< Pg < j}.
In other words, thése analyses deal with the prob~
lem of stahbility to mnrestricted initial perturbations
or the problem of global stability.

Designing, however, a reactor to be globally
stable or globally asymptotically stable at all op-
srating power levels is an unrealistic and unnec-~
essary target to aim for. Itisunnecessary because
environmental constrainis require that the operai-
ing power level Pp does not exceed some specified
and limited value, compatible with the materials
and heat transmission processes partaking in the
operation of the reactor. It is unrealistic bocause
reactors, already built and having an excellent
safety record, do become even linearly umstabie
and yet not destructively so, because of inherent
safeguarding nonlinearities,

Similar comments ¢an be made about the energy
stored in the various regions of a reactor. Without
repeating the arguments, it is obvious that itis not
practical to require that a reactor be capabie of
gtoring unlimited amomts of energy.

2.4.4 The Feedback Reactivity

Apart from the preceding considerations with
regard to delayed neutrons, operating power level
and energy storage, there is another aspect of the
model for feedback reactivity that has been used
so far, which repders results onnonlinear stabitity
guestionable. Specifically, it is the practice of
assuming that feedback reactivity is linearly
related to power, see Eq. (2-3). The implication
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of this assumption is that the various reactivity
effects remain decoupled no matter how large the
deviations from equilibrium are and, furthermore,
that these effects are always linearly relatedtothe
stimuli that inifiate therm. In addition, Eq. (2-3)
implies thai every reactor is capable of providing
an unlimited feedback reactivity of either siga.

Ii is clea¥ that all these interrelated implica-
tions of the linear model for feedback reactivity
are not consistent with the concept of reactivity,
as a review of the assumptions behind the formal
definition of reactivity immediately reveals (see
Sec. 1). In particular, the feedback reactivity can-
not grow indefinitely with power because of the
limited number of néutrons per fission,

2.4.5 Asymptotic Versus Lagrangian Stability

Quite often, analysis of nonlinear reactor dy-
namics attempts to establish requirements’ that
are sufficient to guarantee asymptiotic stability of
the reactor power and of all the other variables
with respect to all, oralargevarietyof, perturba-
tions from equilibrium. These requirements may
ofien be very restrictive, if not impossible for the
reactor designer to meet. In addition, even if the
reactor is designed to be asymptotically stable, in
practice the inherent reactor noise leads t0 2 mode
of cperation characterized by state variables that
are hounded but not asymplotically stable. It is,
therefore, of interest to examine other types of
stability.

One possibility is to attempt fo establish suffi-
cient requirements which guarantee Eagrangian
stability rather than asymptotic stability [18]. Spe-
cifically, it may be expedient to design a saie re-
actor so that all state variables remain bounded
within certain predeiermined upper and lower
bounds without concern sbout their exact temporal
behavior within these bounds. Geometrically speak-
ing, designing for Lagrangian stability implies that
the designer is satisfied with the assurance thagall
the reactor variables are confined within a closed
region ofthe multi-dimensional state variable space
instead of requiring that they tend to coalesce at one
point.

It turns out thai the conditions for Lagrangian
stability may be more relaxed with respect to the
conditions for asymptotic stability [28]. This is to
be expected since, so to speak, itisintuitively un-
derstandable that it is eaasier to reéach one or all
of many points than to reach z single point.

Lagrangian stability is neither better nor worse
thamrasymptotic stability. In certain cases asymp~
totic stability may be essential to the operation of
a system as, say, when it is desired to keep the
temperature of a room at exactly 70°F. In other
cases, however, a given margin may be just as
tolerable. It is felt that this is the casé of resctor
systems and it is suggested that this factbe incor-
porated in the design procedires pertainingfo stab-
ility.

2.5 A Practical Model for Nonlinear Reactor Stab-
ility and Some of It Properties

The purpose of this section is fo indicate how
consideration of some of the comments of Sec. 2.4
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might improve the requirements for nenlinear re-
actor stability and lead to practical resuits.

As indicated in Sec. 2.4.4 the physical nature of
the fission process is such that the feedback reac-
tivity is an uitimately bounded function with respect
to any and all the state variables. of theé reactor.

Given an equilibrium state of the reactor, feed-
back reactivity changes around this state might be
expressed as:

z 4+ plly, -- - 6ad s

p = Pet P, PE=

n

E 16, (2-27)

j

Zz =

where pe is the externally introduced reactivity,
pe is the feedback reactivity, 6j are the different
perturhations of state variables which may intro~
duce a reactivity change, Iy are the coefficients of
reactivity when the latier is represented by alinear
approximation and ¢{0:,.. 8y) is a ponlinear fimc-
tion of (61...0n) such that the feedback reactivity
pg is bounded both for positive and negative values
of z. The exact values of the coefficients T; and
the exact analytical expression of $(8 1,..9,,} de-
pend on the reactor type and the prevailing operat-
ing conditions. Regardless of the exact form of
#(@4...00), however, it is evident that it must
satisfy the inequalities:

0 <@y, ... 0a) < jz] for z<-2;;

&y, . .- 80 <0, (B8, .

LB} <z for z > 2y,

(2~2B)

where z,, Zp are given positive guantities and
$(0) = 0.

The complete set of reactor dynamics equations
that must be considered in the light of the com-
ments of the preceding sections is:

m

dP - B
2 . __,P-AB P+§: AC:. (2-29)
i
ac, B )
F(l = %Pfaici, i -1,2,...m, (2-30)
de, .
-&?=aj(P—P°)7g"6j’ ]=1,2,---1’l,(2-31)
n
p = pe+z+¢,(91,...6n), z = 2 16 . {2-32)

i

The coefficients aj, gy may be taken asconstant or
variable but bounded. The basic difference between
Egs. (2-1) through (2-3) and Eds. (2-29) through
(2-32) is the introduction of the nonlinear bounded
variation of feedback reactivity and the admission
of coefficients a;, g that may be variable but
13
bounded.
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The set of Eqs. (2-29) through (2-32) has some
usefil properties that are independent of the exact
analytical form of ${4,, .0y} and/or aj, gj. Before
proceeding with the emumeration of tLes_e proper-
ties, it is helpful to reduce the equationsto a more
convenient form.

Teo this end, copsider the cases where the
externally introduced reactivity is a atep, pe =
congtant, applied at time t = 0.* In addition, for
algebraic simplicity assume that Po = 0. Under
these condifions suppose that the reactor admiits
only two equilibrium states. One state is the shut-
down state, {P =Cy=0j= 0), and the other is the
state that the reactor- will attempt to reach at the
end of the transient initiated by the reactivity pe,
{Poys Cicor fjoos p = 0). The latter is also called
the operating equilibrium state and can be deter-
mined from the solution of the algebraic system of

equations:
po + Lo + BlO10s « - - Bamd » Beo = E Tsoljon 5
}
(2-33}
B

Pipy Al -0, i =

1,2, ...m;{2=34
i ; { )

aijm - giwﬂjm =0 3 j = 1, 2, e It ,(2-35)

where the coefficients ajons §jcp. if variable, are
evaluated at (P, Cigpr 0jon)- Mathematically, the
gystem of algebraic Eqs. 2 2-33) through(2-35) may
admit morée than one solution, This possibility,
however, is excluded from the present discussion,
In fact, when the feedback reactivily isa monotonic
function of 7, the necessary conditionforthe exist-
ence of one and only one operating equilibrium state

is
)3

i

1.8
e

P {2-36)
for all practical operating conditions, as simple
inspection of Eqs. (2-33) through (2-35) imrmedi~
ately reveals. This condition ie identical with the
condition for the existence of the solution of the
linear approximation that was derived in Sec. 2.2,2.

1 all the variables are measured with respect
1o the operating equilibrium state and each variable
is normalized with respect to iis own equilibrium
value (#0), then the system of Eqgs. (2-29) through
{2-32) reduces to the form:

— m - n

dp 'j:ﬁi E:Y .

E:—%P+ : _Kci+ ?5-6_‘+R(p361)1
1

i
(2-37)

*The results that will be derived can readily be
generalized to cases where pe is variable but uni-
formly bounded with, respect to time {29].

)
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€

d
FF=K1(P—01), i=1,2,...m; (2-38)

do; .
T gl - 95 +Rilp, 8}, 1,3 = L 2,...n,

(2-39)

where the lower case letters p, ey denote the di-
mensionless normalized increments with respect
to the operating equilibrium values (P, Cig)s 9
denotes again the dimensionless normalized incre-
ment of 84, ¥j =‘ijmaijm/gjw and

n

Rip, 6) % §_ yi0ip

i

Slll+gy), ... QA +00) -9, ... 1)
+ A (1 +p)

Riip, ;) .= 0 for aj, g; = constantor

= Biee (jl_ - 1)(p + 1) for aj, g; = variable .
a, :

joo

(2-40)

In this normalized formulation, the operating state
is (p =i =4j = 0) while the shntdown state is (p =
¢i=6j=-1).In addition, the stability of the reactor
may now be viewed as the stability of the equilibrium
states with respect to arbiirary initial conditions
of the state variables rather thén step perturbations
of the external reactivity. Also note that the as-
sumed boundedness of the feedback reactivity and
the coefficients aj, gj implies that the functions
Rip, ¢} and Rj(p, 8i) vary at most linearly with p.
and 6; (i =1,2,...m) for large deviations from
equilibrium.

It is a simpie matter to prove that, for the
cases of practical interest, the shutdown state is
unstable, ag it should be, otherwise it wouldnot be
possible to start up the reactor.

Regarding the operating state, the following
properties are inherent in the form of Egs. (2-37)
through (2-39) and independent of the exact func-
tional dependence of pf, ajs Ej-

a. Either all state varmbl]es are constantorall
are unbounded. The assumed uniqueness of the op-
erating equilibrium siate implies that regardless
of what the initial conditions are forthe set of Eqgs.
{2-37) through (2-39), no solutions exist which con-
gist of some constant and some diverging state
variables as t -~ oo,

Indeed, suppose that only #j=M as t-cw. Thus
dgj/dt = 0 and consequently pwould alsotend

t-m
to a comstint ast - o [Eq. (2-31)]. But if p ténds
to a constant then all ¢y [Eg. (2-30)] and 8 [Eq.
{2~31)] would also tend to a constant and therefore
the limiting values of all the variables would be
given by the set of algebraic Eas. {2~33) through
(2-35) which is assumed to admit only one solution.
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b. No state variable admiis afinite escapetime.
The form of Egs. (2-37) through (2-39) excludes
the possibility of any of the state variablesincreas-
ing indefinitely over afinite period of time. In other
words, there are no finite escape times.

Indéed, since for large values of p and 0j the
nonlinear functions R(p,6;) and Ryp,0i) vary at
most linearly with p and all ¢4, it is always possi-
ble to write that, for

[ n
K.=p2+E c.l2+E GjZZHQ,
i i .

H, = positive constant , {2-41}

all the rates of change of the state variables are
such that
dyp do; dd; )
el ‘f < Fip, ¢, 6KV/2 (242
where F(p,ei,?)) is some contimuous positive and

bounded function with respect to all its arguments.
Consequently,

o T
4 dp dC-l d@_,
S K ha S :>: L ) E )
dt Pat _ L T4 I
i ]

20(p, oy, 63K, Klt>tg = Hy, {2-43)

T T
f %5 2[ Fip, ¢;, g))dt . {2-24)
to tg

Note that if some state variable admits a finite
escape time T, the leff hand side of inequality
{2~44) will tend to infinity while the right hand side
will be finite since the integrand F(p,cj,fj} is &
bounded function. Clearly this is absurd and né
finite escape times exist.

The practical importance of this result is that
growing instabilities, ifany, takea relatively “*long
fime’ to reach high levels andthereforethey might
be controllabie, In order to beable toqualify quan-
titatively the meaning of *‘long time”’ it is necessary
to have additional information about the function pf
and the coefficients 2j, gj. In this connection, the
following property is informative.

c. Existence of continuously growig-instabﬂi—
ties. Having established that there are no finite
escape timed, it is permissibie to approximate the
feedback reactivity by some suitable linear fune-
ticnal of power, or egquivalently by a linear coin-
bination of the state variables 6y, provided that
the approximation is used over afinite time only.
Note that there is no inconsistency here with regard
to the discussion of Sec. 2.4.4 bécause the linear
approximation is taken only over a finite time.

Thus, fhe dynamic behavior of the reactor 13
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described now by Egs. (2-37) through (2-39) with
«;5(6 1s--6n) = 0 and suitable average definitions of
s Bjy Ty = constant, or by Eqgs. {2-1) through {2-3),

W el'e
I - 2 70", (2-45)

In order for this répresentation to be meaningful,
Eq. (2-36) must be satisfied. In other words:

oo n
f fidt - Z TA/E <0, (2-46)
]

i

so that the approximate system does admit oneand
only one operating equilibrium. state asthe original
system does.

In addition, suppose that

-

fi) < 0 forall t > 0, (2-47)

i.e., the kernel of the average linear approximation
is negative.

Under these conditions no solution of the reactor
equations exists which contains a continuously in-
creasing power level. Indeed, if the opposite were
true and the power were always increasing and
positive, there would exist some time T such that
the reactivify seen hy the reactor,

T
]. fi- Apddr, (2-48)
1]

would become negative and increasing in absolute
value. Then, the power equation indicates that p(t)
should be decreasing, a result that contradicts the
assumed continmous growth of p(f). Consequently,
no solution exists with a4 continucusly increaging
power ievel.

The practical meaning of this result is that, if
a reactor is designed so that the linear approxima-

-tion around all possible operating power levels is

such that

fity < 0 and f fitydt < 0, {2-49)
0

then growing instabilities, if any, will be experi~
enced in the form of diverging oscillations. Since
the reactor power is physically bounded for nega-
tive values (p{f) > - 1}, the positive half-cycle of
any oscillation lasts a shorier time than the cor-
responding negative half-cycle* and, therefore,
again, diverging oscillations, if any, take a rela-
tively long time to the extent that corrective action
may be taken,

. *If fhis were not true, under the assumed con~
ditions, the feedback reactivity would have a con-
stant sign and thus no oscillation could exist,
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Of course, there is an important question here
which has not been answered, Specifically, “Do
diverging oscillations exist?® or, to put it differ—
ently, ““What are the conditions that prevent the
existence of diverging osciilations?’’ Thisqwestion
camnot be answered without further knowledge of
the functional dependence of feedback reactivity on
the state variables. Some special examples have
been treated in the literature (see also chapter on
Fast Transients).

Even though the existence or nonexistence of di~
verging oscillations cannot be disgussed ingeneral
terms, it is felt that the proposed practical model
for reactor kinetics and ifs propertieshave yielded
some useful results. Specifically, the nonexistence
of finite escape times, the nonexistence of continu~
ougly growing instabilities and the differénce in
time length of the positive and negative half-cycles
of oscillations all tend to provide the designer with
the confidence that, if the premises on whichthese
conclusions are based, namely inequalities (2-49),
are satisfied, then it may be possible to keep
likely accidents under control and to avoid unde-
sirable consequences. The results are also very
useful for space-time dynamic studies. They pro-
vide the analyst with some general properties which
must be satisfied by any approximate space-time
representation that may be proposed. For example,
suppose that the transport theory equations are
approximated and spivedin spaceandtime by means
of a computer. If the computer solitions indicatea .
finite escape time, then the analyst knows that he
has introduced the wrong approximation, -

2.6 A Desirable Modél for Feedback Reactivity that
Guarantees Practical Safety

The purpose of this section is to derive a gen-
eral requirement on the behavior of feedback re-
activity which guarantees the praciical safety of
the reactor. Practical safety means a self-limiting
transient performance that entails a tolerable
amount of energy storage inthe reactor with regard
to a given maximum external reaciivity input.

To this end, given an operating power level Po,
reduce the kinetics equations into one equation of
the form;

i
BY _ oot + Po) - f 80— Aplids . (250)
1]

dit) - Z ﬁ'i‘: (a(t) -,\ie"“‘) for t >0,

~0fort <0, (2-51)

where Bijo/Ag are the asympiotic values of 8i/A
around the operating level Py, 5(1) is the delia func-
tion and (7)) is a functional of the incremental’
power p(t} (fo{ §) ="0) that accounts for the feedback
reactivity and the variations of A, fi and the nor-
malization factor F (Sec. 1). Eq. (2-50) is quite
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general and represents the dynamics of any reactor
with respect to arbitrary initial periurbations.

Next multiply both sides of Eq. (2-50) by ()
and integrate the result withrespect totimeto find:

ot T
% pY +f f d{r — Apldplad-Ar
o Jo
t

—fp(r)fe(p(r))[lﬂr) + Pyldr =

0

| -
213(0).

(2-52)

The second term in the left hand side of Eq.
(2-52) is positive definite, regardless of the values
of p{t). This can be provedeither formally by using
the procedure proposed by Bochner [3C] or heuris-
tically by obseérving that d(t) may be interpreted as
the input impedance of 1 RC passive electric net-
work and the_double integral as the total energy
supplied to this network.

It is evident from Eq.{2-52)that, ifthere exists
a time t = T ; beyond which the third integral in the

1eft hand side of this equation becomes and remains

negative, then p(t) must be decreasing. In addition,
if there exists a time t = Ta > T, such that the
energy stored in the reactor during that time is
tolerable, if p(t) has reached a level comparable
to the rate of withdrawal of energy fromthe reactor
and/or posiibiy, but notnecessarily, if thetime in~
terval T, ig adequate for external controls to be
initiated, then the reactor is for all practical pur-
poses safe.

1t is recognized that the above general specifi-
cations on the behavior of reactivity donotindicate
the explicit dependence of feedback reactivity onthe
stored energy in the reactor and its distribution
throughout the reactor. ¥ is felf, however, that
these specifications in conjunction with Eq. (2-52)
provide a simple and general way for verifying
whether different feedback reactivity models are
capable of guarantecing practical safety. The fol-
lowing example illustraies the point.

A possible modei for the functional f{p(7})) is

t
folp(h —[f(tmr}p{r)dwfl(p(r)), {2-53)
0

where the functional f.{p(7)} ias such that f,(p{+)} is
bounded both for positive and negative values. After
some elementary algebra, Eq.(2-51)can be written

as:
t AT
‘% [ f k{r - Np{Apinddr
0 ¢
£

- p* f fit - Ap(Adr + p[p{t) + Polfylp()
0
(2-54)

where k{t) is the inverse Laplace transform of the
“function:
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Kis) = s+ D{s) - PoFs) {2-55)

and D{s) and Fis) the Laplace transforms of d(t)
and f(t), vespectively. Note that K(s) isthe inverse
of the reactor transfer function at power Po(K(s) =

1/H(8))-
If it is assumed that

o

] fde < 0, ) < 9,
0

Kis) a positive real function, {2-56)

then the reactor power is ultimately bounded. In-
deed, when K(s) is a positive real function, the
double integral in the left hand side of Eq. (2-54) is
a positive definite function. Its time derivative be~
comes negative for large positive values of p(i}.

TRty < 0 a,ndj? f(tydt < 0 and the power is positive

and increasing whenp(t) > pi, thenjzf(t—‘r)p(fr)dr< 0

and increasing in absolute value. At this level
£i(p()) > 0 and is varying slower than linearly with

j:if(t—'r)pﬁ)d'r since fo(p(7}) must be a bounded

function, Thus, the sign of the right hand side of
Eq. (2-54) is determined by the first termand it is
negative. Since () is physically bounded forp(t) <
-1, it 13 concluded that p{ty is uktimately bounded
outside some range (-1, py) or, in cother words,
that there are no diverging oscillations.

1n addition, the positive real character of K(s)
{or H(s)) guarantees that pit) is asymptotically sta-
ble with respect to small perturbations of the op=
erating power level Po.

The above conclusions are hased on satisfying
conditions (2-56) which can be easily imple-
mented either theoretically or experimentally. It
must be noted, however, that asymptotic gtability
with regard to small perturbations and ultimate

poundedness do not exclude the possibility of

bounded oscillations.

2.7 Space—bependent Reactor Kinetics

The analysis of reactor stability through inves—
tigation of the properties of the space-independent
Kinetics equations is necessary in order o estab-
lish whether the reactor variables have a tendency
{o grow beyond tolerakle levels or not.

As alveady pointed out, however, conclusions
derived from the space-independent kinetics ecqua-
tions pertain only to the time-dependent growth
factors of the state variables, These growthfactors
may be viewed as average atiributes of power,
temperatures, etc., prevailing in a reactor. Un-
doubtedly when these average attriputes tend to
grow beyond tolerable limits the reactor isunsafe.
On the other hand, ifthey remain bounded or if they
have an agympiotic value, this does not necessarily
mean that the reactor is safe. The reason is that
even though, on the average, the reactor variablées
may be well behaved, local extrema may oCeur
which lead to undesirable consequences. For ex-
ample, suppose that the power in a tundle of fuel

i
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elements behaves like a self-limiting burst which
is a desirable state of affairs. Assume, however,
that at the same time the energy stored in these
elements is so high that before it has a chance to
be transmitted fo the coolant it melts thefuel. Ob-
vigusly this may have serious consequences.

The implications of these comments are that
guarantees for stability derivable Irom the space-
independent reactor kinetics equations are not the
only requirements that must be met by a reactor
design. What is mosily needed, after stability in
the above sense is guaranteed; is an analysis of
gpace~dependent kinetics or in other words deriva-
tion of complete solutions of space- and time-
dependent equations. Not much analytical workhas
been done in this area for the simple reason that
the probiem is very difficuit. Some computer codes
have been developed for boiling water reactors[7],
and a flux synthesis technigue has been proposed
{6]. (See also Sec. 5.3 of Chapter 9.)

It is interesting to note here that in attermpting
to study space-dependent kinetics the concept of
reactivity must be abandoned or generalized. The
problem must be approached by devising new space-
and time-dependent approximations to the basic
transpori theory balance equations. There is no
a priori reason why these new approximations must
be cast in terms of the concept of reactivity.

3 MEASUREMENT OF LINEAR DYNAMIC CHAR-
ACTERISTICS OF NUCLEAR REACTOR 5Y8-
TEMS

3.1 General Remarks

The discussion of Sec, 2 indicates that whernthe
variations of the output power of a reactor system
are relatively small, then the time behavior of
these variations can be calculated froma knowlédge
of the input reactivity and the impulse resgponse,
h(t), or its Laplace transform, the transfer func-
tion H{s}, Similar relations can be derived for any
other pair of variables viewed a3 input and output.

When the variations of the reactor staté varia-
bies are large, then the computation of the exact
time behavior of these variables is a much more
difficult probiem. However, under certain condi-
tions, knowledge of the properties of the linear
approximation which corresponds {o small varia-
tions may yield useful information about large vari-
ations.

In view of these remarks it is useful to have
experimental technigues which allow the study of
the various impulse responses or transferfunctions
of reactor systems so that analytical resulis canbe
verified experimentally.

The purpose of this section is to discuss some
of the technicues that can be used for the measure-
ment of linear dynamic characteristics either in
the time or in the frequency domain, Such tech-
niques are osecillation, crosscorrelation and auto-
correlation tests. In addition, some consideration
is given to the problem of meagsurement of non-
linear characteristics or experimental indentifi-
cation of nonlinear systems, As alréady mentioned,
- this i3 a much more involved problem and by no

- means {fully understood yet (see also chapter on

fiarn’
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Mathematical Models of Fast Transients).
3.2 Oscillation Tests

In order io establish the theoretical foundation
of oscillation tests, consider the relationship be-
tween power and reactivity when both undergo re-
latively small variations. In the frequency domain
this relationship is {Eq. (2-15)]:

pls) = H{s)p.(s) . (3-1)
The partial fraction expansion [11] of X 8) conizins
two types of terms. The first depend on the poles
of the input pg(s) and the seconddepend on the poles
of the transfer function H(s). Specifically:

pis) ki Sk 3-2
pis —Zsusi+z §~W; (3-2)
i 1

where ki, kj are the residues, sj are the poles of
the input (i = 1, 2,...q) and wjare the poles of the
transfer function (3 = 1, 2,...r). For simplicity
antd without loss of generality, all poles have been
assumed gingle so that the residues are derived
from the simple relations:

ki. = (5 - Si}ﬁ(SHs:si o1 kj = (5 _wj)E{SHs:wj .
{3-3)

The inverse Laplace transform of [¥(s) is:

q T
plty - z : ket e Y ke (3-9)
i i
L ] L ]

steady- transient
state response
response

If all the poles, wj, of the transfer function are in
the left half complex plane, then after a sufficiently
long time all the ferms that correspond to these
poles, namely the trangient response, wilibecome
practically zerc. Afier that time, p(1) reaches its
steady-atate response which is characterized only
by the poles ofthe input and the corresponding resi-
dues,

The steady-state response, when the inpuf re-
activity varies sinusocidally, is:

Ee(s) = A i

= Asinmi
Pe 3 STt o?

{3-5)
steady-state plt) = k,ei*t 4 kpemiet,

(3-6)

where k, =k, = conjugaie of k,,

Ky = (s jo) A -—2
! ]: 52 4+ w?

A .
H(S’] s=jo N E H(]W)'(S—'n
Therefore:

steady-state pl) = AjHGe)sin{et + /Hie)) . (3-8)
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The meaning of Eq. (3-8) is that the steady-state
response of a reactor, or any other linear system,
excited by a sinusoidal input is also a sinusoid of
the same frequency. Iis relative amplitude and
phase with regard to the input are given by the
magnitude and phase of the transfer fimction eval-
uated at the same frequency as that of the input,
respectively.

Equation (3-8) suggests a simple steady-state
experiment for the measurement of the transfer
function atong the frequency axis s = jo. Indeed,
if the reactor is excited by means of sinusoidally
varying reactivities of different frequencies, the
relative amplitudes and phases of the correspond-
ing steady-state power oscillations yield the mag-
nitude and phase of the transfer function at these
frequencies. The experimental results may be
plofted either in polar form or as Bode diagrams
or in any other convenient diagrams [15].

Knowledge of the values of the transfer function
Hi{s) for 5 = jeo is sufficient to determine H(s) for
all values of s because this function is analytic
everywhere except at its poles and H(jo) can be
readily analytically continued for all s [31]. In
addition, by taking the inverse transform of H{jw)
it is possible to determine the impulse response,
hit), if it is so desired.

This is the essence of oscillation tests which
are steady state experiments resulting inthe meas-
urement of linear dynamic characteristics. It is
evident that the technique can be implementied to
measure the transfer function between any pair of
reactor variables one of which is considered as
the input and varied sinuscidally and the other as
the output.

TFor details of the experimental setup for the
measurement of transfer functions by means of
oscillation fests, the reader is referred to the
abundant literature on the subject [32, 33].

Transfer function measurements throughoscil-
lation tests have been used for the measurcment
of prompt neutron lifetimes, coefficients of reac-
tivity and associated time constants, cross sec-
tions, the prediction of power level at whichlinear
stability is lost, shutdown reactivity, ete,

Before closing this brief discussion on oscilla-
tion tests, it is worthindicating some of the limita~
tions that arise when the method is applied to a
‘yeal reactor system,”” Thé power of apresumably
exactly critical reactor is pot constant and the
steady-state response to a sinusoidal input reac-
tivity is not a true sinusoid. The reason for the
deviations from the ideal performance isthat prac-
tically all physical phenomena are fo some degree
statigtical in nature or subject to small perturba-~
tions due to unpredictable environmental changes.
For example, the fissionprocess and/or the boiling
process vary statistically in a reactor orthecriti-
cality may be influenced by atmospheric tempera-
ture changes, ete.

The net effect of these inherent or extenally
stimulated statistical fluctuations on oscillation
tests pérforimed on reactors is that either the input
reactivity amplitude may be required to be large
enough so that the power oscillations have an am-~
plitude much largerthanthe statistical fluctuations,
or the power oscillations must be Fourier-analyzed

in order to extract the fundamental frequency com--
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ponent and reduce the contribution from the inherent
fluctuations.

Increasing the amplitude of the inpuf reactivity
is undesirable on iwo counts. First, the output is
distorted because the reactor does not behave like
a linear system. Of course, it is pogsible to ex-
tract the fundamental component of the output by
Fourier analysis but then the end resultisa meas-
urement of the describing function rather than the
transfer function [33]. Second, it may be unsafe
or mechanically difficult to use large amplitude
reactivity inputs.

Fourier analysis of the power oscillations is in
a sense a crosscorrelation of the output withs sin-
usoid, Consequeniiy, if crosscorreiation is fo be
used in order to reduce the errorsdue to statistical
fluctuations, it is not necessary to excitethe reac-~
tor by a pure sinusocidal input reactivity. Any smali
amplitude periodic reaciivity waveform will ac-
complish the same purpose. The reason isthatany
periocdic waveform {square wave, saw-tooth, efc.}
may be visualized as a sumof pure sinusoids. Each
ginusoid results in its own coniribution to the
steady~state response of the output power. Thus by
comparing the fundamental component of the output
with the fundamental component of the input, if is
possible to measure the transfer function.

Two other implieations of the presence of statis-
tical fluctvations in reactor systems are: (a) the
need for Fourier analysis of the power oscillations
suggests that it may be more appropriate to excite
the reactor with an input reactivity that contains a
broad band of frequencies with equal amplitude and
to crosscorrelate this input with the corresponding
output. The result of this operation is again the
measurement of the dynamic characteristic be-
tween the input and the output (the impul se response}
ag discussed in Sec. 3.3; (b) the statistical fluciu-
ations contain informatin concerning the dynamics
of the reactor. Under certain conditions, this in-
formation may be extracted by autocorrelating the
power or any other observable variable fluctuations,
as discussed in Sec. 3.4.

3.3 Crosscorrelation Tests

The basis of crosscorrelation tests is the con-
volution integral relationship between input and out-
vut [Eq. (2-14)]:

. t t
pl) —fh(t - T)pe(f)df—f hinpelt —~ Adr.  (3-9)
M o]

If the autocorrelation of a function, x(t), isdefined
a8

T/2
beald) - lT [ x{thxit + Adt

T/2

¢vxx(f) = stx(_ 7+

(3-10)
and the crosscorrelation between two functions, x(t}
and y(t}, is defined as
T/2

1
Sl =g [
-T/2

MOyt « AdE, gyl = dyel-0)

(3-11)

{
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where T is the period of the functions x(t) and y({),
when these functions are periodic, or T - o when
the funections are stochastic or apericdic, then the
crosscorrelation of p (t) and p(d) is

T/2
qspep(’-) = 1?[ pelt — Tp(t)dt

T/2

T/2 ¢ '
- %[ dtpe(tr)[dﬂl(h)pe(t—A)
~T/2 o
t »T/2
—f dAh(a) %f diplt — Apelt - A}
o -T/2
t
3[ hie o 0 (7 - M)A .
4]

The meaning of Eq. (3-12) is that the autocorrela-
tion function of the input pg(t) is related to the
crosscorrelation of pg(t) and p(t) by the same con-
volution integral as pg(t) is related to p(t}.

If the input reactivity po(t) is a broad band sig-
nal,* itg autocorrelation function is approximately
equal to a delta function:

(3-12)

Do pell) = AZ3(), A2 - constaat, (3-13)

and Eq. {3-12) yields

$popt) = A%h(n . (3-14)
In other words, the crosscorrelation of the input
and the output is proporticnal to the impuise re-
sponse when the input is a broad band signal. Eq.
{3-12) can also be written in the frequency domain,
To this end, use must be made of two-gided Laplace
transforms [15] because correlation functions are
defined both for positive and negative time shifts 7.
Thus,

Ppopls) = Hishg, o (5) (3-15)

or

(35pep(jw) = H(j'm)qipe pe(jfd} - (3"16)
In other words, the transfer function for s = jw is
equal to the ratio of the power spectrum of the
crosscorrelation of the input and the output over
the power spectrum of the autocorrelation of the
input. '

Crosscorrelation tests are esgentially an ex-
perimental implementation of either Eq. (3-14) or
(3-16). For the details of the experimental procéd-
urg, the readet is referred to the literature {34,
35]. For the purposes of this discussion, it suffices
to note that the presencé of inherent statistical
fivctuations is not as restrictive as in oscillation

*The bandwidth of the signal must be equal or
broader than the bandwidth of the transfer fimction.
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tests [86]. The reason is that the properties of the
broad band input are in general completely inde-
pendent of the statistics of the fluctuations. In fact,
through propér choice of the.input waveform, the
results of crosscorrelation tests may alsc be un-
affected by the nonlinear characteristics even for
large input amplitudes., This topic is discussed in
Sec, 3.6,

3.4 Auiocorrelation Tests

The use of autccorrelation tests, to extract in-
formation about the linear dynamic characteristics
of a reactor, entails a series of agsumptions about
the cause of the fluctuations and the statistical at-
tributes of this cause, )

To make ideas specific, assume that the power
fluctuations p(t) or those of any other variable,
around a constant mean value, are due to inherent
and statistically predictable variations of.reac-
tivity; pe(t). Thus, the relationship between pit)
and pg(t) is given by Eq. (3-9). The aufccorrelation
function of p(t) is

Tr2
- pppld) = 'lfj. pldplt + Adt

-Ts2

T/2 t t+7
lf f d{dhh{k)pe(t - Ai/;ph'(p.)pe(t +7
—T/2J0 Q

t t+ T T/
[ danin f dubted 1 fatpett - Npelt - )
] ¥

-1/2

t t+ 7
=f dz‘f dph(Vh (g o o e+ A= ) .
[+ 0

(3-17)

Eq. (3-17) can best be understood in the frequency
domain. Its two-sided Laplace transform is

Bppls) = HisH(-s)d, , (s), (3-18)
and for s = jw
Hio)? = P22l (3-19)
? o, po 1)

The meaning of Eq. (3-19) is that the square of the
amplitude of the transfer function H(s) for s= jo is
equal to the ratic of the power spectrum of the auto-
correlation of the output over the power spectrum
of the autocorrelation of the input. Under the as-
sumption that p.(t} is an inherent statistical per-
turbation, the power spectrum of ¢ pepe(r) cannot

be readily measured. If, however, this gpectrum
ig assumed as flat and equal to a constant over the
frequency range of inferesi, then the measurable
spectrum of the fluctuations of p{t) is proportional
to the square of the magnitude of thetiransfer fime~-
tion. In other words, the magnitude of the transfer
function can be measured by simply autocorrelating
the power fluctuations and finding the power spec-

fio=y

£
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tram.

Note that autocorrelation tests do not disclose
any information about the phase of H(jo). The phase
can be computed from the mignitude only when the
transfer function belongs to the class of phase
minimum functions such 48 the impedances or ad-
mittances of linear, passive, lumped parameter
clectrical networks [15, 37].

The great appeal of amtocorrelation testsisthat
informdtios. zbout the linear dynamic characteris-
tics of the reacior can be derived without externally
perturbing the reactor bit from the fluctuations

‘that are superimposed on the steady state record

of any reactor variable, A major drawback of the
method is that it is not always possible to verify

. whether the power spectrum of the autocorrelation

of the presumed statistical excitafion i8 indeed flat
white. Thus, resonance fendencies of & pep e

might be attributed to the transfer function and
erroneous conclugions be derived.

3,6 A Stability Monitor

When the linear or nonlinear dynamic behavior
of a reactor system is adequately characterized by
the Iinear characieristics, as in some of the exam-
ples presented in Sec. 2, then the crossacorrelation
method can be used o continuously monitor the
quality of the fransient and stability properties of
the reactor [38].

To this end, the reactor is continuously per-
turbed by a small amplitude, broad band reactivity
input which is then crosscorrelaied on line withthe
resulting output, The crosscorrelation is performed
sinmitaneously for a large number of time shifts 7.
The outputs of the crosscorrelators are. depicted
on a flusréscent screen and provide a graph of the
impulge response, h(t). This graphis readilyinter-
pretable fo predict any poor transient response or
instability tendencies that may be developing inthe
reactor.

3.6 Representation and Identification of Nonlinear
Systems

The purpose of this section is fo present some
of the techniques that are currently pursuedfor the
analytical representation and experimental idepti~
fication ofnonlinear, Tumped parameter, gtationary
and physically realizable systems which frem an
engineering standpoint can be visualized in termsa
of ingut-output data. These techniques have not yet
been fully utilized in the nuclear field but they are
suggestive of possible developments and they pro-
vide a theoretical basis for studies of nonlineari-
ties,

The discussion is first presented without refer-
ence to any particular physical system, type of
input or ouiput. Only one input and one output are
considered for mathematical expediency. The
formalism can be easily genéralized to any number
of inputs and/or outputs. '

Some of the results are used to indicate the ef-
fects of nonlinearities in measurements performed
in reactor systems.

3.6.1 The Functional Represeniation of Non-
linear Systems

E. P. GYFTOPOULOS

Suppose that a nonlinear system is excited by
an input x(t) which results in an output ¥{t). A pos-
gible interpretation of this visualization is that the
input x(t) enters the system, it is processedby the
system and then appears as an output y(t), There-
fore, measurements of the input and the output con-
tain all the information about the dyhamics of the
system. For the types of systems under consid-
eration, this information can be stated ahalytically
in terms of a functional,

gty = Flx{t-a4); » < 1. {3-20)
The physical meaning of the analyiical statement
{3-20) is that the present value of the output is
uniguely determined only by the past history of the
input. The exact form of the functional, of course,
depends on the specitic system on which the input-
output measurements are taken.

The functional F can always be expanded into
an infinite series of functionald of theinput, a form
that is more suggestive of possible approaches to
the problems of répresentation and identification of
nonlinear systems, Specifically, it can easily be
shown that it is always possible to-write [39]:

Flxlt - )

= ho +f hit — Ax(Adr
0
+[ f hiry, ra)x{t — ry)&{t - roldrydry +
0 o

+f [ hk(r;,‘..rk)x(l—ri)
o 1]

B 3 (AN ¥ TR [

y(t)

(3-21)

In principle, the nonlinear system is now charac-
terized by an. infinite set of kernels 71, . .. T)-
The contribution from each kernet to the output is
derived from a generalized convolution operation.
Equation (3-21) is called a Volterra expansion.
Note that, ifthe systemislinear, (7 ,,...TK)= 0,
k > 2), thefunctional expansion reducestothe well-
known linear convolution plus the constant hg.

Functionals of the type appearing in Ed, {3-21)
have heen studied by Volterra [40]. Wiener has
used the functional expansion to investigate non-
linear electrical network problems [41]. Otherau-
thors have investigated different properties of
functionals and developed a systemafic algebra
and multi-Lapiace transformation theory for a gys-
tem or combination of aystems represented by Tunc-
tional expansions [42-44]. The findings of these
authors will not be discussed here. The reader is
referred to reference [45] for an excellent swn-
mary.

For the purposes.of this presentation, it suffices
to emphasize that if the kernels hy(7 ;.- . Tg) Were
known, then the nonlinear system would be com-
pletely represented; in other words, if the kersels
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could be measured, then the nonlinear system
would be completely identified.

Equation {3-21), as it stands now, isnotalways
convenient for experimental interpretation. How-
ever, it is sugpestive of a similar expansionwhich
is more suitable beth for theoretical and experi-
mental studies. Spec::fxcally, if the expansionwere
in terms of an orthogonal set of functionals, a num-
ber of advantages are evident:

If the expansion is truncated at afinite num-
ber of functionals, the input is approximated in
the least mean square error sense,

Each member of the expansion is linearly
independent of the others and the number of func-
tionals considered.

Each member of the expansion can be deter-
mined by use of the orthogonality relationship
which is, in essence, a generalized crosscor-
relation procedure.

The advantages of an expansion in {erms of
orthogonal functionals can be achieved when the
input is a gaussian white noise, as rigorously
proved- by Wiener [41] and Chesler [42]. Wiener’s
theory is briefly summarized in the next section.

3.6.2 Wiener’s Canonical Representation of
Nonlinear Systems

Wiener’s rigorous theory of representation of
nonlingar systems is deseribed in his monograph
“Nonlinear Problems in Random Theory’? [41].
Only some important results are repeated herefor
conyvenience.

Consider a gaussian white noise signal x{t) de-
fined over all times from -~ to o and having a
power spectrum equal to unity. Givenanarbiirary,
symmetrical kernel Ku(7,,7,...Ty) and the func-
tional

= f .. [ Kplry, o« - madxl(t — 5y)
Q 0

xRl - rddry L. L dry,, (3-22)

it can readily be shown that the average value of
this functional over ail times is

1
— f, = =
5T althdt 0 for n odd
Taoe
_(mel)(Zm—3)...(1)f f
0 ¢}
Kn("ls TLa = =i Tms 7m)dri <. .dmp

forn = 2m = even . (3-23)

On the basis of Eq. (3-23) it is easy to prove
. that the following Gy, functionals are orthogonal re-~
gardless of the valueg of the symmetric kernels
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Gy = constant

GI(KI: %, 1) = / Kl(T)X(t - Adr
0
= f [ Kg(rl, Tg)x(t - rljx(t — rz)drldfz
4] 0

)

[ Kolr, Adr
0
G3fK3, x, 1) = f f f Ky{ry, 79, 73)

[i} 0 0

x x{t - TI)X(I - TZ)X(E - r3)drld72dr3

-3 f [ Kzlry, rp, 92t - Adrydr
0 o
{n/ﬂ
GlKas X, 1) - arf“)zy [ [

K,,{rl, s e

GaK,, x, )

rn)X(t - 71) U { | Tn—Zv)

‘3("n—2v+1 - Tn—zm—z) - 5(7:1—-1 - Tn)dTl .. .drg

where [n/2] = n/2 for n = even and
m/2] = h-1)/2 for n = odd and
!
PG S A | L
amay 20 - 2%

In other words, the fimctional G, is orthogonal to
all constants, the functional G is orthogonal toall
constants and all funetionals G,, etec. The ortho-
gopality is defined over the time variable t:

o

g | GalKn X, 06K, X, Udt = sup for

oo

04 m
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! oKy %, 1GaLa, %, 0
ﬁ nllaq, X, nilp, X,
Toe® %
= n! f . .fK“(rl, PP :rﬂ}Ln(rl, e Tn)dfl, PN drn,
0 o

(3-24h)

where Ly{T,,...Ty) i8 also a symmetric kernel.

The orthogonal functionals Gp form a complete
get. Therefore, any function y(t) which is square
integrable can be expanded in a series of G func-
tionals in 2 unique way:

yity = lim Gog+ G Ky, 5, 00+ ..
N-+no

+ GN(KNx X, t” .
(3-25)

If the -gaussian, white noise signal x(t) is the
input of a nonlinear system and y(t) is the corre-
sponding outpui, then Eq, (3-25) constitutes
Wiener’s canonical representation of the system
and the kernels Ky(7,..7n) are the characteristic
kernels of the system, These kernels are related
to the kernels hy{7,,..7y) of the Volterra expan-
sion, Eg. (3-21). To illustrate the point, suppose
that the Volterra expansion has only two terms,

() __f hi(f)xumr)dr;[ [ [ halry. r2, 73)
o] Q 1] Q

x(t - rl)x(t — 72])('(1; - T3)drld72d‘r3 (3-26)

then the Wiener representation has also two terms
and the kernels are related by

Kl(t) = hl(t) +3 f h3(r1, i, t)drl .
0

Ksltys ta, ta) = hsley, ta, t3) - (3-2T)

Therefore, knowledge of either set of kernels is
adequate to characterize the nonlinear system.

The important difference between the two rep-
resentations is that Wiener’s orthogonal expansion
suggests a simple experimental procedure for the
measurement of the kernels K (7, . . T) while the
same ig not true for the Volterra kernels
hy{Tys..7p). This procedure is discussed in the
next section.

3.6.3 Measurement of the Wiener Kernels

The measurement of the kernels K(71,...7p)
is effectively an experimental implementation of
the orthogonalily relationships {Eq.{5-24}]. Indeed,
suppose that the ganssian white noise signal x(t) is
fed simultaneously into the physical systern under

E. P. GYFTOPOULOS

investigation and another known system consisting
of n pure delays in parallel. All the cutputs from
ihe pure delays are multiplied together and the out-
put of the multiplier is also multiptied by the out-
put y(t) of the physical sysiem and then integrated
over a long time. The net result of this in-
tegration is proporiional to the nth Wiener kernel
Kp(74,..7h), where 7§ are the delay times (T4 #
T #...7%). Indeed, the n delays and the first
miltiplier may be thought of a3 a known system
with a Wiener representation:

x(t—rl'}...x(t—rr;) :[ f 6(71—1'{)...
L 4]

. By - r;}x(t - rl) s - rgddeg, oL L dey

nf ...fL“(rl,...rn)x(t—rl)...
0 0

coox{t - rdey, o dr, = GulL,, x, 0,

(3-28)
where
Lalrgs - - -} = 8lry ~ 7{)5&-2 - ré) Yy Bl - rr:} .
{3-2%)

In other words, the sef of n delays and their mul-
tiplier can be represented by a special Wiener
functional of nth order. If the output of the physical
system is visualized as s sumof Wiener functionals,
Gn{Kn, %, 1), then Gu(ly,X%,1) is orthogonal to all
these functionals except Gy Kp, X, t). Therefore, the
output of the integrator is [Eq. (3-24b)]:

f F{)Gulln, %, 1t = 0! Kplrgs 75, - - - 77} . (3-30)

This proves the statement that the output ofthe in-
tegrator is. proportional to the oth Wiener kernel,
It is evident that by changing the values of the de-
lays 7%, the entire range of values of Ky(7%,.-Th)
can be measured. Since the number of delays, n,
can be chosen at will, allkernels canbe measured.

The experimental procedure for the measure-
menti of the Wiener kernels is a generalized cross~
correlation procedure. The necessary crosscor-
relations can be performed on Iine or by means of
digital and/or analog computers.

Wiener’s represenfation and identification pro-
cedure for nonlinear systems is conceptually very
simple, It also shows that, just as gaussian white
noise is adequate for the conipiste characterization
of linear systems, it is also adequate forthe char-
acterization of nonlinear gystems.

The use of gaussian white noise, however, isa
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-major drawback because of the necessity of ex-
tremely long integration times for crosscorreia—
tion. The long times are necessary because of the
serious experimental errors that are otherwise
introduced. This is the reason why the method has
not yet found wide application.

In spite of its shoricomings Wiener’s canonical
representation is very useful for a variety of the-
oretical and practical investigations.

In particular, in any practical system the func-
tional representation will necessarily be fruncated
after a small number of functionals, Inadditionthe
useful bandwidth of any physical system islirited.
These two observations sugpest that it may be
possible to design periodic sipnals defined over
finite intervals of time and such that their pseudo-
statistical propérties are similar to those of gaus—
sian white noise up toa cértaindegree. Thus it will
be possible to use the Wiener representation and
perform practical measurements. Work along these
linea is currently wmder way with promising pre-
Iiminary results [45].

It is worth noting that the proposed procedure
for the desigh of test signals for nonlinear systems
is identical to the procedure used for linear sys-
tems. For example, in linear systems instead of
using a gaussian white noise signal, it is adequate
to use a periodic signal which over a time interval
of one period has an autocorrelation function ap-
proximately equal to a deltz function. In nonlinear
systems the approximate comparison between the

‘periodic signal and gaussian white noise must be
carried not only up to the first correlationbut also
to higher order correlations,

3.6.4 Comparison of Osecillation and Autocor-
relation Tests Performed on Reactorsin
the Presence of Nonlinearities

When the variations of the input to a reactor
system are small, the reactor behaves like a linear
system and oscillation or autocorrelation tests may
yield almost the same information, namely, the
transfer function of the reactor. When the varia-
tions are large, however, the reactor behaveslike
a nonlinear system and the question arises as to
whether these two types of tests yield the same in-
formation. _

To answer this question, suppose thatthe reac—
tor power variations are represented by means of
a Wiener canonical expansion:

PO = D GalkKey pos )
Q

When the reactivity iz varied sinusoidally, contri-
butions to the fundamental frequency coraponent of
p{t) arise from all the odd-order kernels Gom +1
(K2m +1,pe,t) only, Thus, Fourier analysis of the
output yields the describing function whichdepends
only on the kernels K(7), K74, T5,75). eto. [33].
On the other hand, if the reactivity is gaussian,
white noise and the output fluctuations are autocor-
related, the result depends on all the kernels, In-
deed, since the functionals Gy are orthogonal fo
each other, only functionals of the same order cor~
relate with each other and

(3-31)
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(3-32)

Consequently, the spectrum of this autocorrelation
function is different from the square of the ampli-
tude of the describing function derived by meansof
ogeillation tests.

3.6.5 Use of the Deseribing Function for Sta-
bility Studies

The describing function has been used toderive
stability criteria for nonlinear reactor dynamics
{47, 48]. The representation of a nonlinear system
by means of finctional expansions is quite informa-
tive regarding the question of the practical value
of such criteria.

The describing function depends only onthe odd-
order kernels. Consequently, stabilitycriteriade-
rived from the describing function are bound to be
incorrect when the even-order kernels contribute
appreciably to the output of the system.

In fact, stability criteria derived from functional
expangions are in general more restrictive than
necessary. The reason is that such criteria usuzlly
reflect the mathematical conditions for the exist-
ence of the particular functional expansion chosen
rather than the conditions for the stability of the
sum of the functionalg,

To see this point clearly, consider the simple
funetion

1

- LD,
y(® 1+t g

{3-33)

This function is a well behaved function for all
values of t > 0. Suppose now that y{t) is written in
the form of a power series:

yih = 1-t+12-13. (3-34)
The series exists and converges to y(t) only when
|t/ < 1, The implication of this simple example is
that if the convergence of y(t) were derived from
its power series expansion, the range of t would
be unnecessarily limited, even though the actual
function y(t) is bounded and convergent for all values
of t > 0. Since a functional expansion may be thought
of as a generalized power series expangion, this
example shows exactly the difficuity that renders
functional expansions impractical for stability stud-
ies of reactor systems.

APPENDIX 1 REPRESENTATIVE DIGITAL COM-
PUTER CODES FOR SPACE-INDE-
PENDENT REACTOR KINETICS

Harold Greenspan, Argonne National
Laboratory

A number of digital computer codes have been
written, and a variety of techniques [49] have been
applied to obtain accuraie and efficient numerical
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solutions for the space-independent, one~-energy
group, reactor kineties equation systems.

These equations have been derived in Sec. 2 of
this chapter, see Egs. (2-1) and (2-2). For con-
venience in discussing the computer codes two
forms of the kinetic equations are repeated below:

I

dn . n o
Oonplt Y aCieQ

i=1

dC; n
Lo XAy, _
I Bi X Aj {A-1)
and
d 1
- kel -y - 13 5 E ACi+ Q
i=1
dC, t
—— = Kegefis — - AL -
Frali 1B X A (A-2)

The nomenclature applicable to this Appendix
are: ’
o = neutron density. :
kepr = effective multiplication constant,
ko = Kogf = 1.
g = delayed neutron fraction.
p = kex/Keff = Teactivity;
o' = (Kex/keff)/8 = reactivity in dollars
Cj = density of precursors for the ith dejayed
neutron group.
By = delayed neutron fraction for the ith de-
layed neutrot group.
A{ = decay constant of the ith delayed neutron
group.
A = prompt neutron lifetime.
1 = fotal number of delayed neutron groups.
Q = external neutron source.
A zero subscript to the above quantities(where ap-
plicabie) indicates an initial value.

The codes cited here(listed alphabetically) have
been selected on the basis that they represent a
method used, or they have some particularly useful
feature like the reactivity-neutrondensity relation,
etc,, not available in other codes.

More extensive kinetic code listings and de-
scriptions may be found in references [50]and{51].

A.1 AIREK I, AIREK III codes

The AIREK codes [52, 53] have been written in
FORTRAN for the IBM-704, 709, and 70%0. These
programs solve the kinetic systems Egs.(A-1)cou~
pled with equations describing the reactivity p’
either asafunctionoftime or interms of a feedback
function F. The following relation is assumed for
F:

dF
) dt
where a,, a_,, and a, are input parameters. The

F equation with az = 0 has the same form as the
precursor equation; this fact is utilized inthe sub~

= ayF + asn{t) + a0}, (A-3)
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sequent solution,

AIREK II solves fhe coupled system using a
fourth-order Runge-Kutta method. AIREK III ob-
tains a subatantially improved numerical solution
by using a modified system of equations anda fifth-
order Runge-Kutta procedure. The modifiedsystem
is derived by assuming n(t) = exp[Ji1)] and dividing
Eqgs. (A-1) by n(f).

In both programs subroutines are available for
the following forms for p:

o = pp pg being a fixed step input reactivity;

o= pg+ D, PaFa

D,, being constant and F,, as described in Eq.
(A-3);

p" = pg + flt), with {{t) defined as straight line segments
or 2 trigonometsic function;

¢ = (1), values of p{t) being listed in tabular form.

The outpuis from the code aren, inverse period,
Cy, 4nd Fyy, as functions of time.

A.2 RE 29, RE 129 codes

Both of these codes [54, 55] solve the system
Egs. {A-2) for n{t) givenkex. RE 29 is for the IBM-
650 and RE 129 is the IBM-704 version.

Using the precursor equation Cjis eliminated
from the neutron equation of Egs. (A-2), The re~
sulting equations are then:

I

dn _ Kexl dcl Q

A SR SR
i=1

dc,

n
—— R Y (P A~d
a1 (1 + kEX)Bl A }\1C1 ( )

Both sides of Eqgs. (A-4) are then integrated
with respect to t, and the gquantities under the in-
tegral signs are replaced by linear approximations
valid in the time interval At under consideration.
From the resulting expression, n(tj) is determined
successively for a set of time values tj.

Forms of kex available with the code are:

t
fa) ko, = At s Bf a(yidy;
0

B kox = At + B () -11fort <tp,
= Bla(t) - 1] fort » tg;

{c) ke specified at discrete time points;
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d) keyx = Z g.’\m{t —ty)™ + ft n{y}dy i and
. o

m

t m
A= E Lm/n(y)dy form = 0,1, ...
0

m

e

Forms (a), (b}, and{c)areavailablewith RE 29;
forms (a), {(c), and (d) are avallable with RE 129,
For problems involving an initial step or ramp
change in kgy, an opticnal, artificial start routine
is provided to compute the initial values of dC;/dt
and An (the variation of noveratime interval At).

The output of the code is n, [n/(dn/dt)], keyx and

Jzn(y)dy for specified values of time t. Inaddition,

for form (d) the computed neutron lifetime is
printed.

Attempts to improve the above eodes resulted
in developing a new techmique, ‘‘the method of col-
location,’” and applying it [56] to the solution of the
kinetics equations,

In this method Eqs. (A-4) are converted into an
integral eguation and a solution found by the method
of collocation [67]. Included in the numerical
scheme as applied to the kinetics equations is an
automatic interval-size control.

The above method I8 the bagis of an experi-
mental code called COLLOREK [49].

A.3 RE 126, RE 135 codes

These codes [58] are in FQRT RAN for the IBM-
704, They solve Egs. (A-2) for a specified reac—
tivity step. The solution is accomplished by obtain~
ing the roots sy of the inhour equation and using
these in the relation for the neutron density:

oy _ Z {(Aj+Bpexpsjt+C  (A-5)

j=1

Aj, Bj, and C are determined from xj, 3y, A, 85,
and key 0. the form depending on whether the equi-
librium’ or nonequilibrium precursor problem is
treated.

RE 126 performs this calculation for the case
of a reactivity step with equilibrium precursors.
RE 135 computes the case of noneguilibrium pre-
cursors. In the latier computation the reactor is
assumed to have been operating at a steady power
ng for a bulldup time of Ty seconds and this de-
termines Cjy.

Both codes use an iterative procedure to de-
termine the roots 8j. The problem is terminated
when the difference beiween the reactivity as de-
termined by the sj and a specified reactivity is a
minimum, -

The output is: 8j» Aj, By, and also n'l'o%%’ ngo’

d_;}!d_t’ and deviation from asymptotic period for
each time value,
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A.4 RE 138 code

This IBM-704 FORTRAN code [59] calculates
ko and time derivatives of kex, using Eqs. (A-2),
given the neufron density as a function of time,
Defining:

aft)

=
=g

Aif\ Cg
B (A-6)

di{ty =

evaluating the neutron density equation at ty and
541, and sublracting the result yields:

1

AAaj = (1-B)Akj+2 BiAd,-j‘ (A-T)

i=1

Assuming that the neutron density can be rep-
resented by

n o= njexpagft-t) for t;gt<t;, (A-8)
where
n;+ 1
a; = 17 la ‘l_+_
Ati !lj
and setting
aj-1+aj
aj = 2

the precursor equations can be integrated for Adij.
This is then substituted in the neutron formula {o
obtain Akj.

For each time value the code Usta gy, dkg,/dt,”

d%key/dt?, reactor period and j‘acn(y)dy.

A,b RTS code

The RTS code [60] 1s for the IBM~704. In Egs.
(A-2) the Cjareeliminatéd and the Laplace Trans—
form applied {o the result. By means of convolution
theorems and roots of auxiliary functions in the
transform space the neutron density may be written
as:

I t
alt) = n(0) + Z Aj-x/ exp [5{t - 1] KenltIn(e)dt"
i=0 (4]

+ Qg6 , {A-9)

where A4 and 8§ are universal constants for the fis—~
sionable species to be used for various valuesof'a,
and Qg(t) is a knmown function of time,

The RTS code solves Eq. (A-9) recursively at
each time point for kgx in the form
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7 kew = Pylt) + Pald) exp RIL - ()nft)de
0

where P;(t) is either a polynomial in t of specified
degree, or may be givenasatable; Pt} is a poly-
nomial in t of specified degree.

The code has an automatic interval size change
procedure.

The quantities n(t), Kex(t), |ndt, Qpit), Cy{t) and

other quantities are printed as output for eachvalue
of t.
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