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Abstract )

A modlfied Chapman-Cowllng approach is used o solve the linearized
Boltzmann equation for electrons in a three-component plasma consgisting
of electrons, ions and neutrals, General expressions are obtained for
the electron dlstribution function, current and heat flux. Specific
values for the electron transport coeffilcients are reported for various
collision models. ' '

Introduction

This paper 1s part of a general study of particle and energy trans-
port phenomena in thermionlc converters under a variety of operating
conditions. More specifilcally, the paper describes a novel technique for
the analysis of electron transport phenomena. The technique is applicable
to a variety of three-component, two temperature plasmas,

Transport phenomena in non-uniform gaseoug mixtures have been énal-
yzed by others (1-4}. 1In particular, Chapman and Cowling () have devel-
oped a formalism for the solution of a set of Boltzmann equationg through
a series of successive gpproximations. Thils formalism bas been success-
fully used in the field of gas dynamics where 1t is assumed that, to a
first spproximation, all components of the mixture have the same tempera-
ture.

In this paper a modified Chapman-Cowling approach is used to deter-
mine the electron distribution function; current and heat flux in a
three-component plasma in which the electron temperature may be different
from the lon and neutral partlicle temperatures., A similar method was re-
cently presented by Stachanov and Stepanov (3). These authors, however,
treated the charged particle collisions by means of the sméll.angle Landau
appreximation and used a hard sphere model for electron-neutral collisions,
In addition to removing these restrictions on the collisgion integrals, the
present analysis ylelds the electron transport parameters in a form which
18 more amenable to physical interpretation.

The paper is divided into two parts. In 3ection 2, a perturbation
method simllar to that of Chapman and Cowling is used to solve the Boltz-
mann equation for electrons. In Section 3, the practicality of the pertur-
bation method is illustrated both through its application o reference
Lorentz plasmas, and through its application to a three-component plasma.



Perturbation Solution of the Boltzmann Equation
The Boltzmann Equations
The Boltzmann equations in a steady state, three-component plasma

consisting of electrons {e), ions (i), and neutrals (n), may be written as

- QB
V&Vrfa + ""‘ﬁ; . vvfa = gJaﬁ(fa’fB) ;5 OB = e,i,n, (l)

where Jaﬁ is the collision integral for collisions between specles a and
B. This integral may be written in the Boltzmann form as:
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Jaﬁ(fa,fﬁ) ==J(['(faf5 fafﬁ)gaaba;dxdEdgﬁ (2)
where Eop = IGa"Gﬁ! > b is the impact parameter, x and € are the polar and

azimuthal angles, respectively, describing the rotation (in center of mass
coordinates) of the relative velocity vector during the collision, and

f& = fa(§,§&), where G& is the velocity prior to the collision. In writ-
ing Eq. (2) for like-particle collisions, the second subscript is omitted.
This eliminates confusion concerning the variables of integration. Fur-
ther detalls concerning the geometry and derivation of Eq. (2) may be

found in reference 5,

Smail me/ma Approximations

The system of Egs. (1) represents, in general, a set of three-coupled,
non~linear, six-dimensional equations for the distribution functions
£ir,v,) 3 o =e,i,n. This svstem of equations may be greatly simpli-
fied by neglecting terms of order me/‘mﬁ (¢ = 1,n) in the electron-heavy
particle collision integrals:

Jeﬁ(fe’fﬁ) :‘Jeﬁl?e’nﬁa(;ﬁ)] ?
Toelfgsfe) ¥ 0 5 B =1,n, (3)

where ng is the density of species B and 6(x) is the Dirac delta function.
The physical implications of Egs. (3} are two-fold: (a) in the electron
Boltzmann equation the heavy particles may be treated as stationary
scattering centers; (b) in the heavy particle Boltzmann equations, the
electron-heavy particle collisions may be neglected entirely.

Use of approximation (3] in Eqs, (1) results in a system of two-
coupled equatlons for the heavy particle distribution functions, plus an
independent eguation for the electron distribution function. The remsain-
der of the paper is devoted to the solution of the electron eguation. The
solutions of the coupled heavy particle equations will be discussed in a
future paper.



Linearized Boltzmann Fguation

In seeking a solution for the electron distribution function £ (r,v.)
it is convenient to define a perturbation function, ¢é(§,§e), by means of
the equation:

£ (5,5, )=£2(5,7,) [1 + 4,(7.7,)] (%)
where

fg(f,ﬁe) Erne(me/éwkTe)3/?exp(— meve2/2kTe) . {5)

n, = f £ dv,  ;  Zakr, = f (m,v2/2)s dv, . (6)

Thus, the perturbation d must satisfy the conditions:
0 —
fﬁ’dv -0 ﬁefeﬁedv -0 . (7)

Under these definitions and conditions the linearized Beltzmann equa-
tion for electrons 1s:
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where
_ 1/2=
- (m /2x7 )35 (9)
and the linear integral operabors Ie and Ieﬁ are defined by:
— :_]'__ 0.0 _ T— i .
I [F (v,) =5 fﬂfef (F +F-F_-F )g_bdbacdy , (10)
e
IeB[Fe(Ge)J ﬂf%? -F_Jv bdbde ; B = i,n. (11)
In the definitions (10) and (11), F (v ) may be any scalar or vector fune-
i
tion of Ve and £° O(r,v), F=F (v), = F (v Y P = Fe(v ) and
Be Ive—v } . Also the operators Ie and Ieﬁ satisfy the symmetry relation
(6)

jhe(ge) ) I[?e(ae)ldie = d[ﬁe(;e) : I[He(;e)]dzé. 3 I= Ie’Ieﬁ’ (12)

where Hé(;e) and Fe(Ge) are arbitrary scalar or vector functions of Ge.



Solution of the Linearized Boltzmann Eguation
The general solution of Eq, {8) is:

- vpP po - VT
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+ C,m_ + C.m vi/? R

1e 2% (13)

where Ee’ ée are vector functions of the electron veloclity and 01,02 ayre
arbitrary constants. The Ffirst two terms on the right band side of Eq.
(13) represent the particular solutions corresponding to each of the
driving terms in Eq. (8) while the last two terms represent the homogen-
eous solution.

Substitution of Eq. (13) into Eq. (8) yields:

fgﬁe = neIe(Ee) + nilei(ﬁe) + nnIen(Ee} y (14)

(ug _.g)fgae = nI_(B ) + niIei(ﬁé) +n T (B) . {(15)

Since Egs. (14) and (15) contain only ﬁe as an independent variable,

Ae and Be migt be of the form:

Ee(ae) . Ae(ue)ae/ue ; Ee(ﬁe) = Be(ue)ﬁe/ue 2 (16)

where Ae(ue) and Be(ue) are scalar functions of the magnitude of ﬁe.
From Eqs. (7) through (16) it is found that:

C; =Cy =0 (17)
~ 1l .0 p . 5~ _ 71 =
IeB(G) - ;;feveceﬁ(ve)G 5 G=A,B (18)

where oeB(Ve) is the momentum transfer cross sectilon:
oes(ve) = 27/ {1-cosx)bdd ; B = i,n. _ (19)

The meaning of Egs. (13) through (19) is that the problem of detep-
mining the electron distribution function f_(¥,v_ ) 1s reduced to that
of finding two scalar functions Ae(ue) and Be(ue) which are solutions of
Eqs. (14) and (15), respectively. These equations can be solved exactly
only in the case of a lorentz plasma (see Section 3). 1In the general
cage of a three-component plasma one regorts to approximation techniques
a8 discussed below,
Sonine Polynomial Expansions for Ac(u ) and B (u_)

In the case of a general three-component plasma, 1t is expedient to
expand the scalar functions Ae(ue)/ue and Eé(ue)/ue into series of Sonine




polynomials of order 3/2:

@ . ®
A (u)/u, = nioansﬂm W2) 5 B (u )/, = niobnsn?’/z(ug) , (20)
where a ,b, are expansion coefficients and Sn3/2(x) is a Sonine polyno-
mial of order 3/2. () Substitution of these expansions into Eqgs. (114)
and (15), dot-multiplication of the result by Sm3/2(u§)ﬁe and integration
over velocity space ylelds two infinite sets of linear algebraic equa-
tions of the form:
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Thus, the problem of solving Egs, {14) and (15) for the scalar functions
Ae(ue} and Be(ue) is reduced to that of solving the two infinite sets of
Egs. {21) for the Sonine expansion coefficlents a  and b . Approximate
solutlons to any desired degree of accuracy may be obtalined by truncating
the Sonine expansions after N ferms and solving the resulting 2N equa-
tions., The matrix elements amn‘may'in principle be gelermined once the
collision laws are specified. More specifically, the guantities ugg are
special cases of a general set of like-particle colllsion integrals
which have been tabulated by Chapman and Cowling (6), while agﬁ can be
evaluated by using Eq. (18) for the operator Ieﬁ' From the symmetry

relation of the I, and 14 operators {Eq. 12), it is apparent that L.

It

lachron Surrent and Heat Flux

The electron, current, Ee’ and the electron heat flux &e, are:

J 5?[; £ v, = —ue-{VPe + eneé + kgneVKTe} 5 (23)
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ue—-*mg——.[feueﬂe(ue)dge = electron mobility (25)
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e e
kiz —2€ [0, g (u_)dv_ = thermal diffusion ratio (26)
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NelMete
= thermal conductivity. (27)

In deriving Egs. (23-27), use is made of the equality:
O .2 U N o3 -
j}e(ue - 5/2)Ae.ued_\_{e = ‘[}eBe -~ udvy . {28)

The last term in Eq. (23) is the "thermal diffusion" term of Chapman
and Cowling and other authors. The first term on the right hand side of
Eq. (24) represents enthalpy transport, the second term is the "diffusion
thermo-effect", an energy transport mechanism which is related to the
thermal diffusion mechanism in Eq, (23) and the third term accounts for
thermal conduction. The definitions of the transport coefficients ”e’ kz
and # o 8re consistent with the usual definitions of these quantities. It
should be noted that the thermal diffusion ratio appears as a transport
coefficient in both Egs. (23) and {24). This fact is a direct consequence
of Eq. (28) and is in agreement with a general reciprocal theorem relating
to the thermodynamics of irreversible processes. (9}

In terms of the Sonine expansion coefficients Egs., (25-27) become:

2
ea b KT
Q T [} , 5 e 2, T
o= 3 Ko o= — o= - —={b, + kb ) . {29)
e n . ? e &y }fe 2 m, 1 5%e~o
Applications

Torentz Plasmas

in the case of a Lorentz plasma Egs. (14) and (15) may be solved
exactly. Hence the ILorentz plasma provides a convenient reference case
for comparisons. More specifically, for a Lorentz plasma consisting of
electrons and heavy particles of species B only, the perturbation function
and transport coefficiente are:

TP - VT
e ek 2 <] e
o = - ’\eB{_?:'}'kae-" (ue-g)ﬁ} G, (30)
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~where R _q(v,) = l/hﬁoeﬁ(ve) is the electron mean free path and l"'eﬁ(ve) =
ve/kéa(ve) is the e~B collision frequency. Note that the perturbation
de is small (compared to unity) when the fractional changes in the elec-
tron pressure and temperature and in the plasma potential are small over
one mean free path,

Shown in Table 1 are values of the transport coefficients obtained

(a) the

heavy particles are neutrals and ven = constant: (b) the bheavy particles
are neutrals and A, = constant; (¢) the heavy particles are lons. A

from Egs. {31) for three Iorentz plasmas of special interest:

Lorentz plasma of the last type is primarily of mathematical interest
since the neglect of e-e collislons as compared to e-1 collisions requires
that n «¢n;, a condition which is never achieved in practice. Note that
the values of Table 1 are in agreement with similar results derived by
other techniques.

Table 1

Special Values of the Transport Coefficients
for lLorentz Plasmas

Heavy Particle
Specles Neutrals Neutrals Ions
Col%;iion %n = const Aen T const Coulomb
" €Aen’s 128(1)1/2652(KTe)3/2
€ Me¥en 3kTe 2 nieSmel/?lnA
T
ki 0] -1/2 +3/2
? 2 5/2
k= k kT
e i.ne . e 2, k2 v 512(g)1/2ne fﬁ (1/2)
e myVen 3¢ ena " nie 'm."’ “1nA
Note: v, = electron mean speed = (8kTe/#me)l/2
1nd = conrlomb logarithm



The transport coefflicients for a Lorentz plasma can also be computed
approximately by means of the Sonine polynomial expansion technique., For
exampie, for the case of a lLorentz plasma in which the heavy particles
are neutrals and Aen = constant, these coefficients for N = 1,2 and 3 can
be readily evaluated and compared with the exact values given in Table 1,
Thls comparison reveals (Table 2) that retention of three terms in each
of the Sonine expansions is sufficient to yield all three transport
coefficients correct to within 10%. '

Table 2
Transport Coefficients for Iorentz Plasma with Constant Aen

#£ of Terms in-'iue/(ue)exant kﬁ/{kﬁ)exact ﬁ;/cfe)exact
Sonine Expansion |

N=1 : 0.88 0 0
N=2g ‘ 0.95 . .77 0.85
N =23 0.98 0.90 0.93

Three-Component Plasmas with Constantu%en
Another illustration of the applicabion of the Sonine polynomial
expansion technliqglie is the computation of the transport coefficients for
a three-component plasms with Yoy = constant and n, E‘ni, If three terms
are again retained in each of the expansions, the matrix elements umn are

readily evaluated and they lead to the followlng set of equations:

1+1,50-%n/béi ' 1.50 1.87 i?_ao ' r;.SOne/bei
1.50 4.66+3.75yen[yai 5.37 ftas| =| o
1.87 5.37 10.74+13.1 Jiafn/))ei a, | 0
- (32)
141,502/ 1.50 1,87 e 1 T o
en’” el i o
1.50 b.66+3.75 /¥ o 5.37 by | =}-3.75n,/,
8 1.87 5.37 lO.?+13.1Jgane%; ;be__ O
eulnﬂv ny ' (333
where ¥ = effective electron-ion coliision frequency.

Ly (2t o

Solution of Egs. {32-33) yields a,.b, which in turn can be used in
Egs. (29) to caleulate the transport coefficients. The results of the
calculation are given in Table 3.



Table 3

Transport Coefficients in a Three Component Plasma

Weakly Ionized
Limit Fully Ionized General
(yei<<y ) | Lamit (v ;>> 4, Expression
€2 3/2 o, 0
kT, ) (ThEThe
o e Ty1/2 o ( ete
wot p = = 0.57x128(3) e, = b
el e T m Y eBnim 1/21nﬂ e 0.,® i)
e e e
T 7o _ Ty0O _ T _ T
ko | (kg)” =0 (k)™ = 0.71 kg = (ko) by (n)
- 2 | £ 2 5/ | o
n kT (xT,) A ﬁﬁD
o _57e e |0 _ T 1/2 o
Yol e =2 m ¥ e = 0.23x512(3) R 1/2 He = %%o OOEW(H)

The second column of Table 3 gives the values of the coefficients in
the weakly lonigzed limit L’ic‘Jén' They are denoted by the superscript
"o"™ and are identical to the corresponding values given in Table 1. The
reason 1s that the Sonine expansion technique with N2z 2 yields an exact
solutlon for the Iorentz plasma with constant V .

The third column of Table 3 gives the values of the electron transport
coefficients in the fully ionized-limit:Jei;cuén.- They are denoted by the
superscript "o " and are in excellent agreement with results reported in
references 3 and 8. By comparing the values of ugo, (kz)oo andé?eoo with
the corresponding values in Table 1 for a hypothetical e-i Lorentz plasma,
the importance of electron-electron collisions is deduced. The effect of
e~e collisions 1is to reduce each of the transport coefficients {in the
fully ionized limit) to approximately 1/4-1/2 the value obtained in the
absence of e-e collisions.

The fourth column of Table 3 gives expressions for the coefflcients
for values of l%i/wén which lie between the weakly ionized and fully ion-
ized limits. The functions hu(u), h (1} and ‘4(u) are:

1.00 + 7.00u + 9.67u° + 3.67u3

h (“‘) = 2
B 1.00 + 7.93u + 10.9u° + 3.67u°
. o ’
1.00u + 0.89u

h (u‘) = 5 (34)
k 0.24 + 1.46p + 0.801°

h (u) = 1.00 4+ 11,9y -+ 45o11~’-2 + 73-2Ll-3 + 52.011-4 + 13.511,5

A 1.00 + 13.9p + 62. oug + 95.0u0° + 65.9u% + 13,540

where k= io/ud’ = 0.341,/2 . These functions are plotted in Fig. {1).



From Fig. (1) it 1s apparent that the function h {u) is nearly unity
for all values of u(Ofpfoo). This implies that, to augood approximation,
the contributions to the electron mobility from electron-neutral and from
electron-charged particle collisions may be added in parallél. Similar
conclusions apply to the contributions to the thermal conductivity of the
electrons.

Conclusions

The modified Chapman-Cowling approach presented herein provides a use-
ful tool for the analysis of three-component plasmas. The method yields
both a quantitative description of the electron particle and energy- trans--
port mechanisms gnd an analytical expression for the electron distribution
function.
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