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INTRODUCTION

The purpose of this paper is to discuss some applications of mathematical
methods to nuclear engineering at the Massachusetts Institute of Tech-
nology (MIT). The word some in the title is used advisedly because in
the limited space available I will not be able to do justice to all activ-
ities of this nature in our department. I will restrict my remarks to
problems that concern us and fall within the main themes of this con-

ference.

Specifically, I would like to discuss briefly (a) a new criterion of
asymptotic stability for nuclear reactors described by nonlinear equations
including all delayed-neutron precursors; (b) a simple example illustrating
the procedure for deriving stability criteria by investigating the nature of
equilibrium states at infinity; (¢) a novel approach to problems of non-
linear optimum control for systems described by means of input—output
functional relations; (d) some results on questions of space—time
nuclear reactor dynamics; (e) an application of dynamic programming
to the problem of optimum refueling of a power nuclear reactor.

* a -
This is an invited review paper,



2 GYFTOPOULOS
A NEW CRITERION OF ASYMPTOTIC STABILITY

General Remarks

It has been shown that stability analyses of nonlinear point reactor

kinetics, resulting in criteria that do not include the delayed-neutron
precursor constants, are either overrestrictive of nonconservative. For
example, in cases where the feedback transfer function is a lagging
function of real frequencies, the analysis is overrestrictive because
delayed neutrons may relax substantially the requirements for sta-
bility.' On the other hand, when the feedback transfer function is a
leading function of real frequencies, the analysis is nonconservative
because the reactor mode: without delayed neutrons may be absolutely
stable at all operating power levels, whereas the model with delayed
neutrons may be linearly stable only for a limited power range.?

In addition, it has been recognized that criteria which guarantee
absolute asymptotic stability are impractical.! The impracticality
arises from the fact that no real reactor can be operated at very high
power levels. _ o

These observations suggest that physically meaningful stability
requitements should always include the delayed-neutron precursor

parameters and a finite range of operating power levels. In what follows,

a new criterion of stability is presented which incorporates the pre-
ceding suggestions. To the best of my knowledge, this criterion is the
most general and least restrictive stablhty requirement that has been
derived to date. : ‘

Reactor Model

If it is assumed that the reactor admits a unique equilibrium power
level, P, for a given reactivity input, the kinetics equations for t >0
can be Wﬁt_ enin térms of normaﬁzed dimeénsioniess, and incrémental
variables as

'dp(t) mBi
e § 7( [p@) ~ ¢, (O] + k(1)
dc, (t) _
= by b® —c®  G=12 ..., m

pl t |
kO =~ [+ i~ D o0 a7, T}

£(t) =-0 t < 0)
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@
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SOME APPLICATIONS OF MATHEMATICAL METHODS 3

The minimum physical value of the variables is p =c;=~1.. The
meaning of Eq. 3 is that, to a first approximation, feedback’ effects are
expressed as a linear convolution of the normalized incremental power
[f_fw f(t — 7) p(7) d7]. Any higher order effects arising either from
nonlinear feedback per se or from variations of the values of ﬁi, A,, and
A during a transient are included in the nonlinear functional F z{p'(T‘)].
The properties and implications of this functional have been discussed
elsewhere. ! _ N B .

Before the stability analysis is discussed, it is convenient to
define the folloWin‘g: ' -

dGot) = [ oD yar 5)

q*(jo,t) =f e~ IOU=") v () dr | | (6)

t
fade]

m Bi s —1 :
R(s) = [s + - = zero-power-reactor transfer.. =~
i A function (7)

s + )\i
t) = inverse transform of R(s) S =01 (<0 T (@®)
F(s) :=transf0rm of f(t) = feedback transfer function %)

With these definitions Egs. 1 to 3?yie,'1d

. 1 ®
p(t) = f_.tm r(t — T k(7)) d7 = Z—Wj:_mR(Ja;) q(jm,t) dc?

1 e '
=5 f_w R*(jw) 9*(jw,t) do . . S (10)

t 1 o] .
Jo s e ar= — [ FGo) RGe) aGo.t) do S an
k() = }_fm (o, do = > fm *(o,t) dow (12

S 2 Y e, 2 Y- ’ -

The derivation of Egs. 10 to 12 is straightforward, It requires certain
changes of order of integration which imply that

0 - [ S R o ‘
J._ btdr<e [ k) dr<o (13)

|
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Conditions for Stability of the Linear Approximation

For the linear approximation of Egs. 1 to 3 to be stable, the roots of
the characteristic equation

P _
1+ Tl R(s) F(s) = 0 (14)

must lie in the left-half complex plane. It is assumed that this is true.

It is further assumed that beyond a certain critical power level,
P, one or more of the roots of Eq. 14 move into the right-half complex
plane and that the reacter becomes linearly unstable. In other words,
for

P ~aP (a_ > 1) (15)

c c 1
the equation

acpl
R(s)F(s)=10 (16)

admits roots on the jw-axis. The number a_ is a measure of the margin
of linear stability with respect to the operating power level, P r

Conditions for Nonlinear Asymptotic Stability
Let F_[{p("}] = 0. In other words, assume that

P
K(t) = -7\1- (oo f fe -7 pdr an

Note that this assumption does not alter any of the preceding results.
Consider the scalar function

1
V = p(®) - In[l + p®)] — — p%(¥)
2d 2

'—MB

[c At) — In[l + ¢. (t)] — ——1— c2(t)]
2d* )

I-MB
>

1 1
j:_ [p(7) — ci(’r)]2 { - —J dr

_[1 +p(MI1 + Ci(T)] 42
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bApt a—1-— p(7)

2 s
P adee g 97 4

where a, b, and d are positive numbers to be determined (a, d > 1). If
d= a, the function V is positive definite in the region

d%a ~l<p<a—-1 -l<c,<a-1 (i=1,2,..., m) (19a)
If d <a, the function V is positive definite in the region
d<a ~l<p<d=1 -1 <e, <d -1 (i=1,2, ..., m (19b)

In addition, the function V admits continuous partial derivatives with
respect to p(t) and all c,(t); and V is equal to zerc only for p(t) =
C. (t) 0.

The time derivative of V along the trajectories of the system of
Egs. 1, 2, and 17 is

dv P,
= p(t) [ - nenar- = © b0 k)
dt d2

bA t
~ k) - bP, k() [ £t — 7 p(m) d7 20)
a -

If all the terms in the right-hand side of Eq. 20 are written as a function
of q(jw,t) by means of Eqs. 10 to 12, then it is found that

s ” [4Re G(o)]*q( dl2 -
a = Tl oG iRe 6ol qGe,0 do @1)
where

By . R*(jw) bA[ 2P,
G(jw) = — [RGo)}* F(w) + +—[1+—R(Jw) F{jw) (22)

A dZ A

and
dzza

A sufficient condition for this derivative to be negative definite is

Re G(jw) > 0 | (23)
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Consequently, if there exist numbers a and b such that condition

23 is satisfied, the solutions of Egs, 1, 2, and 17 are asymptotlcally
stable because V is a Liapunov function with a negative definite time
derivative. In other words, given a reactor described by Egs. 1, 2, and
17, the operating power level, P, is asymptotically stable with respect
to all initial perturbations that lie in the region (total quantities)

d>-a P<aP, C,<aC,, (=12 ..., m 24)

provided that there exist positive numbers a and b which make the
funetion G(s) a pesitive real function without zeros on-the jw-axis.
It is evident from the discussion on linear stability that the
number a must be
a<a - . (25)

C

Its exact value as well as the exact value of b depends on the particular

"~ form of the feedback transfer function.

The sufficient condition 23 can be written in a s1rnpler form when
d? = a. Indeed, then

, R*(J&)) bA ab,
Gljw) = 14— R(]w) F(jow)
s a a A
1| &Py 2 R*(j
s 2R FGo)| PUo) e bA (26)
al TA Y | T+@P /N R o) F*Go)
Therefore condition 23 is equivalent to
R(jw) + bA
- - >0 (27
1+(aP,/A) R(jw) F(jw) .
Another simplified sufficient criterion is derived by takmg d? =
and b = 0. Then condition 23 becomes
R(;
- o) 28)
1+(@@P,/A) R(jw) F(jo)

In othet words, the reactor is asymptotically stable with respect to all
initial perturbations in the region 24 if the reactor transfer function at
power is a positive real function without zeros on the jw-axis.
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A similar procedure can be used for the case where Fz[p("r) 1£0,
i.e., when k(t) is given by Eq. 3. For example, consider thé function
V in Eq. 18. Its time derivative along the trajectories of Egs. 1 to 3
is ‘

dav Py rt
=== [t~ pry dr-

1
d A 2

bA
pet) k(t) — — k*(t)
d2 a

=P k) [ it - D p(n) dT + F, (7] [b®) + BAK®]  (29)

If it is assumed that Fz[p(T)] has always the opposite sign from p(t) +
bA k(t) and that condition 23 is satisfied, then the time derivative given
by Eq. 29 is negative definite, and the reactor is asymptotically stable
in the region defined by inequalities 24. Other sufficient conditions
can be derived for different specifications on F p(Dl

Also, a sufficient condition for Lagrangian stability of the solutions
of Egs. 1 to 3 is given in Ref. 1. Specifically, the solutions of Egs.
1 to 3 are Lagrange stable with respect to-all initial perturbations if
there exists a positive number a such that

R{jw) .
Re . >0
14 (a.Pl/A) R(jw) F(jw)

[f(t) < 0] - (30)

Comparisons with .Existing.C.riferi_u for the Case Fz[p('r)]rs 0

Welton’s sufficient criterion'® Re F(jw) 2.0 is a special case of
condition 23 fora=d = » and b = 0. It implies that the reactor is
asymptotically stable for an infinite range of operating power levels
(ac = ), and it does not include the delayed-neutron precursor constants.
It is evident that, even if the feedback transfer function, F(s), does not
satisfy Welton’s criterion, it can satisfy inequality 23.

Popov? derived a sufficient criterion for asymptotic stability by
means-of certain inequalities. In terms of the present nomenclature, this
criterion is ' '

. abP,

Ré{i |R(j@)|2F(‘j@)ﬂé{n—'—*éﬁ&o) F(ja,)]};o o 31
A _ a A . E -

The range of acceptable initial perturbations is given in an implicit form.
Popov’s criterion is a special case of condition 23 ford = 0. Itis. .
evident that the criterion derived in this paper is less restrictive than .
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Popov’s criterion since the reactor transfer function at zero power, R(s),
is a positive real function [Re R(jw) = Re R¥(jw) < 0.

It is concluded that the sufficient condition for asymptotic stability
stated by inequality 23 is the most general criterion that has been
derived to date.

It should be noted that all the sufficient criteria for nonlinear
stability discussed so far involve only parameters characteristic of the
linear approximation of Eqs. 1 to 3. This is an advantage both because
these parameters can be identified experimentally and because proce-
dures for characterizing nonlinear systems are not yet fully developed.

STABILITY CRITERIA DERIVED FROM INVESTIGATIONS
OF SINGULARITIES AT INFINITY

General Remarks

Next, I would like to discuss a novel technique for deriving nec-
essary and sufficient criteria for stability of solutions of ordinary dif-
ferential equations with pelynomial nonlinearities. This technique
requires that all singularities at infinity be locally unstable. This
comes about because all trajectories of a dynamical system begin from
and end at singularities. One of my students, Miguel Barandiaran,
worked on this problem for his doctoral thesis.*

A three-dimensional example is treated in Ref. 5. To bring out
the salient features of the technique without excessive mathematical
complexities, I will describe another problem with two state variables.

Consider the set of differential equations:

do 1 o X '
—=— |5, ® (32)
dt Te co; _

dX

= V:0® AKX - 00X - (33)

where c, Ax, Op O, T,, and y_ are positive constants and & _ is a positive
or a negative constant. For a physical interpretation of Eqs. 32 and 33,
see Ref. 6. The region of physical interest is ®, X > 0. The purpose of
this analysis is to derive necessary and sufficient conditions that must
be satisfied by the constants of the system so that the solutions are
asymptotically stable or bounded with respect to all physically realiz-
able initial conditions. For completeness, singularities both in the

finite phase plane and at infinity are examined.
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Equilibrium States in the Finite Phase Plane

There are two equilibrium states in the finite plane:

®, =0 X, =0
and
) Cﬁo)\x _ CSon
L oy, —¢cd) 1 o

The equilibrium state (¢, X_) is physically meaningful only when

0<cd, <y, | (34)

The eigenvalues associated with the equilibrium state at the
origin are

6

) 4
S, = —A 5, =

1= 2= (35)
1=

The first eigenvalue corresponds to the vertical direction @ = 0. The
second eigenvalue corresponds to an eigenvector of slope y_o7 /
(0, + A, T,). For 3 >0, the origin is a saddle point, and, for
o, <0, it is a stable node. The origin becomes structurally unstable’
for §,=0and § =-A 7.

The eigenvalues at the second equilibrium state are given by the
characteristic equation:

g oty
s? 4 s + =0 (36)
yX —hCBO Te

For Bd < 0, these eigenvalues are of opposite sign, and the equilibrium
point is of the saddle type and nonphysical. For & > 0, the eigenvalues

are real or complex, and the equilibrium state becomes a focus or a node
depending on whether

45, 1 b 7 |
-] 21 . (37)

AT y

X e X

respectively. The equilibrium point is stable for 080 <y,
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Singularities at Infinity

To establish the singularities at infinity, the state variables are
expressed in terms of homogeneous coordinates, and the time variable
is eliminated from Eqgs. 32 and 33. More specifically, if

u v
(I):-—- X..—:-—
2 z

(38)

the points at infinity correspond to z = 0, and, without the time variable,
Egs. 32 and 33 can be written in the form

du dv dz

u 7 v z | =0 39)
8, o
—uz - - uv  y_ouz — A_vz — ouv 0
T COLT, X x *

For this equation to be satisfied for z = 0, regardless of the direction
(du, dv, dz), either the elements of the second and third rows are
proportional or the last row is zero. Therefore the following singular-
ities exist at infinity:

1. Two poirnts along the direction
v X ; ( 0)
—_—= e = CO.T Z =
2. Two double points along the vertical direction
i = (I) E-) O (Z = 0)
3. Two double points along the horizontal direction
V o= X - 0 (Z =0)

For examination of the eigenvalues at the points along the direction
v/u =co.T,, it is expedient to transfer these points to some convenient _
point in finite space without altering the eigenvalues. It can be shown
that this can be readily done by means of a singular projective trans-
formation.* More specifically, if the singular transformation

W,=-—=~1 V,=— Z’=m (40)
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.is chosen, then Eq. 39 is represented in the two-dimensional Cartesian
space (v’,z ") by the equation :

dv’ . dz’
v - - , (41)
o o o, o
N R Al P
y. 0.2 e LA + -
X f -'re i CUfT - Te CCTf’Fe

and the singularity is at the point
v'=COT, z’ =0 ' (42)
If the origin of the (v 'z ") plane is transferred to the singularity (Eq.
42}, then Eq. 41 becomes:

dv”’ ' dz”’

80 ‘.sz s + 02(V !f’z f) - (43)
Oy Op = Ay + :}M) coyT 2 +0,(v"z")

e

where v’ =v’ — COT, and O (v ™,z ") are second-order polynomials in
(v”,z"). It is evident that the eigenvalues are
S, =S, =0, (44)

Hence the singularity is always of the unstable star type.

The character of the double singularities along the vertical
direction can be deduced by an examination of the behavior of the
trajectories in the vicinity of these points. Note first that the two
straight line trajectories @ =0 and z = 0 go through these singularities
and act as separatrices. In the vicinity of the separatrices, the trajec-
tories behave as shown in Fig. 1, as can be readily deduced from Egs.
32 and 33 evaluated for very small ® and very large X. Consequently one
of the double singularities is an unstable saddle, whereas the other is an
unstable node for all Values of the system parameters.

Finally, the double smguianhes along the herizontal direction can
be mvest1gated in a similar fashion. Considér fisst the singularities
for ¢ > 0. The straight line trajectory z = 0 is a separatrix for this point
also. The other separatrix is a curve asymptotically tangent to the line

(45)
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SADDLE
=0

NODE

Fig. 1 — Behavior of trajectories in the vicinity of the double singu-

larities at infinity along the direction ® = 0.

This line is also the asymptote to the 0°isocline. The nature of the
singularity depends on the telative position of the 0°and the 80°
isoclines. The 90°isoc¢line is

co o
0
X = (46)

o
X

The two possible positions of the isoclines and the corresponding
behavior of the trajectories are shown in Fig, 2. If c‘50 <y, the
singularity is of the saddle type. If cd, > ¥, the singularity is of

the stable node type. For cd, =y < the smgular point (& ,X ) goes

to infinity, and the smgulanty anng the direction X =0 becomes

triple but maintains its nodal character because the 0°isocline remains
below the 90°isocline. Thus it is concluded that the singularity along
the positive @ direction is unstable for CB <y, and stable for cS 2. Vg
Similar observations can be made for the smgulanty at @ < 0.

When the results of the investigations of all the singularities are
combined, it is concluded that the necessary and sufficient condition
for boundedness of all physically meaningful solutions, i.e., the nec-
essary and sufficient condition for the physically meaningful equilibrium
states at infinity to be locally unstable, is that

e <y, “47)
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TRAJECTORY

TRAJECTORY /

90°

—— @ ——— {ay ———— 00
ISQCLINE o EE——
Q° — —_ c
ISOCLINE - 90

TRAJECTORY

TRAJECTORY

{a) (b}

Fig. 2 — Behavior of trajectories in the vicinity of the double singu-

tarity along the direction X = 0 (® > 0): (a) when the 90° isocline is
>

dbove the 0° isocline, i.e., when cso Y and (b) when the 0°isocline

is above the 90° isocline, i.e., c3° < Y,

In fact, when this condition is satisfied, the solutions are also asymp-
totically stable because there are no limit cycles and the equilibrium
states in the finite plane are asymptotically stable. It is important to
emphasize that these conclusions pertaining to a nonlinear system have
been derived by considering only local (linear) properties of the singu-
larities. ‘

To show the topology of the trajectories, a representative phase
portrait for each of the regions of the parameters in which the system
is structurally stable (see Fig. 3) is given in Figs. 4 to 7. The meaning
of these portraits is self-explanatory.

INPUT-OUTPUT APPROACH TO OPTIMUM CONTROL

General Remarks

Ordinarily, optimum control problems are stated in terms of differ-
ential equations. A typical statement may be made: Given a system
described by the set of differential equations '

d
+Y® = fyO.u(] | 48)
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where y(t) = an n-state vector
y(t,) =1,
u(t) = an r-control vector

find the optimum control u(t), telt O,ti], for which an extremum is
attained by the cost functional

Tu(©)] = ft "Lly(®),0(0] dt - @y

o

when u(t) belongs to some constrained or unconsirained space
yt)=n

L = a specified operator

Y
24
1.54
!
1
0.5
15 1 -05 |
—t: X
_0_5-
F E
_t._
154
Fig. 3 — Regions of structural stability determined in terms of the

parameters x = So/ﬁ.x’z and y = cgo/yx and by means of Eq. 37 ond
conditions 5 =0 and & = -_-).x’i;.



(a) (b)



16 - GYFTOPOULOS

{a) : . (b)

Fig. 6 — Typical behavior of trajectories for parameter valves lying
in (a) region E and (b) region F of Fig. 3.

(a) (b)

Fig. 7 — Typical behavior of trajectories for parameter values lying
on {a) the boundary of regions B ond C and (b} the boundary of regions
C and E of Fig. 3.
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Another way of looking at this problem is to consider the control
vector as an input and the state vector as an output. Thus-the system
may be represented as an input—output relation:

y(t) = H{u(t)} (50)

where H is, in general, a nonlinear operator. Such representations
have been discussed in Refs. 8 and 9. Under these conditions the cost
functional is an explicit function of the input:

tl .
Ju(t)] = j; L{H[u(D),u(t)]} dt (51)

0

The explicit dependence of the cost functional on u(t) may facilitate
the analysis of the control problem at hand, particularly when H is
nonlinear. It is for this reason that one of my students, Sang H. Kyong,
is currently investigating optimum control of nonlinear systems de-
scribed by input—output relations of the form given by Eq. 50. I will
not discuss all the details of this work. To illustrate its salient
features, however, I will present two simple examples.

A Linear Optimum Control Problem

Consider the dynamical system
¢
y(®) = j: b, (t,0)] u(0) do (52)
0

where [hik.('t,or)] is a matrix conformable with u(o) and with elements
hik(t,_o*). Suppose that it is desired to bring the output vector to q
at time t, subject to the constraint that the cost

t
Je-)f  Z uia | (53)
tO ‘i-:.l

be minimum, where ui(t) is the ith component of u(t). No restrictions
are imposed on the magnitude of u(t).
At the terminal time, Eq. 52 becomes

’ t
n= ft g (t,,0)]u(e) do (s4)

0
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To proceed, assume that all the elements of each row of the matrix
[hik(t 1,0‘)] are of the same functional character. In other wordls, for
a given 7 assume that each element h. (t,,0) can be expanded into a
finite series in terms of the members of a characteristic; complete,
and orthonormal set, {gbﬁ(cr)}:

ik .
hy(tp0) = B AL G(0) (@™ <) - (55)

The orthonormality interval is always [to,_tl]. In addition, expand
each component of u(0) into an infinite series:

0, (9) = El BE ¢y (56)

Substitution of Egs, 55 and 56 into Eq. 54 yields

ik

r m N
M, = Alkpk
1 kzzl ,u,§1 )LL ,LL
room 2kpk
= A°"B
?72 kz:d ,u§1 Tl
(57)
to

E nk
by m -
knpk
-3 § A"kp
nn kz.:l =1 N

Inputs of the form of Eq. 56 satisfy the system and the terminal con-
ditions exactly if the coefficients BX(k =1, 2, .. ., r and =12, ...,
m, ) satisfy Egs. 57 and if the coefficients Bl; (p>my and k =

1, 2, ..., r') have arbitrary values, where m, is the largest of the
numbers m** for a givenkandi=1, 2, ..., n. The number of coeffi-
cients that can be determined from Eqs. 57 is

)

megm -

k=t

Therefore three distinct cases can arise:

1. m <n. Since the n-relations of Egqs. 57 are linearly independent,
it is impossible to satisfy them. In other words, there is no control that
accomplishes the desired task.
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2. m =n. In this case m coefficients can be uniquely determined
from Egs. 57. :

3. m >n. This is the most usual case encounteted in practice,
Here n coefficients can be determined in terms of m—n others, i.e.,

Br: fr(Bn+1’ ey B ) (I‘ = 1-, 2, ey n) (59)

m

where the coefficients Bihave been reordered by means of a single
index r. ,

Next, to complete the solution, consider the cost constraint. If
Eq. 56 is replaced in Eq. 57, then

m i 00}
Je= 2B+ ¥ B} (m=n) (60a)
r=1 r=m+i
- B S B2 6db
Jg= ZEB 0 By) + 2B (m > n) - (60b)

The cost constraint (Eq. 60a for m =n) attains a minimum when

B =0 t=n+1, n+2,..., © (61)

r

and the remaining n coefficients are solutions of Eqs. 57. Thus the
optimum control is completely and unigquely determined.
In the case m > n, the cost constraint attains a minimum when

n %,
r§1 t@B_,, - B) a?fr(Bn+1’ <oy B )+ B =0

’ (p=n+1,...,m) (62)
B =0 r=m+1l,m+2,..., 0" , (63)

T

Equations 57, 59, 62, and 63 provide the necessary m relations for
the determination of the m coefficients of the optimum input control.
If these coefficients ate denoted by (BZ}*, then the optimum control is

* = k k
w0 = E B S0 (64)

Special Case As a specific case of the preceding discussion, -
consider the system
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P W=& &t [l uordo 5 (65)

v,0=6+ [ ueydo | | (66)

Find the input that brings the state variables to y,=y,=0att=T
and minimizes the integral

Jg = j; T e3o) do 67)

To this end, note that, at the terminal time,

~E —TE, = fo Tor - o) u(0) do (68)

T
- Jwreo @

The characteristic set of orthonormal functiong is

{1\, 3\, 12\,
¢1(t)=<f> ¢2(t):<¥*> ~—<T—3> t (70)

When the kernels of Eqs. 68 and 69 are expanded in terms of this set and
the input is written in the form

u(o) = kngk #,(0) 1)

it is found that

¢, 12 \% T
B1=—-_1/2 Bz=_<m>2<§1+§25>
T T3

B, = arbitrary (k=3) ‘ (72) -

Minimization of J (Eq. 67) results in B =0 (k= 3). Therefore the
optimum input is '
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2 6
WK = = = (3¢, +26,T) + — &, + £,T) (73)
T2 T3

A Nonlinear Optimum Control Problem

The procedure for nonlinear systems is similar to that developed' for
linear systems (see preceding section). Admittedly, however, the re-
sulting algebraic equations for the expansion coefficients for the opti-
mum control can be much more involved. For brevity, only a simple
example will be discussed.

Consider the nonlinear system given by

5,0= [t - 2 ue) do

+ Lt j;t(t - o Xt - 02) u(o)) u(cr2) do, do, (74)

. r L t rt
1,0 =2 [ w0y do o [ [ “uo) o) a0, 0o, 75)
Suppose that it is desired to find the input that brings the output to
y,=landy, = —1 at t = 1 and minimizes
I (o) do 76)
P ALC (

To this end, note that the characteristic orthonormal set is the same
as that of the special example of the preceding section for T = 1.
Using the expansion technique, it is found that

B, -1 B,=-1+ty4 + /12 | (77)

Finally, minimization of ] yields the optimum input as

wh(t) = 1 4 (=1 + 1/2\/4 +V12) (V3 - V121) (78)

In summary, it is felt that the input—output approach to nonlinear
optimum control problems will yield many practical results.
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SPACE-TIME DYNAMICS

General Remarks

It is well known that both the magnitude and the rapidity of flux
shape changes, either in ordinary space or in velocity space, have a
substantial influence on the dynamic behavior of nuclear reactors.
Our efforts in this area center around the understanding of effects of
such changes on a variety of measurements performed on reactors.
More specifically, one of my students, Larry Foulke, has been inves- -
tigating the interpretation of oscillation tests in the light of space—
time effects; with S. O. Johnson, of Phillips Petroleum Co., and
his group, we have also been interested in the interpretation of
power excursion bursts. I will describe briefly these two efforts.

interpretation of Oscillation Tests

Oscillation tests, or, in general, small perturbation tests, are
performed to measure transfer functions either to design the reactor
regulating system or to investigate stability (see also the discussion
of A New Criterion of Asymptotic Stability). Mathematically the
reactor transfer functions characterize the linear constant-coefficient .
approximation of reactor dynamics. Reactor transfer functions are by
necessity related to the derived concept of reactivity, and they are
functions of frequency only. Physically the reactor transfer functions
describe the dynamic behavior of the undistorted fundamental flux
mode. This behavior, however, may not be possible to achieve in
a particular small perturbation experiment., For example, it is found
experimentally that neutron flux oscillations, corresponding to a
localized oscillating absorber, are functions of both the frequency
of oscillation and the position of the detector. '°., This is particu-
larly true at high frequencies, namely, rapid flux changes. The
position dependence results because of the excitation of higher
order modes or, equivalently, because of the finite time necessary
for the propagation of disturbances.

~ Two related questions arise at this point; (1) Are the param-
eters of transfer functions space dependent? (2) How does one
extract the parameters of normal transfer functions from oscillation
tests? ' 7,

The answer to the first question is no, despite statements to
the contrary which have appeared in the literature. %! The reason
is that the same high modes that contribute to the dependence of
the flux oscillations on position contribute also to the reactivity
that corresponds to the oscillating absorber. When reactivity is
computed in a consistent manner, then the ratio of flux to reac-
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tivity is independent of position, and a normal, space-independent
transfer function is recovered. In other words, for a given Hetector
position, the reactivity corresponding to an oscillating absorber
differs from the latter in amplitude and phase by as much as the
amplitude and phase of the detected neutron flux oscillations differ

from the expected space-independent amplitude and phase results.
This point is illustrated in Fig. 8. '

The second question can be answered, in principle, as follows:

Flux oscillations must be measured simultaneously at more than one
position, and the results of the measutements must be analyzed in
term& of a number of appropriate eigenfunctions to establish the higher
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Fig- 8 — Computed phase angles (a) between oscillating-plane absorber
and p/A corresponding to different detector positions ond () between
oscillating-plane absorber and neutron oscillations at different detsctor
positions. The reactor geometry is shown in (b). Note that the depar-:
ture of the phase of p/A from 0° is identical to the corresponding depar- .
ture of the phuse of the neutron oscillations from that of the space-
independent transfer function. Similar results have been computed for
the amplitudes. - - — shows the detector at x = 100 ¢m; ----- shows the

detector at x= 10 em.
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mode distortion. Then reactivity can be computed, and transfer functions
can be derived as described previously. f

Finally, I would like to mention that the distortion at high fre-
quencies, due to spatial modes, is relevant to the interpretation of
recent techniques for the measurement of suberiticality. It seems to
me that the spatial effects have not been duly considered in these
subcriticality measurements.

Correlation of Power-excursioii Bursts

Power-excursion bursts are often correlated by means of point
reactor kinetics to establish inherent feedback coefficients and
safety margins of nuclear reactors. Because of spatial dynamic
effects, particular care must be exercised whenever such correla-
tions are attempted.

To illustrate this point, some numerical results detived by
means of point reactor kinetics and by means of space—time com-
putations are presented in Refs. 5 and 12. The reactors considered
in these references are excited by a step-tamp change of the fission
cross sections in one region of the reactor. No feedback is included
An the computations. Comparison of the results reveals that serious
discrepancies can arise between the two types of calculations (see
Fig. 9), .

Currently S. O. Johnson and I are trying to investigate the same
problem for reactors with a variety of inherent feedback mechanisms.
The results will be reported!® at the 1965 American Nuclear Society
(ANS) meeting in Gatlinburg, Tenn. For purposes of this discussion,
it suffices to say that discrepancies between space—time and point
kinetics computations of power-excursion bursts do exist even in
the presence of feedback. These discrepancies are experienced
either in the shape of the power burst or in the magnitude of the
average power. Therefore special care must be exercised whenever
power-excursion butsts are correlated by means of point kinetics
because the burst shape is indicative of the energy dependence of
the feedback mechanism and because the integral under the power
burst is related to the safety margin of the reactor.

DYNAMIC PROGRAMMING

Professor Henri Fenech and Dr. Ian Wall have used dynamic program-
ming to investigate the optimum refueling policy for a power nuclear re-
actor. Even though the authors have presented their findings at previous
ANS meetings, I thought it might be useful if I brought their work
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Fig. 9 ~ Curve A is the computed averoge power for a 240-cm slab;

"curve B is the computed avercge power for a 60-cm slob computed by
means of o space—time code; curve C indicates the average power that
would have been derived by mieans of point kinetics for both reactors
{see Refs. 5 and 12}.

to your attention because their papers have usually been scheduled
in fuel-cycle sessions.

Ordinarily refueling policies are based either on 100% batch
irradiation or on discontinuous out—in refueling procedures. For a
given reactor design, the out—in policy results in unit energy cost
savings of the order of 0.2 to 0.5 mill/kw-hr over that of the 100%
batch policy. Typical results are summarized in Table 1.

Fenech and Wall investigated the optimum refueling policy
by examining which part of the fuel should be discharged and which
part should be rearranged at every refueling step during the life of
the plant. By means of the method of dynamic programming, they
reduced the complexity of the problem to a level amenable to com-
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Table 1 — SALIENT DETAILS OF TWO NONOPTIMIZED POLICIES

Power Maximum Maximum Average Plant  Number
Policy cost, power ' burnup, burnup, life, of

mills/kw-hr  peaking  Mwd/ton Mwd/ton years  stages

100% batch 6.512 1.86 17,880 14,880 30.34 16
Threeezone
out—in 6.140 1.74 20,620 19,750 30.31 33

Table 2 - POWER COSTS OF OPTIMIZED POLICIES AS A FUNCTION
OF MAXIMUM BURNUP, POWER PEAKING, AND REFUELING TIME

Maximum Maximum
permissible permissible Refueling Power Plant Number Average

burnup, power time, costs, life, of burnup,

Mwd /ton peaking days mills /kw-hr years  stages Mwd,/ton
20,000 2.5 14 6.152 30.93 24 18,980
20,500 2.5 14 6.147 30.27 24 19,060
21,000 2.5 14 6.089 30.86 32 20,350
21,500 2.5 14 6.062 30.62 32 20,790
21,500 2.5 28 6.224 30.60 27 20,200
21,500 2.5 42 6.365 30.29 25 20,670
22,000 2.25 14. 6.009 30.61 31 21,420
22,000 2.0 14 6.073 30.40 32 20,620
22,000 1.75 14 6.115 30.43 26 19,650
22,000 1.65 14 6.303 31.40 21 17,100
22,000 1.50 14 * * * *

*No admissible pelicies.

putation. Some typical results of the investigation are given in
Table 2. It is seen from the data presented in this table that an
optimized policy results in further savings over those of the out—in
policy. The detailed statement of the problem and a description

of the necessary digital codes are given in Ref. 14.
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