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ABSTRACT

The purpose of this paper is to discuss the relation between surface
orbital electronegativity and work function, both from the standpoint of
thermodynamics and that of quantum mechanics.

First, it is shown that the electronic structure of crystals can be
described by means of spin.-orbitals which are localized around individual
lattice sites. Second, electronegativity is related to the chemical
potential of an electron in a spin-orbital. Third, it is shown that the work
function of a uniform surface equals the neutral orbital electronegativity

of a spin-orbital localized around a surface atom.

t This work was performed for the Jet Propulsion Laboratory,

California Institute of Technology, sponsored by the National
Aeronautics and Space Administration under Contract NAS7-100.

t+ On sabbatical leave from the Massachusetts Institute of Technology
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INTRODUCTION

In previous publications by Steiner and Gyftopoulos, 1-3 emission
phenomena, occurring at metallic surfaces, are analyzed in terms of
surface atoms and their orbital electronegativity. For example, in
reference 1 the view is advanced that electrons, emitted thermionically
from a pure uniform surface of a crystal, originate from a * valence
orbital" of an " atom on the surface." It is assumed that the shape, the
ioﬁization energy, the electron affinity, and the excitation energies of this
orbital are precisely defined, although not necessarily spectroscopically
observable, and that they are determined by the many-body interactions of
the crystal. On the basis of this picture. it is concluded that the work
function of the surface must equal the neutral orbital electronegativity of
the valence orbital of the surface atom.

This way of thinking about a crystal and its surface raises two questions.
The first relates to the validity of viewing the electronic structure of a
crystal in terms of orbitals which are associated with individual lattice
sites, such as a valence orbital of a surface atom. It is customary to
think of the electrons as belonging to the crystal as a whéle and, therefore,
it is not obvious that electrons can be assigned to, localized around, indivi-
dual lattice sites.

The second is a relatively old question. It refers to the meaning of
electronegativity. This quantity has been found useful in many chemical"
studies and yet it has not been given a rigorous definition.

The purpose of the present communication is to discuss the preceding
two questions, in the context of the cne-~electron approximation for the
electronic structure of many-electron systems. It is shown that the picture
of localized orbitals is valid, and that electronegativity equals the negative

of the chemical potential of an electron in an orbital.
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The paper is organized as follows. First, the procedure for the
derivation of the localized orbitals is discussed. These orbitals are
shown to provide a description of the electronic structure of crystals
which is entirely equivalent tc the well known quantum-mechanical
picture of electrons in metals. Second, the work of the authors on the
identification of electror1eg::zftivi1:y4 with the chemical potential is
summarized. Third, it is shown that the work function of a pure uniform
-surface equals the orbital electronegativity of a surface atom.

LOCALIZED SPIN-ORBITALS FOR CRYSTAL LATTICES

The equivalence between the descriptions of the electronic structure
of ¢crystals by means of either nonlocalized, band structure theory, or
localized spin-orbitals is best understood through a brief review of pro-
cedures employed for the analysis of any N-electron system.

Quantum-mechanically, the analysis of the energy eigenstates of
the electronic structure of N-electron systems is very difficult. To
avoid the difficulty, the electrons are treated as an ideal substance. In
other words, the N-electron Hamiltonian operator is reduced to a sum
of N separable one-electron Hamiltonian cperators. Various methods
are used for the reduction. Differences between methods arise from the
degree to which exchange and correlation effects are included in the
one-electron potential energy. In this regard, all methods are approxi-
mate and not all methods are equally accurate.

A given one-electron Hamiltonian operator defines an energy eigen-
value problem. The eigenfunctions and eigenvalues of this operator can
be more readily found than those of the complete N-electron operator.
Each eigenfunction, one-electron orbital, of a sysiem with more than
one nucleus, is delocalized throughout the system and is given the samé
interpretation as, say, the-eigenfunctions of thé hydrogen atom. For
example, the orbital can accommodate at most two eléctrons with opposite
spins. The negative of the eigenvalue equals approximately the energy

required to extract an electron from the orbital, and it represents an



- 1252 -

ionization energy of the system. When the orbifal is occupied by an
electron with a given spin, it is called a spin-orbital. In many applica-
tions, a different orbital is used for each spin. In other words, each
spin-orbital has its own spatial dependence.

By virtue of the ideal substance assumption, the eigenfunction LEJN,
for a given state of the system as a whole, should be given by the preduct
of the occupied spin-orbitals. This, however, is not consistent with the
symmetry rules of quantum mechanics. > For this reason LIJN is represented
by an antisymmetric, determinantal function of spin-orbitals, a Slater

determinant. 6 The determinant is given by the relation
ufay)  wylq) - uda)

b = _ (1)
N (N')172 : : . :

ul(qN) uz(qN) . uN(qN)

where qj represents the coordinates and spin of the j-th electron, u, is
the i-th orbital, and ui(qj) is the i-th spin-orbital occupied by the j-th
electron.

In general, it is found that one-electron energies E.i, eigenvalues
Ei' are in good agreement with experimentally observed ionization -
energies of the system {atom, molecule, or crystal). However, the sum
of the Ei' the eigenvalue of lIJN with respect to the sum of the N one-electron
operators, is not in good agreement with the total energy of the system,
namely the energy which would ke derived from the exact llJN and the exact

N-electron operator. Nevertheless, Y__ in the form of Eq. 1 is often

N

considered as an adequate approximation for the exact L[JNu
For crystals, the one-electron results can also be described in

terms of localized orbitals by means of the following procedure. Con-

sider a crystal bounded by a uniform surface. Suppose that a relatively
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accurate one-electron equation has been established, say, by the method
7
suggested by Slater. The one-electron eigenvalue problem may be

writiten in the form

(Ho-i- Hl)u: Eu, {2)

where Ho is the one-electron, spatially periodic, Hamiltonian operator
that would be derived if the solid were imbedded in an infinite lattice, and
Hl is the one-clectron operator which accounts for the perturbation intro-
duced by the uniform surface. The spatial part of the eigenfunctions of
Eq. 2 can be expanded into a series of Wannier funcz‘l:ions8 an(i - I_{S)

associated with the operator HO.T Thus the i-th eigenfunction is given by

the 1'ela.tion9
u(r) = ZZU_(R)a(r-R), (3)

in

where Uin(Rs) is a constant, and the sums are over all lattice sites Es

and over all bands n. Mathematically, Eq. 3 is exact if an infinite number

* Recall that the Block functions bn(E, r) of the n-th band of the infinite

crystal are given by the r'e].ation1
Hb (k1) = E_(Kb_(k, 1),
and that the Wannier functions an(_r_ - Bs) of the n-th band are determined
by the éxp‘ression
-1/2 - .
Ebn(_lgsgj_) exp (-ik* R ),
where gs is the s-th site of the lattice, and NL is the number of lattice

sites. The Wannier functions form a complete, orthonormal set over all

bands and over all lattice sites, namely

jam (£ B B‘J) an(£ " Ri) d£ - ﬁmnéi“

Moreover, each Wannier function a (r - RS) is localized around, associated
. n — -

with, the s-th site.
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of bands is included in the expansion. As in all practical problems,
however, through a judicious choice of localized, Wannier-like functions
wn(i, BS) {for example, a suitable linear combination of Wannier functions

at the site BS), the summation over n may be reduced to a number egual

to the number of valence electrons per atom, without great loss of accuracy.
Thus, if different orbitals are used for different spins, a spin-orbital u, (q )
may be adequately represented by the relation

v
wle) = 3 Z ¢ (R w (q., R), (4)

where v is the nurnber. of valence electrons per atom, and <, (R) is a
constant.

Without loss of generality, suppose the crystal is that of a monovalent
metal, v equals unity and the number NL of lattice sites equals the number

N of valence electrons. For this crystal, substitution of Eq. 4 into the

determinental relation, Eq. 1, for the overall eigenfunction lfJN yields

z CI(BS)W(qI» R)...Z cnB ) W lays R)

“E‘S" CI(BS)W(qZ, ES) = r e Zs CN(BS)w(qzs Bs)
i

Y= . c e . + {5).
N N2 . . .

% CI(BS)W(qN’Rs) T 2s CN(I—{S)W(qN'Es)

where the subscript n equals unity has been omitted from the w' s and the
c's. Note that each column of the determinant in Eq. 5 is a linear com-
bination of the N Wannier-like functions associated with the N sités of the
cfystal. It follows from the rules for the product of two determinants that

Eq. 5 can be written in the form
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wiaR) - - wilaa RO RR) R )L ei(R)
(a0 Ry) - wlay Rtk Ry) cy(R)) . - olR)
12 e - N o O
wla R - wilqe RO e (R e (RO - e R

In the form of Eq. 6, the eigenfunction LPN for the whole crystal admits

the localized spin-orbital interpretation which is sought. Indeed, note that
each Wannier-like funciion w{q,_];}s) 15 a spin-crbital associated with,

localized around, lattice site E_{s {the set of constants C-i(_l%s}y fori=1, 2, N,

is also associated with the same site E_{S). If the N electrons of the crystal

are distributed among the N spin-orbitals W(q,gs), an antisymmetric deter-
minental function, Eq. 6, can be formed. This function is completely
equivalent to that obtained from the delocalized orbitals. In ‘oth.er Words_,

the LIJN' s constructed from either the localized or the delocalized spi_n-orbitals
are identical.

It should be noted that the localized spin-orbitals w(q,]:'_{s) are not energy
eigenfunctions of the one-electron equa.tions, Only -LIJN, Eq. 6, is an approxi-
mate eigenfunction of the Hamiltonian operator for the whole crystal. Never-
theless, each localized spin-orbital can be assigned precise values for the
ionization-energy, electron affinity, and excitation energies of the electron
in the spin-orbital, in a manner which is consistent with the usual definitions
of these quantities. The values of the ionization energy, electron affinity,
etc., of a localized spin-orbital are not equal to the corresponding values
of the delocalized spin-orbitals. This point can be seen from the definition
of the ionization energy given below. _

Suppose that l{JN, Egq. 6, represents the ground state of the crystal. N
The ionization energy of a spin-orbital localized around lattice site R_ is.
defined as the difference between the energy cror-responding to an eigen-

function ¢ and that of the ground state. The eigenfunction LlJN 1 is giwj_ei‘i

N-1
by Eq. 6 except that the s-th column and the s-th row of the first and the -



- 1256 -

second determinants are replaced by zeros, respectively, and (N! )1/2
is replaced by [{N-1}!] 1/ 20 The Hamiltonian operator for L]JNll is that
corresponding to N lattice sites and N-1 valence elecirons. This defini-
tion of the ionization energy assumes that removal of a localized spin-
orbital from the system does not alter the functional dependence of the
other N-1 localized spin-orbitals. Such an assumption is used in
practically all approaches to the analysis of the electronic structure of
solids (see, for example, Koopmans' thecrem for the one-electron
Hartree-Fock equation_sl 1)9

The other energies of a localized spin-orbital can be defined in a

manner analogous to that used for the ionization energy.

ELECTRONEGATIVITY AND CHEMICAL POTENTIAL

In this section, the work of the author 54 on the identification of
electronegativiry with the negative of the chemical potential of an electron
in an atom is summarized.

In reference 4, an ensemble of identical, one-atom systems is con-
sidered. 'Each atom is thought of as consisting of two components,
electrons and ions. The systems are in thermaodynamic equilibrium with
a reservoir of elecirons and ions at a small'femperature T {degrees
Kelvin). The components can flow back and forth between the systems
and the reservoir. The energy eigenstates of the atoms are assumed to
be derivable from the one-electron Hartree- Fock equaticens. t2 In other
words, the electrons are viewed in an ideal substance.

According to the theory of #tatistics of ensembles, 13 the physical
situation described above obeys the :rulés of grand canonical ensembles.

Use of these rules yields.the follewing important conclusions.

Strictly speaking, the electronegativity has been identified with the
electrochemical potential. For the reference level of energy selected
in this paper, however, the values of the chemical and the electro-
chemical potential are identical.
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{a) Statistically, the energy E of an one-atom system can be expressed
as a continuous function E(q) of a continuous variable q which represents a
statistical measure of the charge in a valence spin-orbital. The range of
the value of the charge q is from minus one electronic charge (-e), the
orbital is doubly occupied, through zero, the orbital is occupied by one
electron, to plus one electronic charge {+e), the orbital is ionized.

{(b) The chemical potential T of a valence electron is given by the
relation

T (9 E{q)/ 9 q) at constant entropy. {7)

In the limit of very small temperatures, this potential is found to have the

following exact values

= - (I1+ A)/2e forgq=0 (neutral atom),

i

B, = for g = e (positive ion),

and

B = - ‘ for q = -e (negative ion),

where I and A are the first-ionization energy and the electron affinity of
the atom, respectively. The quantities I and A can also be referred to
the valence electron -spin-orbital.

‘l(c) For fractional values q and for small T, T is a function of Both
q and T,

(d) By virtue of (b) above, it is found that for small temperatures
(in the limit of zero temperature) an excellent approximation for E{q) is
given by the relation ‘. " :

I+A I 2)1 /2

- A
E(Q = —5z—aqt — [1'(1“%
e

1.

when the zero energy level is taken to be at the energy of the neutral =~
atom (q equals zero). Note that this approximation yields exact values

f E d = e, 0, e. .

or E(q) an T for gq e, 0, e

(e} The orbital electronegativity x(q) of a valence electron is defined as

x(q) = (3 E(q)/ 9 q) at constant entropy =

= -s“c

This is the first time that a rigorous definition of x{q) is given.
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(f) The value of the neutral orbital electronegativity x{0} obtained
from Eg. 8 is identical to the value of electronegativity suggested by
Mulliken 4., It should be noted however, that Mulliken' s value is con-
sidered to be approximate. Here, the thermodynamic anélysis yields
that, in the limit of small temperatures, x{0) has the exact value given

by the relation

2e (9)

{g) The definition of the orbital electronegativity given above can
be easily extended to orbitals in systems other than atorms. Such an ex-

tension is discussed in the next section.

WORK FUNCTION AND ELECTRONEGATIVITY

Without loss of generality, cénsider“a crystal of a monovalent metal,
bounded by a uniform surface. Suppose the analysis of the electronic
structure of this metal has been carried ouf with respect to a zeroc energy
level taken at the points just outside the surface. Moreover, suppose that
both the delocalized and the localized spin-orbitals have been established,
in accordance with the procedure discussed in Section 2.

Thermodynamically, for a system of N-electrons, any set of N
spin-orbitals which describes the system may be thought of as represent-
ing N degrees of freedom. When these N degrees of freedom are treated
statistically, the following results can be obtained.

{a) Given the N delocalized spin-orbitals, one-electron spin-orbitals,
the negative of the chemical potential of the surface, with respect to the
points just ouiside the surface, equals the work function. This is the
well-known thermodynamic definition of work function. 15,16

{b) Given the N localized spin-orbitals, Wannier-like functions,
suppose that all degrees of freedom are frozen except that corresponding
to.the spin-orbital localized around the surface site BS. Under this con-
dition, the surface spin-orbital can be treated statistically by the same

procedure as that used for atoms in Section 3. In other words, this
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orbital may be thought of as a surface atom. Thus, a chemical potential
for the electron in the orbital can be defined. For example, in the limit
of small températures, the value of the chemical potential of the localized
spin-orbital equals

~ €IS + A‘S)/Ze.
where 15 and As are the lonization energy and the electron affinity of the
orbital as defined in Section 2. This value equals the negative of the
neutrral orbital electronegativity of the spin-orbital, Eq. 9.

{c) From thermodynamic equilibrium considerations, it can be shown
that the chemical potential of the localized spin-orbital as defined in (b)_
must be equal to the chemical poténtial of the surface, as defined in {a). t

(d) By virtue of {a), {b), and {c), it follows that the worlk function
equals the neutral orbital electronegativity of a spin-orbital localized
around a surface atom. 47

In conclusion: {a) the characterization of the electronic structure
of metals by localized spin-orbitals is equivalent to the ordinary picture
of electrons in metals; (b) electronegativity can be given a rigorous
thermodynamic definition; and {c) the neutral orbital electronegatwélty of

a surface spin-orbital, atom, equals the work function of the surface.

The proof of this statement is analogous to that used in the study of
chemical reactions with or without a catalyst.
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