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The purpose of this paper is to summarize the main ideas and some of the
conclusions of a physical theory in which the second law of thermodynamics
is presented as an unavoidable and independent part of the fundamental
postulates of physics. The detailed exposition of the theory is given in
Reference [17].

For more than a eentury the relations between mechamcal and thermo-
dynamic properties, as they have been investigated by means of statistieal
methods, have been the subject of controversy. During this time, a number
of statistical thermodynamic theories have been ‘advanced. Inifially, these
theories were based on Newtonian mechanics, later on the prineiples of
quantum meghanies, B

A characteristic of all statistieal theories is that they yield the same
results for stable states of systems having sufficiently large numbers of
degrees of freedom. On the other hand, they yield significantly different
results. when applied to systems having a small number of degrees of
freedom, or to systems of any kind in nonstable states. Moreover, in general,
there are important eonceptual differences between different theories. For
example, Gibbs [2], Pauli [37], Xlein [4], and Jaynes [5] differ in the
explanation of irreversibility, and in the general expression for entropy.

Existing statistical theories are based on the reversible laws of mechanies
supplemented by additional postulates such as ergodicity, or-equal o prior?
probabilities, or information theory. In each theory, a quantity is found,
which for an isolated system cannot decrease, at least initially, but which
may increase, at least for a while. This quantity is assumed fo represent
the entropy of the system. In each case, the assumption is justified by the
fact that the results of the theory are consistent with those predicted by
the laws of classical thermodynamies for stable states and for changes
between such states.

If all that is required from a statistical theory is to yield, in the hmlt of
stable equilibrium, results consistent with classical thermodynamics, then
ke
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all existing theories would be equally correct. Buch a requirement, however,
is inadequate. For the second law of thermodynamies imaplies much more
than relations between the properties and the éhange in the properties of
systems passing through stable states. It implies, among other things, the
existence of irreversible processes—that is, processes whose effects on all
the systems involved cannot be undone. This implication must be taken
literally. For example, the acceptance of the second law and its many
corollaries necessitates unquahﬁed acceptance of the conclusion that all
the effects of an irreversible process cantot be undone no matter what
sophisticated technology is employed, inclading measurements of properties
either at a macroscopic or at a microscopic level. Otherwise, the sécond
law would be as meaningless as saying that the expression for the Carnot
efficiency of a tieat engine s dependent upon technology, or econormics, or
‘the complexlty of the enging, or saymg thiat the Heisénberg uncertainty
prmclple expresses 10 more tha.n the a,ccuraeles that may be obtained with
today’s laboratory practices.”

No statistical theory advanced so far proves the second law of thermo-
_'""i'dyna,mlcs or for that matter the existence of irreversible processes in the
’ "sense described. Probably none will ever prove it. Moréover, no theory has
" ever been derived which is completely consistent with the second law.

- Referénce {13 attenipts to develop a theory consistent with the seeond
" law. Thé procediire used is as follows, The second law is stated as a Rinda-
mental postulate of physms From this law and the postulates of quantum
* mechsnics & theoty is formulated that appears to be self-consistent. If the
* theory were not. self-cotigistent this would mean that either the second law
- is not applicable or the laws of mechanics are not dpplicable to natural
" phienomena. Of the two alternatives, the evidence is overwhelmingly in
“favor of the seléction of the second law as valid. For there is no recorded

experiment in the history of scienee that contradicts the second law of its
corollaries as stated in this paper. No such statement can be’ Inade about
the known laws of mechanies.

The present theory, like'all previous statistical theories, yields a general

expression for thie entropy of a system. This expression is applicable to all
-states, equilibriym or honequilibrium, of all systems, with few or miny

degrees of freédom. Moreover, it is shown that the expression is the only one

consisten} with the second law and the laws of mechanics. The expressions
" of entropy given by Klein [47, Tolman [6], and Jaynes [’i] are applicable
only in speeial processes. The use of these expressions in other processes
leads to the erroneous conelusion that they are irreversible (in the rigorous
senge implied by the second law) when, in fact, they are not.

No arguments given in the present théory depend upon the number of
degrees of freedom of the systems considered. It is trae that systems with
enormous numbers of degrees of freedom differ substantially from these
with few degrees of freedom. The differences are, however, only quantitative
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and not qualitative. Contrary to common opinion, not only are all the
methods of thermodynamies applicable fo systems with few degrees of
freedom as well as to those with many degrees of freedom, but the exact
thermodynamic analysis of a specific system may prove far easier when the
pumber of degrees of freedom is small. This faet is demonstrated by a paper
on the definition of electronegativity 7]

Some additional major conclusions in Reference [1] are as follows:

(2} The deseription of the condition of matter by means of a wave
funetion is inadequate. This conclusion is similar to that arrived at half a
century ago when it was recognized that, by virfue of the Heisenberg un-
certainty prineiple, the classical description of matter is inadequate.

The rationale behind this conclusion may be illustrated by the considera-
tion of two theorems, one from thermodynamics and one from guantum
mechanics. Tt follows from the statement of the second law given in Refer-
ence [1] that in the vicinity of any state of a system there are states that
cannot be reached by means of adiabatic processes. In fact, Carathéodory
[8] used this theorem as his statement of the second law. On the other
hand, it follows from the laws of quantum mechanies that any quantum-
mechanical state deseribed by a wave function may be eonnected to any
other quantum-mechanical state also described by a wave function by
means of an adiabatic process This theorem was proved by von Neumann
[9]. The apparent contradiction between the two theorems may be recon-
ciled in either of two ways. First, it may be assumed that the term “state
of a system” in thermodynamies has a different meaning than the same
term in mechanics. This explanation of the contradiction is the one pre-
vailing in the literature. Seeond, the position may be taken that the term
“state of a system’ has the same meaning in both thermodynamies and
mechanics, and that the second law indicates the existence of quantum-
mechanical states which cannot be deseribed by a wave function. The
theory sammarized herein is based on this position and, hence, the con-
clusion that a wave function is not adequate o describe all conditions of a
system.

The condition of a system may be deseribed in general by a linear
Hermitian operator & called the coherente operator. The operational defini-
tion of & is as follows. The precise measurement of a property F (quantum-
mechanical observable) yields the eigenvalue F o of the alphs component
F{a) of the operator F with & probability vam = given by the relation

Feam;am = J‘v*amﬂum dq’
where

F (Cl) Vo = I gmVam-

The index « is used to denote the fact that, in general, guantum-eechanical
operators F have components F () that lie in different Hilbert spaces w.
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(b) The unique expression for the entropy 8 is given by the relation
8 = —kTr[e]n[e]],

where k is Boltzmann’s constant, [v] is the eoherence supermatiix with
elements gjm.o. given by the relation

Thm;om = ‘SaBJ- ¥ am Bl dq:
and. . is the Kronecker delta.

(e) A system in stable stateé does not pass through a succession of states
each of which is deseribéd by a wave function. It remains in that stable
state (it iz deseribed by the same [¢]) as long as it is not disturbed by
interactions with other finite systems. A finite system is defined as one for
which the probabilities associated with the results of all possible measure-
ments are not all zero.

In the context of the present theory, the ergodic hypothesis is meaning-
less.

(d} The measurement of an observable of a system in a stable state
vields, in general, results that ean be predicted probabilistically only. The
same statement applies to a system in any -other state, including one
described by a wave funetion.

(e} -Irreversibility in a finite system A ean be attributed neither to inter-
partiele collisions and correlations, nor to coatse gralning and quantum-
mechanical broadening. Any statements to the contrary violate the Iaws of
quantum mechanics;

{f) Irreversibility in a finite system A cannot be attributed to interac-
tions with another finite system. B, irrespective of the nature of the inter-
actions. Any statements to the eontrary violate the laws of quantuin
mechanics,

(z) Irrevers1b1hty in a fintte system A (a direct consequence of the
second law) is due to interactions between 4 and another system that is
nonfinite. A nonfinite gystem is defined as one for which the probabilities
associated with the results of all possible measurements are all zero. An
example of a nonfinite system is the “vacuum” of relativistic quantum feld
theory. This vacuum experiences only irreversible interactions with its
finite system A.

{h) The present theory is probabilistie in the same sense that qua,ntum
mechanics is probabilistic. The theory is not statistical, however, i the
sense of statistical mechanics,

(1) The procedures and conclusions of the paper appear to be of extremely
general application.
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Comments

1. Prigogine: 'Yhe difficulty is that there exist initial states such that, at
least over a period of time, the entropy of the sysiem decreases (see my
paper in this volume). For this reason, T do not see why 2 medification of
Quantum Mechanics should be introduced in order to force agreement with
macroscopic thermodynamices for all possible situations.

G. N. Haisopoulos: The current view concerning physical systems is that
the instantaneous state of a system is a quantum mechanieal state that can
be described by means of a wave function. Moreover, a thermodynamic
state is viewed as an ensembie average of quantum mechanical states and
operationally equilibrium states are interpreted as time averages of the
states assumed by a system over long periods of time, or as averages over
many experiments on systems prepared in some specified fashion.

Our point of view differs from the current view in the following way: We
view a thermodynamie state as one that a system may assurne at an instant
of time. Mathematically, it ean be deseribed by a means of an operator ¢
which, in general, has components in many Hilbert spaces. Each Hilbert
space corresponds to a given number of degrees of freedom and values of
constraints. For example, different Hilbert spaces are required because
particles may be created and annihilated.

Mesasurements of a dynamic variable, such as the energy, will yield
various results for a given thermodynamic state—not because the system
passes through different energy eigenstates as time goes on, but because the
measurement disturbs the original state of the system. The probability that
this or that result will be obtained from a measurement is uniquely deter-
mined by the operator & describing the thermodynamic state prior to the
measurement.

From some states, the operator & is equivalent to a wave function. These
are the zero entropy states. For other states, the operator # is equivalent
to a Von Neuman n density matzix operator 5. The operator &, however,
ean deseribe states that cannot be represented either by a wave funetion or
by a density matrix. It is this feature of the theory that makes it consistent
with the requirements of both quantum theory and those of the second law
of thermodynamics.
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For reversible processes only, the equation of motion of a system whose
state is deseribed by an operator ¢ is given in the paper. This equation
becomes identical to that for Von Newman's density operator g for those
states for which & and  are equivalent.

For irreversible processes, the equation of motion is not known. Irrever-
sible processes can oceur only if the system in question is interacting with a
system characterized by a nonfinite 4. The vacuum of quantum field theory
is an example of a ponfinite system.



