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INTRODUCTION

The nurpose of this paper is to obtain thermodynamically
rigorous conditions for and the range of validity of the
Tinearized Boltzmann equations used in analyses of the
césium vapor in the interelectrode space of a thermionic
converter.

To this end, the conditions are expressed in terms
of gradients of femperatures and total thermodynamic
potentials only. Then it is shown that the linearized
equations are valid in the plasma region for all
practical vdlues of electron flux, but become invalid
in each of the sheath regions when the electron flux
exceeds about 1/100 of the corresponding random flux.
These results prove: (1) that the conditions for the
validity of the linearized Boltzmann equations depend
only on the gradients of the thermodynamic potentials
and not on the gradients of pressure, temperature, and
motive {electric potential); (2) that the range of
validity is determined by the magnitudes of the particle
fluxes; and (3} that the linearized Boltzmann eguations
and the corresponding hydrodynamic equations and fluxes
can be used even in regions where the electric field is
appreciable, such as a transition regjon between a
steep sheath and a plasma.

LINEARIZATION OF BOLTZMANN EQUATIONS

As discussed by Witkins (1966), the steady-state
Boltzmann equations for the distribution functions of
the various types of particles in a cesium vapor system,

such as that in the interelectrode space of a thermionic -

converter, can be 1inearized and solved subject to four
restrictions. The first restriction is that the
distribution functions fe for electrons, fi for singly-
charged cesium positive ions, and fa for cesium atoms
can be approximated by the expressions
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and fa = fao’ (1}
where, for o = e, 1, and a,
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and, for ¢ = e and 7, ;a(x,ga} is a slowly varying
function of position x and velocity v, such that
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We see from relations 3 that the particle density n,
temperature Ta, and pressure pa are functions of
position x. For a = e and i, they are characteristic of
the corresponding stable equitibrium state of the
e-particle phase at position x.

The other three restrictions given by Wilkins (1966)
refer to approximate expressions for the collision
integrals and the equality of Ti and Ta.

When electron-electron elastic collisions are
negligible compared with other types of cellisions,

_ then the linearized Boltzmann equations can be solved

for the perturbation function ;e(x,ye). Thie solution
can be expressed in terms of thermodynamic potentials
and is given by the relation
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where v . denctes the component of Vo in the x-direction,
ve(ve) the electron coliision frequency defined by the
relation

“v(vg) = v lvg) + vy ), : (6)
ei(ve) and the
electron-atom “ea(vﬂ) collision frequencies, L the
electron mass, g the electron total potential, namely

namely as the sum of the electron-ion v
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h Planck's constant, Uee the electron chemical patential,
and ¢y the electron motive. We can readily verify that
;e{x,ye) depends only on the gradients of 1/'[e and

”e/Te and not on the gradients of Pas Te, and . These
dependencies are consistent with the well known require-
ments of irreversible thermodynamics.

We see from Eq. 5 that E;e(x,ge)l will be much
smaller than unity if and only if
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For a given coliision frequency, Eqs. 8 and 9 indicate
that the limitations on the gradients dTE/dx and duE/dX
are less restrictive for small values of velocity

than they are for large values of velocity. On the
other hand, for the steady states of interest, the
fraction of electrons that have Targe velocities is small
and, therefore, large velocities are unimportant.

RANGE OF VALIDITY OF LINEAR APPROXIMATIONS

Conditions on dTe/dx and due/dx

In general, the conditions for the validity of the
Tinearized Boltzmann equations (Egs. & and 9) are
velocity dependent. For the steady states of

interest, however, very few electrons have high
velocities and the distribution function peaks around
the average kinetic energy which is about kTe.
Accordingly, the term m vZ /2 in Eq. 8 can be replaced
by kTe and, therefore, neglected in comparison with the
negative of the chemical potential (-uce) which is
usually at least one order of magnitude larger than kTe’
Moreover, the ratio Yex/vaeg can be approximated by an
effective free pathhke = ve/ve, namely by a ratio of an
effective Yejocity Ve and an effective collision
frequency Vo Thus conditions 8 and 9 become
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For conditions of operation of interest to thermionic
conversion, kT, ~ 0.2 ev and Epcel = 2 to 3ev. For
example, at the points just outside the emitter
e1ectrog§E and at-the points just outside the collector
electrode C the ratio KT /|u_,| s equal to KT;/¢p and
kTC/¢C, respectively, and usually

where TE and TC are the electrode temperatures, and

¢ and ¢ the electrode work functions. From conditions
10 and 11 it follows that the 1inear approximations

are valid when the ffactiona1 changes of Te and 1o PEY
affective free path Aq are smaller than about 1/100.

For a cesium vapor system about 10 effective free

paths thick, Te = 2000°K and e * 2 ev, the Tinear
approximations are valid if the temperature and total
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potential changes across the vapor system are of the
order of a few hundred degrees °K and a few tenths of
an electron volt, respectively.

Under conditions of operation of thermionic
converters, TE - TC = 1600°K and, therefore, the linear
approximations cannot be valid across the cesium vapor
system. It is shown below that the Tinear approximations
fail primarily in the sheath regions.

Failure of Linear Approximations in Sheath R&gians

We will consider a sheath region of a cesium vapor
system in the vicinity of an electrode. We will assume
that the sheath can be analyzed by means of the
relations resulting from the linearized Boltzmann
equations. We will prove that the assumption is
invalid when the electron flux density To is an
appreciable fraction of the random flux density Tre;
in other words, we will prove that the range of validity
of the linear approximations in a sheath is contyolled
by the magnitude of the current flow and not by the
magnitude of the electric field (gradient of motive y).

For present purposes, elastic collisional processes
will be approximated by an effective electron-neutral
hard-sphere free-path Keand, to first order, the effects
of jonization collisions will be neglected. Both
approximations have a negligible effect on the results.

Under these conditions and approximations, we can
show that the electron energy flux density Uy, is given
by the relation

u = T, T, - Sk r G . (2)
Consistent with the assumption about ionization
collisions, to first order due/dx = 0 and dre/dx = 0.
Hence, differentiating Eq. 12 with respect to x,
replacing derivatives of ¢ and (ie/Te)(dTe/dx) by
A[wJD/hD and A[(Ae/Te)(dTe/dx)]D[AD, respectively, where
al ]D denotes change in value over a distance of a Debye
tenth Aps and keeping first order terms only we find
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In a sheath, the changé?é{¢%ﬁgﬁsﬁabout 3 and,
therefore, the difference between the values of
(ie/Te)(dTe/dx) at two points a distance i apart is
about Fe/rre' This difference would satisfy the
condition of validity of the linear approximations
{Eg. 10) if and only if To/Tpe 1S smalier than about
1/100. Under practical conditions of operatien,
however, Te/rre in a sheath region is larger than 1/100
and, therefore, the linear approximations are not valid
in these regions. The failure of the linear

mmmmaudmardane 4n Fhn chaskh wandane dntnndiaasc coninie



computational difficulties in the analysis of the cesium
vapor system. Some of these difficulties have not yet

been resolved.

Validity of Linear Approximations in Plasma Region

We will consider a cesium vapor system in a steady state
with an accelerating emitter sheath{electron motive
change APp through the emitter sheath is negative).

We will show that the Tinear approximations are wvalid

in the plasma region by proving that the electron
temperature gradient and electron total potential
gradient satisfy conditions 10 and 11, respectively,

at the emitter sheath-plasma interface as well as
throughout the plasma.

Approximating elastic collisional processes by
a constant electron-neutral hard-sphere effective free
path ieand, to a first order, neglecting the effects of
ionization collisions, we can show that at the emitter
sheath-plasma interface the electron flux density re(1)
and the electron energy flux density ue(l) are given by
the relations

~
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where subscript "T" denotes that all position-dependent
quantities inside the bracket must be evaluated at the
emitter sheath-plasma interface. On the other hand,
ue(1) is also given by the approxiwate boundary condition
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where
emitter, and ¢E the motive just outside the emitter.

rEe is the electron emission flux density at the

Eliminating ue{}) between Eqs. 15 and 16 we find

that
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For an accelerating sheath, App < 0 and TE < Te(]) and,
therefore, Eq. 17 indicates that (dTe/dx)1 > 0. When
(dTE!dx)} > 0, Eq. 14 indicates that

due .
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Next, eliminating re(I) between Eqs. 14 and 17 we
find that
2kT KT, a dT
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In the right-hand sides of relations 19 and 21, the
factors that multiply KT /|u ]
For example, numer]ca] results for thermionic
converters show that for kT, {1) = 0.2 ev, (kT /EA¢ ]}

0.2 and (P /r )] = 0.01. It follows that both

[(A /T )(dT /dx}]] and [(A /u )(du /dx}]1 are much smaller
than (kT /J cei)1 and, therefore that they satisfy
cond1t1ons 10 and 11, respecttve1y.

are appreciably smaller
than unity.

In the plasma region of the type under consideration
both T /P and A{wjnlkT are much smaller than unity,
and, therefnre the difference A[R /To HdT /dx)]D (Eg.13)
is much smaller than unity. It fo]]ows that
(ie/Te)(dTe/dx) satisfies condition 10 throughout the
plasma region since it satisfies it at the sheath-plasma
interface.

Next, we note that the electron flux density Tq in
the plasma is given by the relation

u KT 5{
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Since, to first order, s[r 1y = 0 it follows from Eq. 22

that
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and, therefore, that (ie/“ce
11 throughout the plasma region since it satisfies it at
We conclude that the linear

)(due/dx) satisfies condition

the sheath-plasma interface.
approximations are valid in the plasma region under
practical conditions of operation of a thermionic
converter.
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CONCLUDING REMARK

For a cesium thermionic converter, we have shown that the
linearized Boltzmann equations are valid in the plasma
region and that their range of validity is controlled
by the value of the current and not by the value of the
electric field. These results indicate that the
linearized Boltzmann equations and the corresponding
hydrodynamic equations and fluxes can be used not only
in analyses of plasma regions but also in analyses of
regions in which the electric field is appreciable but
the curvent is small compared with the random current,
such as the transition regions between sheaths and

the plasma.
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