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MARKOVIAN RELTABILITY ANALYSIS UNDER UNCERTAINTY
WITH AN APPLICATION ON THE
SHUTDOWN SYSTEM OF THE CLINCH RIVER BREEDER REACTOR

ABSTRACT

A mefhodo]ogy for the assessment of the uncertainties about the .
reliability of nuclear reactor systems described by Markov models is
developed, and the uncertainties about the probability of loss of
coolable core geometry (LCG) of the Clinch River Breeder Reactor
(CRBR} due to shutdown system failures, are assessed.

Uncertainties are expressed by assuming the failure rates, the
repair rates and all other ihput variables of reliability analysis as
random variables, distributed accoﬁding to known probability density
functions (pdf). The pdf of the reliability is then calculated by the
‘moment matching technique. Two methods have been employed for the
determinatfon of the moments of the reliability: the Monte Carlo
simulation; and the Taylor-series expansion. These methods are
adopted to Markovian problems and compared for accuracy and efficiency.
Three techniques have also been developed for reducing the calculation
effort. These are: (1) Systematic ordering of the system states -
resulting in a simpler structu@g of the transition probability matrix;
(2) Systematic merging of Markov processes describing systems ex-
hibiting symmetries - resulting in smaller transition probability
matrix dimensions; and {3) Systematic choice of the maximum possible
time step for the process and introduction of an approximation that

permits the use of large time steps in the Monte Carlo simulation.
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Computer codes have been written to perform the calculations
necessary for the implementation of the developed methods.

A Markovian reliability analysis under uncertainty for the shutdaﬁn
system of the CRBR has also been performed. A Markov model has been
used including common cause failures, 1nterdependence§ between the
unavailability of the system and the occurrence of transients, and
inspection and maintenance procedures that depehd on the state of the
system and include the possibility of human errors. The failure
rates, the repair rates, the rates at which transients occur and all
other input variables have been assumed randomly distributed in such
a way that their upper 90% confidence 1imit'is one order of magnitude
higher than the Tower 90% confidence limit. The latter 1imit is of
the same order of magnitude as the mdst probable value of the quantity
in question.

The consideration of common. cause failures, human errors, and
uncertainties has a significant effect on the calculated probability
of LCG due to shutdown system failures. The calculated probability of
LCG is distributed Tognormally with median 2 x 10'6 and upper and

5 and 2 x 10‘7, respectively.

lower 90% confidence limits 2 x 107
This probability band represents a considerable difference from the

1 x 1079 point estimate of the same probability if common cause 1
failures are not considered, the inspection is perfect, and the input

variables are fixed at their mean values.
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CHAPTER ONE
INTRODUCTION

The cbjectives bf this dissertation are: the development of a
methodclogy for the calculation of uncertainties about the reliability
of nuclear reactor systems described by Markov models and the assessment
of the uncertainties in fhe reliability of the Shutdown System of the
Clinch River Breeder Reactor.

Reliability of a system is the probability that the system will
perform a required function under stated conditions and for a stated
period of time. -For compiex systems {as nuciear reactors), this
probability is calculated from existing information about subsystems
or components of the system. This information is usually expressed
in terms of failure and repair rates of components. Hence, the
reliability of the system is a function of the failure and repair rates
of the components. The complexity of this function and of the methods
for its evaluation vary with the complexity and the stochastic
character of the system.

Very often in reliability analyses of nuclear systems, statistical
dependences among either fajlures or repairs or both must be considered.
Such statistical dependences are introduced by both common cause
failures and by maintenance procedures that are contingent on the state
of the components, on the state of the system, and on the test method.
Many aspects of statistical dependence can be analyzed if the prob-

abilistic behavior of the system can be simulated by a Markov process.



It the failure and repair rates of the components are exactly
known, the Markovian method (as well as any other method) yields a
unique answer for the reliability of the system. In many instances,
however, uncertainties exist about the various failure and repair
rates. These uncertainties exist either because our knowledge of
these quantities is incomplete (existing components that will operate
in a different environment, new design, limited testing, etc.) or
because these quantities are inherently uncertain. Uncertainties
exist in particular for newly designed systems as the advanced reactor
systems of the Liquid Metal Fast Breeder Reactor, the High Temperature
Gas Cooled Reactor, the Gas Cooled Fast Breeder Reactor, etc. It
follows that an uncertainty exists about the reliability of such
systems, and an importaht question is "how does one calculate the
uncertainty about the reliability of a system from the uncertainties
about the reliability of the components of the system?" We will attempt
to answer this question as follows.

We will assume that the uncertainties about the failure and repair
rates of the components can be quantified by considering them as random
variab]es; namely, variables with a range of va]ues.and probabilities
associated with this range. Thus, the reliability of a system being a
function of random variables becomes itself a random variable. We
are interested then in calculating the range of values of the reliability
and the probabilities associated with this range. The reason we want
to determine the reliability (and the associated uncertainties) is
because reliability is an important factor in evaluating the usefulness

of a system.



Although all information about the reliability of the system would
be included in the range of the values and the corresponding prob-
abilities, reliability is seldom used in this form for evaluation or
comparison purposes. Usually, other more compact evaluators of the
reliability and the associated uncertainties are used. The problem
of reliability analysis under uncertainty can be divided into the
following three subproblems:

(a) Determination of the probability density functions (pdf)

of the transition rates of the components of a complex system;

(b} Calculation of the pdf of the reliability of the compiex

system from the pdf's of the transition rates:

(c) Derivation of evaluators from the random variable reliability.

For the purposes of this work we assumed that the nature of pdf's
of the transition rates are given, and we developed methods for
addressing subproblems (b) and (c).

As an illustration of the ﬁethodo]ogy that we developed, we
evaluated the uncertainties about the reliability of the Shutdown System
of the Clinch River Breeder Reactor (CRBR). In particular, we calculated
the uncertainties associated with the probability of loss of coolable
core geometry due to failure to scram on transient. Since the CRBR is
a newly designed system, cur knowledge about the failufe rates of the
components and other required statistical information is rather 1imited.
For this reason, we expressed uncertainties by considering the various
transition rates and propabilities as random variables distributed
according to given probability density functions. Then we calculated

the probability density function (pdf) of the failure probability of



the Shutdown System, and from this pdf we derived a confidence interval
or probability band for the failure probability.

A Markov model was used for these calculations. The use of such

a model permits the modeling of:

(1) Common cause failures by allowing interdependences among
the failure rates and the states of the components:

(2) Interdependences between the unavailability of the Shutdown
System and the occurrence of transients;

(3) Inspection and maintenance procedures that depend on the
state of the system and include the possibility of human
errors.

The consideration of uncertainties and the inclusion of the above cited
features in the model have a significant effect on the calculated
failure probability of the Shutdown System of the CRBR. The failure
rates, the repair rates, the rates at which transients occur, and all
other input variables were assumed distributed in such a way that

their upper 90% confidence 1imit is one order of magnitude higher

than the Tower 90% confidence 1imit. The latter Timit is of the same
order of magnitude as the most probable value of the quantity in
question. The calculated Tower 90% confidence 1imit, median, and

upper 90% confidence Timit of the CRBR Shutdown System failure prob-

7 6

ability per year are, respectively, 2.1 x 1077, 1.9 x 10~

1.8 x 10*5. This probability band is to be compared with the 1 x 10~

, and

9
point estimate of the failure probability when interdependences are
not considered, the inspection is perfect, and the input variables

are fixed at their mean values.



The dissertation is organized as follows.

Chapter 2 presents the basics of Markovian reliability analysis.
In particular, it is shown how Markov processes can be used in. the
calculation of the time-dependent reliability and other related
probabilities of an engineering system. Furthermore, a technique is
presented for simplifying the structure of the transition probability
matrix in order to reduce the numerical difficulties associated with
models of large systems.

Chapter 3 presents another technique for further reducing the
numerical difficulties of the problem by reducing the dimensions of
the transition probability matrix. This is possible if the Markov
process is mergeable, i.e., if its states can be merged to form
superstates and if the resuiting superstate-transition probabilities
can be expressed only in terms of the transition probabilities of
the process. It is shown that the Markov processes describing systems
exhibiting symmetries (such as the safety systems of nuclear reactors)
are mergeable and a systematic procedure for achieving the merging
is presented.

Chapter 4 presents the mathematical statement of the problem of
Markovian reliability analysis under uncertainty. The unfeasibility
of an analytical solution and the need for numerical approximate
solutions are discussed, the quantification of the uncertainties
about the common cause failures is examined, and some analytical
results for the 2x2 case are presented.

Chapter 5 deals with the moment matching technique for the

approximate determination of the pdf of a random variable for which



only the firét few moments are known. The various types of distributions
fitted to the existing information, as well as a short discussion of

the use of this technique in other studies for the description of
uncertainties in the reliability of nuclear systems, are presented.

Chapter 6 presents the use of the Monte Carlo simy1ation technique
for the determination of the moments of the reliability, and of other
reliability evaluators. Techniques for reducing the necessary computing
time by an appropriate choice of the time step of the process are also
presented.

Chapter 7 presents the Taylor-series method for the calculation
of the first few central moments of a function of random variables.

The particular problems arising from the specific mathematical form of
the reliability function in Markovian analyses are examined, and the
advantages and limitations of this technique versus those of the

Monte Carlo simulation are discussed.

Chapter 8 presents the assessment of the uncertainties about the
failure probability of the Clinch River Breeder Reactor due to failure
of the Shutdown System to scram on a transient. A description of the
system, its mission, its reliability duty cycle, and of the model is
given. The uncertainties about the failure rates and other input
variables are defined and the pdf of the failure probability is derived.

Chapter 9 gives the summary and the conclusions of this work.

Finally, Chapter 10 presents recommendations for further studies.



CHAPTER TWO
MARKOV PROCESSES AND RELIABILITY ANALYSIS

2.1 Introduction

In this chapter the basics of Markovian reliability analysis are
presenteé. In particular, it is shown how the probabilistic behavior
of an engineering system can be described by a Markov process and how
the dynamic reliability and other related probabilities canrbe calcu-
lated from the resulting mathematical model. Furthermore, since the
reliability ana]ys;s of Targe systems is of particular importance fo
this work, a technique is also presented'for reducing the numerical
difficulties associated with models of large systems. The material in
this chapter is a summary of definitions of basic concepts, symbols,
and assumptions that will be needed in the sequel. For a complete
treatment of Markov processes, the reader is referred to Howard (1972)
and Kemeny and Snell (1960). The application of Markov processes to
reliability analysis is also discussed by Shooman {1969), Barlow and
Prochan {1965), Billinton (1973), Sandler (1963), Green and Bourne
(1972), Buzacott (1970), and Lee (1971). For a more detailed exposition
of the technique for large systems see Papazoglou and Gyftopoulos (1974).

The chapter is organized as follows: Section 2 presents the basic
assumptions, concepts, and definitions of Markovian reliability theory;
Section 3 describes a technique for reducing the numerical difficulties
of Markovian models of large systems; Section 4 discusses the analytical
formulation of specific repair policies; and Section 5 presents the
calculations of the time-dependent reliability and availability of a

simple system.



2.2 Basic Assumptions and Definitions

(i)
(i)

(ii1)

(iv)

(v)

A system consisting of N components is considered.
Each component can be 1in kV (v=1,2,...,N) component-states.

A component-state is defined by the way the compoment is

functioning as well as by the way this functioning affects
the function of the system and the other components.

A system-state is defined by the component-states of the

N components. The number z of possible system-states
is given, therefore, by the number of permutations of kV

taken N at a time, or

N
z=1T k, - (2.1)

If all the components can be in the same number of states,

i.e., if k1=k2=...=kN=k, then

(2.1a)

The system changes its state, performs a state-transi-
tion, whenever one or more of its components change state.
The components {and therefore the system) can change state

only at discrete times tn where

t =t

0 n1 t at{n) (2.2)



{vi)

(vii)

or with at{n) = constant:
L= t0 + nat . (2.2a)

The process of changing the state of components is a
random process and therefore the process of changing the
system-state is also a random process.

The probability that a component will change its state at
time tn depends only on the initial and final state of the
component, on the time tn, and on the states of the other

components of the system at time tn.

From assumptions (v) and (vii) it follows that the probability that the

system will perform a state-transition from system-state i to system-

state j at tn, depends only on i, j, and tn. This prebability fs called

the transition probability from state i to state j at tn and is denoted

From assumptions (iv), (v) and the property of the transition proba-

bilities just cited, it follows that the random process of changing

system-states is a discrete-state, discrete-time Markov process.

(viii) The probability that the system will be in state i at tn

(ix)

(x)

is called the state-probability and is denoted by ﬁi(n)'
The z state-probabilities ﬁi(n) (i=1.2,...,2), define a

row vector with elements “i(n)’ called the state-probability

vector and denoted by =(n).
The z° transition probabilities Py 1=1.2,0002, 31,

2,...,Z define a square matrix of elements pij(n) called the



transition probability matrix and denoted by P(n). It

can be shown that ={(n)} obeys the relation: [see Howard

(1972)]

m{n + 1) = n(n)-P(n) , (2.3)

where
z
0<pys(msl, E pisln) =1 (2.3a)
3=1 |
for i,j = 1,2,...,2 and n = 0,1,2...,
and
z
O<mi(n) <1, E .(n) = 1 (2.3p)
i=1 ’
for i = 1,2,...,Z and n=10,1,2,...,

If the transition probabilities are independent of time,

then {2.3) yields
a(n) = x(0)-P" . (2.4)

The set of the z possible states of the system is partitioned

into two subsets X and Y such that:
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(x1)

The set X contains all the states of the system in which
its operation is considered successful. This set is

called the set of operating states.

(xii) The set Y contains all the states in which the system is
considered failed. This set is called the set of failed
gtates. Then, with the corresponding partition of n{n) into
subvectors n{n+1,X) and m(n+l,Y), and of P(n) into sub-
matrices P{n,X,X}, P{n,X,Y), P{n,Y,X}, P(n,Y,Y) (2.3) can
be written as

P(n,X,X) P(n,X,Y)
[x(n+1,X), a(n+1,Y)] = [2{n,X), =(n,Y)] . (2.8)

P{n,¥,X} P(n,Y,Y)

(xiii) The probability that the system will be operating at time n

(xiv)

is equal to the probability that the system will occupy any
of the operating states at time n. It is the avaiiability,

A(n), at time n and is given by

Aln) = D w0 (2.6)
iCX

The probability that the system will not leave the subset
of operating states X during the time period from 0 up to n
is equal to the probability that the system will occupy any
of the operating states at time n given that transitions
from subset Y back to subset X are not possible. It is the
reliability, R{n), at time n and is given'by

R(n) =Z“i("’x) , (2.7)

1E€X
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where now m{n,X) is the solution of (2.5) with P(n,Y,X)=0,

i.e., the solution of

a(n+l.X) = m(n,X) P(n,X,X) . (2.8)

2.3 Linearization of Probabilities and Ordering of States

The solution of (2.5) requires the aid of a computer. When the
number of possible states of a system is large, however, the necessary
computer storage and computer time are prohibitive because of the large
size of the transition probability matrix. For example, for a system
consisting of 10 components, each having two possible states and con-
stant failure and repair rates, the transition probability matrix has
more than 106 elements.

The computational effort associated with {2.3) can be reduced by
Tinearization of probabilities and by ordering states. Specifically,
we will assume that each transition probability pij(n) is a linear
function of the time step At, or that the size of At is such that
transition probabilities among system-states differing in the states of

two or more components can be neglected. Thus,

_h;’,g(n]s.(n_)=1') At if i#j and states i and j differ

only in the state of component v;

pij(n) =<0 ‘ if i#£j and states i and j differ in
. the state of more than one component;
1 —Z P (n) if i=3;
m=1
m#i (2.9)
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where h:g(nls(n)=i) is the conditional transition rate (probability per
unit time) of the v-th component from component-state r to component-
state g at time n, given that the state of the system at time n [s(n)]
is i. The conditional transition rate hxg is of course equal to
various conditional failure rates and repair rates of component v.
The transition rate of each component at time n depends on the state
of the system, namely, on the states of the other components., so common-
cause failures are allowed. For example, the common-cause failure of
two components can be modeled by assuming a certain conditional failure
rate when both components are operating and a properly higher conditional
failure rate when only one component is operating. (See also Section
2.6.) |

The ordering of system-states is accomplished by partitioning the
sets X of operating states and Y of failed states into subsets X(K),
for K=0,1,2,...,M, and Y(K), for K=1,2,...,N, respectively, so that
each state in either X{K) or Y(K) contains K fgi]ed components; in other

words, X and Y are represented by the unions

x(d)u X(1U . . . UX(M) (2.10)
Y(1)U Y(2)u UML), . L UY(N) (2.11)

- »<
U i

where M is the maximum number of failed components with which the
system can operate and N the total number of components. Similarly,
we can order the state probability vectors m(n,X) and =(n,Y) into sub-
vectors, and the transition probability submatrices P(n,X,X), P{n,X,Y),
P(n,Y,X}, and P{n,Y,Y) into submatrices corresponding to the various

subsets X(K) and Y(K). Thus (2.5) becomes
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[EIJ}XX [EIL]XY

[22(n+1,%), e con(n#1,0)] = (20000 eeun (n,1)) , (2.12)

[RKJ]YX [EKL] vy

where 1,d = 0,1,2,....M, KoL = 1,2,...,M,...,N, and x"(n,X) corresponds
to subset X(K).

Moreover, by virtue of (2.9), it follows that

#0 if 1=d-1 or I=d or I=J+1

BI‘] = EIJ(n,X,X) (2.13a)
= 0 otherwise;
#£0 if K=d+1
P = pMn,v,x) (2.13b)
= 0 otherwise;
£0 if I=L-1 ;
P_I!‘ = B_IL(n,x,Y) _ (2.13c)
= 0 otherwise;
£ 0 if K=L-1 or K=L or K=L+1
pR- - P (ny,Y) (2.13d)

= 0 otherwise;

and that
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where I, J = 0,1,...M, and K, L = 1,2,...M,...N, and, for convenience,
the time and subset dependence of the submatrices of matrices
P(n,X,X) etc. have been omitted from both (2.12) and (2.14).

From (2.13) and (2.14) it can be seen that linearization of
prObab{lities and ordering of states reduce the numerical complexity
of the problem in a systematic manner. For example, (2.13c) indicates
that transitions from an operating state with I failed components to
a failed state with L failed components is not possible if: (1)
|I-L|>1, namely, if more than one component-state transition must occur;
and (2) I=L+1, namely, if a failed component is repaired, since such a
repair in an operating state cannot bring the system into a failed
state. Again (2.14) indicates that only 5M+3N-1 submatrices of the
ordered P(n) need be stored instead of the (M+N+1)2 submatrices of the
unordered E(n). Moreover, the ordéring results in computing-time
savings because the solution of (2.5) is much faster when P(n) is

qrdered than when it is not.
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2.4 Repair Policies and Special Systems

For certain repair policies and certain special systems, some of
the submatrices EFL in (2.14) are equal to zero. Four examples are
given below. |

a) No-online repair: If online repair is not possible, then sub-
J

matrices E} of the lower diagonal stripe of P(n,X.X) in (2.14), are

equal to zero:

E_I+1,I

for no-online repair: in P{n,X,X), = 0 for 1<I<M. (2.15)

b) "Cold" standby operation: If the standby operation of a

system is assumed "cold," that is i1f no components can fail while the
system is not operating, then submatrices EFL of the upper diagonal

stripe of P(n,Y,Y) in (2.14) are equal to zero:
K-1,K

for "cold" standby operation: in P(n,Y,Y), = 0 for 2<K<N. (2.16)

¢) Selective repair: In general, if a system is failed, the

first component to be repaired can be any of the failed compenents.
Under a selective repair policy, however, it might be possible to re-
pair that particular component which brings the system back into
operation. When a selective repair policy is possible, then sub-

matrices _F+1’K

of P(n,Y,Y) in (2.14) are equal to zero for K<M + 1:
' " K+1,K

for a selective repair: in P(n,V,Y), = 0 for K<M + 1. {2.17)

d) Components with one operating state: If a system consists of

components that cannot transit between failed states and have only one

operating state, then submatrices E}I

of P{n,X,X) and EFK of
P(n,Y,Y) are diagonal because a system transition from a given state
to another with the same number of failed components requires at least

the simultaneous repair and failure of two different components:
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~ for systems consisting of components with one operating state:

in P(n,x,x), P

il
]

[aijpij(")] U ofor 1=0,1,2,....M

and

) KK ' KK
in P(n,Y,Y), P [aijpij(")] for K

1,2,...,N, (2.18)

where Gij is the Kronecker delta.

2.5 An Application

As an iltlustration of the methodology developed in Sections 2.2
to 2.4, the time-dependent availability and reliability of the system
shown in Figure 2.1 has been calculated. The following assumptions
were made about the system: 7

1) The system consists of two pumps and four valves. Each pump
can supply the required flow rate, but when both are operating each is
operating at half capacity. The pumps can be in two states: operating
and failed. Two_valves-are associated with each pump. -The function
bf the valves is to isolate the corresponding pump when it fai}s; Each
valve can be in three states: operating, failed in the open position,
and failed in the closed position.

2) The mission of the system is to supply point B with water at
a certain flow rate and for a certain period of time T, and under a
known environment.

3) The various failure and repair rates are listed in Table 2.1.
They do not correspond to real data but have been selected solely for
illustration purposes. The following statistical dependences due to

different operating conditions, repair capabilities, and possible
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- common cause failures, have been assumed:

a) The failure rate of each pump is equal to k 1.)t(1'=0,1), where

p
i is the number of failed pumps and kp0=1. Similarly, the failure
rate of each valve is equal to k .x,.(i=0,1,2,3 and j=1,2)., where i

vi'v]
denotes the number of failed valves, j the failure mode (open or

closed position), and kV =1;

0
b) Every répair is perfect. The repair rate of each pump is
equal to dpirp (i=1,2 and dp]=1), where i1 denotes the number of failed

pumps. The repair rate of each valve is equal to dvirvj(i=1’2’3’4;

i=1 =
i=1,2 and dv i}.

1
A computer code, described briefly in Appendix A, has been
written to perform the calculations according to the methodology devel-
oped in'Séctions 4 and 5. The results are summarized in Figures 2.2
and 2.3. In Figure 2.2, curves 1 and 2 represent ‘the unavailability
of the system as a function of time with or without statistical
- dependences among the failure repair rates, respectively, and curve 3
represents the unavailability of the system if online repair is not
possible. Figure 2.3 presents analogous résults for the unreliability

of the system.
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TABLE 2.1 Conditional failure and repair rates of the

camponents of system in

Figure 2.1

Conditional failure
6

Conditional repair

rates (per 10" hr) rates (per 10° hr)
Pumps
Two Up 30 -
One Up 3000 10000
Nona Up - 5000
to the to the from the | from the
Valves “open "¢losed “open “closed
position” | position” position" { position”
Four Up i 1 - -
Three Up| 5 5 1000 |- 1000
Two Up 10 10 500 500
One Up 10 | 100 300 300
None Up | - - 100 ; 100
Hliggﬁ. i-:gib
1 ouT

Figure 2.1. Sample system.
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Figure 2.3. Time-dependent unreliability of the

sample system,
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CHAPTER THREE
MERGEABLE MARKQOV PROCESSES

3.1 Introduction

The computational effort involved in evaluations of the reliability
and availability can be substantially reduced if the Markov process
describing the probabilistic behavior of the system is mergeable. The
theory of mergeable Markov processes is presented in this chapter.

From (2.6) and (2.7) it follows that the reliability of a system
can be calculated if partial sums of wi(n,x)'s can be obtained. A sum
of state-probabilities 7.(n,X)'s is equal to the probability that the
system will be in any of the individual stétes that form this sum. If
a new process could be formed, therefore, such that its states consist
of groups of states of the original process and if this new process is
Markovian, then the new state-probabilities would provide the partial
sums necessary for the calculation of A{n) or R(n) in (2.6) or (2.7).

A Markov process, the states of which can be grouped together to form
superstates in such a way that the result is also a Markov process,

is called mergeable (for a more complete definition see Subsection 3.2).
Because the number of superstates of a merged Markov process is much
smaller than the number of original states, the dimensions of the
probabiiity vector and transition matrix of the superstates are much
smaller than those of the original states, and, therefore, the comput-
ational effort is substantially reduced.

Given a certain grouping of states of a process, ‘there is a neces-

sary and sufficient condition that the transition probabilities of the
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original process must satisfy for the resulting merged process to be
Markovian. This condition, called henceforth the mergeability criterion,
has been presented by Buzacott (1970), Bacon (1964), Singh and Billinton
(1975) , Howard (1972), Papazoglou and Gyftopoulos (1974), and Kemeny

and Snell (1960). The creationofall possible combinations in which

the states of a Markov process canrbe grouped into superstates, and the
testing for the satisfaction of the mergeability criterion, is for all
practical purposes impoésib1e. It is shown in this chapter, however,
that the Markov processes desCribing systems exhibiting certain symme-
tries aremergeable. In addition, a systematic way for achieving the
merging is presented.

This chépter ié organized as follows: Section 3.2 presents the
definition of mergeable Markov processes and derives the mergeability
criterion; Section 3.3 gives the definition of syStemusymmetries and
the proof that the corresponding Markov processes are mergeable;

Section 3.4 provides a brief descfiption of a cbmputer code that

achieves the merging and a numerical example.

3.2 Mergeabie Markov Processes and the Mergeability Criterion

Let the randem process describing the probabilistic behavior of
a system be a z-state Markov procesz Let T = (TI’ T_,.,.,TI,;..,TM)
denote a-partition of the set of the z states into M groups of states.
In terms of these M groups a new random process can be defined as fol-
lows: the system is in the I-th state of the new process whenever it is
in any of the states that belong to subset TI (that form group I). If

s{n)=1 denote the event “system is in state i at t " and S{n}=I the
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event "system is in state I of the new process at tn“, then the new

process can be defined symbolically as

{S{n) = 1} if and only if {s(n) = i and iEZTI} . (3.1)

This new process is called the collapsed process, and its states are
cailed superstates. In general, the prefix super will refer to the
collapsed process. The definiticn of a mergeable Markov process is

now possible.

Definition 3.2.1 A Markov process is cailed mergeable

with respect to a partition T = {Tl’ T2...,TM} if for every
initial state-probability vector =(0), the collapsed
process defined inr(3.1) is a Markev process and the new
supertransition probabilities do not depend on the choice
of «(0}. |
It will be seen later that requiring the supeftransition probabil-
ities to be independent of #(0) is equivalent to requiring that they
be calculated from the transition probabilities of the original process
only. Before deriving the mergeability criterion for a Markov process,
the following definitions and lemma are necessary.
Let ;%J(n) denote the probability that the system will transit from

state i to superstate J at tn. Then

p.y(n) = Pr S(nv1) = 3 s(n) = 1) =Z iy - (3.2)
jed
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Let pIJ(n) denote the probability that the system will transit from

superstate I to superstate J at tn‘ We will show that:

Lemma 3.2.1 The superstate transition probability of
collapsed process, pIJ(n), is expressed in terms of the
state probabilities and the transition probabilities of

the original process by the relation:

icT JjeET

Z m.(n)

iCTI

I J

pry(n = (3.3)

Proof Let event A be the transition of the system from super-

state T to superstate J, or symbolically:
A= {S(n}) =1 and S(n+1} = 3} . (3.4)

The probability of occurrence of A can be expressed in two ways:
(1) Since the system is in superstate I whenever it is in

any of the states of subset Tys it follows from {(3.4) that

Pri{A} = g Pri{s(n) =1 and S(n+l) = J} ,
i€T, -

which in view of the relation
Pr{B-C} = Pr{B}-Pr{C/B} (3.5)

can be written as
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Pr{A} = E Pr{s(n) = i} . PriS(n+l) = J]s(n} = i}

1€TI
or
Pr{A} =Z ni.(n‘) p,id(n) . (3.6)
iCTr
(2) By vwirtue of {3.4) and (3.5), it follows that
Pr{A} = PriS{n) = I} * Pr{S(n+1) = J|S(n) = 1} (3.7)
or
Pr{A} = wI(n) . pIJ(n) . (3.8)
where
wI(n) z Pr{S(n) = I . . (3.9)

The combination of (3.6) and (3.8) yields

m.(n) p,

1J(n)

TeT,

prgln) = (3.10)

which in view of (3.2) and (3.1) is equivalent to (3.3). The following

proposition can nowbe proved about mergeahble processes.

Proposition 3.2.1 A necessary and sufficient condition for
a Markov process to be mergeable with respect to a partition

T= {Tl, T2'°" TI,...TM} is that for every pair of sets
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Ty TJ, the transition probability piJ(n), from a state 1 of
I to superstate J has the same value for all the states of

superstate I. Symbolically:

2 pij(n) = E pkj(n) all i, k€1, all TI’ Ta.hT . (3.11)

jCTJ JCTJ

Proof We first prove the necessity. From Definition 3.2.1 it follows
that the value of the transition probabilities of the new process is
independent of the initial state-probability vector w(0). Considering
a m(0) with all its elements equal to zero but the element corresponding

to the i-th stateof Tys which is equal to one, (3.3) for n=0 yields

Ppg(0) = Z Pij(O) . (3.12)

jeT,

Since pIJ(O) has the same value for all n(0) and i was arbitrary, (3.12)
holds for all i in Tio and the necessity of (3.11) has been proved.

For the sufficiency of (3.11) we notice that from (3.10) it follows
that p; J(n) depends only on superstates I, J and, therefore, the new

process is a Markov process. Furthermore, by virtue of (3.11) and (3.3),

z m;(n)
i€t

Prgtn) = Z Py == 2 pyym
Z nyln) - 3ET,

JCTJ

it follows that

1€TI
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and, therefore, the pIJ(n)'s depend only on the pij(n)’s of the initial

| process and not on w{0).
Whenever a partition T = {T;,...,T,} of the set of states of a

~ Markov process can be found such that the mergeability criterion {(3.11)
is satisfied, then the transition probability matrix of the merged pro-
cess can be defined in terms of the transition probabilities of the
original process only. The solution of (2.3) for the new process is
then possible, and since the number of superstates is substantially
smaller than the nuﬁber of the driginai states, the'computationa1 effort
associated with the sdfution of {2.6) and {2.7) is greatly reduced.
Throughout this section it was assumed that the partition T was given
and the question of whether the process is mergeable or not with respect
to this particdlar partition was answered. A much more difficult
question to answer is whether, given a Markov process, there is a
partition with respect to which the process is mergeable, and if the
answer is yes, how this partition can be found. A general answer to
this question is not known, and a straightforward approach of creating
all the possible partitions of the set of states and testing each one
against criterion (3.11) is self-defeating. In the next two sections
it is shown, however, that for Markov processes describing systems
exhibiting certain properties there is a partition with respect to
which these processes are mergeable. A systematic way to create

this partition is also presented.

3.3 0On the Mergeability of Markov Processes of Systems Exhibiting Symmetries

In this section it is shown that for systems exhibiting certain

- 27 -



symmetries there exists a partition of the set of possible states with
respect to which the corresponding Markov process is mergeab1e; For
a given system, symmetries may exist between components, or between
subsystemns of varying degrees of complexity. We will define thege
symmetries explicitly in the next two subsections. Here we would 1ike
to indicate that highly redundant systems such as the safety systems

of a nuclear reactor exhibit these two kinds of symmetries.

3.3.1 Systems exhibiting symnetries at_the component-leve]

Whenever symmetries in a system exist among its components, they
are called symmetries at a component-level. These symmetries are

defined as follows:

Definition 3.3.1 Two components of a system are symmetrical
if and only if:
(1) each component can be in the same humber of states
as the 6ther;
(2) each component has the same conditional failure rates
and conditional repair rates as the other;
(3) for any operating {failed) system-state, inter-
changing only the states of the two components
results in an operating (failed) system-state.

Note that a compenent is trivially symmetrical to itself.

Definition 3.3.2 A group of components each of which is

symmetrical to all the others in the group forms a class of

companents.
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A system can have many classes. Note that a class may contain only

ohe component.

Definition 3.3.3 A system is exhibiting symmetries at a

component level if and only if it has at least one class
containing more than one component.

Symmetries at a component-level are demonstrated in the following

example.

Exaﬁg]e 3.1 The sampie system considered in Section 2.5 has symmetries
at a component-level. Indeed, valve VAl is symmetrical to valve VAZ
and valve VBl is symmetrical to valve VB2 (see figure 2.1). The system
has four classes of components; class 1 containing pump PA, class 2
containing pump PB, class 3 containing valves VAl and VA2, and class 4
containing vaives VBl and VB2. It mus£ be noted that pumps PA and PB
are not symmetrical since condition (3} of Definition 3.3.1 does not
hold. Indeed, if system-state i and j are as shown in listings (a) and
(b) below, then we note i is an operating state, j a failed state, and

yet j is generated from i by interchanging the states of pumps PA and PB.

COMP PA PB VAl VAZ VBl VB2 SYSTEM
(a)
STATE UP FAILED UP up up FAILED  OPERATING
CLOSED
CoMP PA PB YAl VA2 ¥Bl1 VB2 SYSTEM
(b)
STATE FAILED UP up up up FAILED  FAILED
CLOSED
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We will now prove that systems symmetrical at a component level are
described by mergeable Markov processes. This will beiproved by
Proposition 3.3.1 and for that purpose the following definitions and
lemmas are necessary.

‘Let a system have c classes of components, where

1<c=<N , (3.13)

N being the total number of components. Let t{r) denote the number of
states of the components of the r~th{r=1,...,¢) class. Then for each
system-state, let a; for r=1,2,...c, and m=1,2,...,%{(r), denote the
number of the components that belong to the r-thclass and are in the

m-th state.

Definition 3.3.4 The one-dimensional array L,s where

= ol o1 1 S o c .C c
Lv {al, az,,.a, at(l)""’ am,..., al, az,..., at(c)}‘ R

is called a state-label where v is an index varying over

all the possible state labels.
Thus, to each system-state a label Lv can be assigned where v=1,2,...,M,
M being the total number of different labels. Note that if there are
no symmetrical components in the system, then there are c=N classes of
components each containing one component, a; can only have the value

of zero or one, and there are as many state-Tabels as system-states.

Example 3.2 The labels of the system-states of the sample system have

the Tfollowing form
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2 2 3 .3
aZ! a7, 255

1’

_ .11 3 4 4 4 '
since the system has four classes and the components of the first
two classes can be in two states while the components of the last
two classes can be in three states. The labels of states i and j con-

sidered in example 3.1 are, respectively,

{1, 0] 0, 1] 2,0,0] 1,0, 1} (b)

 d
il

!

p =10, 1] 1,0} 2,0, 0} 1,0, 1} . (c)
The following lemmas are now proved.

Lemma 3.3.1 A transition between two states of a Markov
process is possible only if the labels of these states
differ in the values of only two of their elements that
correspond to components of the same class, one of these
differences being equal to unity and the other being equal
to minus unity.

Proof Let i be a system-state with label L\)9 where
_ ral 1 r r o c
Lu = {al(v), az(v), e am(v), cees ah(v), bess al(v),..,, a.t(c)(v)} .

Let j be a system-state that can be reached from i in one transition.
Since only one component can change state at the end of each time

step [see Section 2.3, Eq. {2.9)]. let system state j be the state that
results if a component of class r in component-state m changes its state

to h. Thus, system-state j differs from system-state i only in that it
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has one fewer component of class r in component-state m, while it has
one more component of class r in component-state h. Its label is,

therefore,

Lp = {a%(p)a a;(p), vosy a;(p)s cecy a;(p)s a;:(p), ssey ai(c)(p)} 3

where
[ = a;(v) -1 if t=randk=m
a;(o) { =a(v)+1 if t=randk=h (3.14)
=a;§(\,) ift#r, k#mand k # h

Equation (3.14) shows that the label of system-state j differs from the
label of system-state i in the values of only two elements. Further-
more, these elements correspond to components belonging to the same
class {r), and have values that differ by + 1 from those for state 1.
Since class r and states m and h were completely arbitrary, it has been
proved that the labels of all the states that can be reached by one
transition from system-state i have the characteristics cited in

Lemma 3.3.1. This completes the proof.

Example 3.3 The states that can be reached from state i considered in
Example 3.1 and the corresponding labels are given below, and indeed
Lemma 3.3.1 holds for the label of state i and the labels of the 9

states that can be reached from state i by one transition.
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STATE PA PB VAl VAZ VBl VBZ STATE LABEL

i uP Failed UP UP UP FC  {1,0]0,1]2,0,0/1,0,1}
i, Up up up WP UP FC  {1,0]1,0/2,0,0(1,0,1}
i, Failed Failed UP UP UP FC {0,1]0,112,0,0{1,0,1}
i, WP Failed FO UP UP FC 11,0(0,1]1,1,0]1,0,1}
1'4 - UP Fajled UP FO UP FC

teup Failed FC UP UP FC (1,0/0,111,0,111,0,1}
i up Failed UP FC UP FC

i, P Failed UP WP FO FC  {1,0]0,1]2,0,0/0,1,1}
ig UP Failed UP UP FC FC  1{1,0(0,1]2,0,0/0,0,2}
ig wp Failed UP UP UP UP  {1,0]0,1]2,0,0/2,0,0}

Lemma 3.3.2 States with the same 1abel Lv are all either
operating or failed and belong to the same group X(K) or

Y(K}, respectively.

Proof Lemma 3.3.2 will be first proved for two system-states i and

j which differ in the component-states of only class r. Let b{r)
(r=1,2,...,¢) denofe the number of components that belong to the r-th
class. Since the system-states i and j have the same label Lv, it
follows from Definition 3.3.4 that they both have a; components of the
r-th class in the m-th state for m=1,2,...,t{r). Furthermore, since

tr
b(r) = :é:i a; ,

m=1

the components of the r-th class in these two states can be viewed as

two different permutations of a collection of b(r) items, a; (m=1,2,...,8(r))
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of which are of the same kind. It is known from the theory of
permutations that given any two permutations of N items, the second
can always be constructed from the first by successive ;nterchanges
of the position of the elements of the first taken two at a time.
This means that system-state j can always be constructed from system-
state i by successively interchanging the states of the components
of class r, taken two at a time. But since all the components of a
class are symmetrical, it follows from Definition 3.3.1, part (3),
that all the states generated according to this procedure are of the
same kind as state i (operating or failed). Therefore, system-state
J is of the same kind as i.

We will now prove that Lemma 3.3.2 is true for two system-states
i,J differing in the component-states of any number o of classes.
Indeed, as already shown starting with system-state 1, we can construct
a system-state 11 that differs from j in the component-states of a-1
classes. Then a system-state i2 can be constructed that differs from
j in a-2 classes and so on, until j itself will be constructed. But
according to part one of this proof the pairs Qf system-states (i, il)’
(11515)5...(1__;,3) are all of the same kind and, therefore, states
i and j are of the same kind.

We will now show that states with the same label belong to the same
subset X(k) or Y(K) (see Section 2.2). Since it has been proved fhat
states with the same label are of the same kind, we need only to show
that they have the same number of failed components. If K denotes

this number, then for a state i
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K-=:§E:: :EE:: ar (3.15)

where the second summation extends over all the failed component-

states of class r.

r
m

r and m), it follows from (3.15) that they have the same number of

But since any two states with the same label have the same a_s (all

failed components. This completes the proof of Lemma 3.3.2.

Example 3.4 As an illustration of Lemma 3.3.2, the following two

states of the sampie system having the same label are considered

STATE PA PB VAl VA2 VBl VB2 LABEL

i UP  Failed FO up up FC
{1,0§0,1{1,1,0|1,0,1}

J Up  Failed UP FO FC up

State J can be constructed from state i by successive interchanges

of state of symmetrical components. Indeed:

STATE PA PB VAl VAZ VB1 VB2 SYSTEM COMMON LABEL

i UP Failed FO _UP UP FC Operating
; U Failed UP" "FO UP_ ,FC Operating {1,0]0,1|1,1,0/1,0,1}
j UP  Failed UP FO FC' "UP Operating

The following proposition can now be proved.

- 35 -



Proposition 3.3.1 Let each of the states of a system exhibiting

symmetries at a component level be labeled with a label Lv, and

Tlet T = T2 Tys vees T, -+» Ty} be a partition of the set of

system-states such that a system-state belongs to Tv if and only

if it has a label LV. Then

(1) the Markov process describing the system is mergeable with
respect to partition 7T,

and 7

(2) the superstates generated by partition T are either operat-

ing or failed.

Proof To prove part (1) of this proposition, it suffices to show that
criterion {3.11) is satisfied by any two superstates created by partition
T. Let Iv, Jp be any two superstates containing system-states with
labels Lv and Lp, respectively. If labels L\J and Lp are such that a
transition is not possible between system-states of superstates Iv and

Jp (see Lemma 3.3.1), criterion (3.11) is trivially satisfied. Let now

Lv and Lp be such that a transition is possible between Iv and Jp (see

Lemma 3.3.1). More explicitly, let

o ool 1 r r r r C c
Lv = {al""’at(l)"‘"a1’°"’am"°"ak’°"’at(r)”"’al""’at(c)} .
(3.16)
and
L= fal 1 r r r c

. r . [
{a}.,“,sat(l),‘..,al,...,am-l,--_-,ak-i-ls...at(r),...al,...-,at(c)} .

(3.17)
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Let i be a system-state of superstate Iv. The transition probability
piJ(n) from system-state i to superstate Jp can be calculated as
follows. System-state i has a label L, given in {3.16). If, there-
fore, one of the components of class r changes its state from component-
state m to component-state k, the system performs a state transition
from system-state i to system-state j having Tabel Lp given in (3.17).

The transition probability for this transition is given by [see (2.9)]
. = Sin)=I }a . .18
pw(n) h  (nis(n)=I )at (3.18)

There are a; different system-states with label Lp that can be reached
from system-state i, since the latter has a; components of class r in
component-state m [see (3.16)]. In addition, because of the way_super;
state Jp was formed, all a; system-states are contained in Jp. Further-
more, the transitions from system-state i to any of the a; system-states
have the same transition probabilities, namely, that given in (3.18).

This is true because these transitions correspond to changes in component-
states of components that are symmetrical since they belong to the same
class, and therefore by virtue of Definition 3.3.1 they have the same
transition rates. The transition probability from state i to any other
state of superstate Jp is equal to zero because it would require the
change of state of more than one component. It has been proved, therefore,

that

- E _.r .yr i
PiJ(n) = p::(n) = a. - hmk(n|1v)At for all 1€ZIv . (3.19)
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Since labels L, Lp were arbitrary, criterion (3.11) is satisfied by
any pair of superstates created byipartition T and the proof of part
(1) has been completed.

Part (2) of this proposition follows immediately from Lemma 3.3.2.
Furthermore, from the same lemma it follows that each superstate
contains system-states that belong to the same group X(K) or Y(K) (see
Section 2.3).

Part (2) of Proposition 3.3.1 is of major importance to reliability
analysis because it proves that the merging procedure does not mix oper-
ating with failed system-states and, therefore, the vresuiting Markov
process is suitable for reliability calculations [see (2.6) and (2.7)].
Furthermore, since each superstate is formed within the subsets X(K)
or Y(K), the transition probability matrix of the merged process retains

" the simple structure of (2.14).

3.3.2 Systems exhibiting symmetries at the subsystem level

Whenever symmetries among groups of components rather than among
individual components exist in a system, they are called symmetries

at a subsystem-level. These symmetries are formally defined as follows:

Definition 3.3.5 Any partial coliection of components of a

system forms a subsystem.

Note that a subsystem may consist of only one component.

Definition 3.3.6 A subsystem-state is defined whenever the

states of the components that belong to the subsystem are defined.

In a compiete analogy to symmetrical components and classes of
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components, symmetrical subsystems and classes of subsystems can now be

defined.

pefinition 3.3.7 Two subsystems are symmetrical if and only if:

{1} There is a one-to-one correspondence between the components
of the two subsystems such that two corresponding components
can be in the same number of states and have the same
failure and repair rates.
(2) For any operating (failed) system-state, interchanging only
the states of the corresponding compenents of the two subsystems

results in an operating (failed) system-state.

Definition 3.3.8 A group of subsystems each of which is symmetric

to all the others is said to form a class of subsystems.

A system can have many classes of subsystems. Note that a class

may contain only one subsystem.

Definition 3.3.9 A system exhibits symmetries of a subsystem

level if and only if it has at least one subsystem class containing

more than cne subsystem.

Example 3.5 The sample system considered in Section 2.6 also exhibits
symmetries at subsystem level. Indeed, each leg of the system can be‘
considered as a subsystem. The sample system consists, therefore, of
subsystem A containing components PA, VAl and VA2 and subsystem B

containing components PB, VB1l, VBZ. Furthermore, these two subsystems

are symmetrical and form the only class of subsystems of the sample system.
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To prove that the Markov processes describing systems with
symmetries at a subsystem level are mergeable, a procedure completely
parallel to the one for systems with symmetries at a component level
could be followed. This would require the definition of stafe labels
describing the states of'subsystems and so on {see Section 3.3.1).
Instead, an equivalency between the two kinds of symmetries will be

shown.

Definition 3.3.10 Two systems are equivalent if and only if:

(1) They can be in the same number of states.
(2) A one-to-one correspondence exists among the states of
 the two systems such that corresponding transition
probabilities are equal and corresponding states are of

the same kind {operating or failed).
The following proposition follows immediately from Definition 3.3.10.

Proposition 3.3.1 Two equivalent systems are described by the

same Markov process.

Proposition 3.3.2 For every system exhibiting symmetries at

a subsystem Tevel there exists an equivalent system exhibiting

symmetries at a component level.

Proof Let Q be a system exhibiting sﬁnnetries of a subsystem level.
A new system W is then defined as follows:
{1) Every subsystem of system Q is substituted by an equivalent

component such that:
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{(1.a) the component can be in as many states as the states
of the subsystem;

{1.b) the transition probabilities among the states of the
component are equal to the transition probabilities of-
the corresponding states of the subsystem;

(1.c) the function of the component in each state is exactly
the same as the function of the subsystemin the
corresponding states.

(2) The equivalent components_deffned in step (1) are logically
connected to form system W in exactly the same*way as the
subsystems are connected in system Q.

In other words, the subsystems of system Q are replaced with "black
boxes," i.e., the components of system W. By virtue of Definitions
3.3.7 and 3.3.1, it follows then that to symmetrical subsystems of
system Q correspond symmetrical components of system W. From Definitions
3.3.9 and 3.3.3, it follows, therefore, that if system Q exhibits
symnetries at a subsystem leveil, system W exhibits symmetries at a

component. level.

Coro?lary 3.3.2 The Markov process describing a system exhibiting

symmetries at a subsystem Tevel is mergeable.
Indeed, from Propositions 3.3.1 and 3.3.2, it follows that the Markov
processes describing a system exhibiting symmetries at a subsystem level
is the same with the Markov process describing a system exhibiting

symmetries at a component level which by Proposition 3.3.1 is mergeable.



Exampie 3.6 The equivalent to the sample system is shown in Figure 3.1.
System W consists of two components, each of which can be in 18 states
(as many as each subsystem). The number of system-states for W is,
therefore, equal to

2

z =18 = 324 (see 2.1a)

equal to number of states of the original system.

Figure 3.1 Equivalent System to System Shown in Figure 2.1.

3.4 Automated Merging of a Markov Process by a Computer

Based on the theory developed in Section 3.3, a computer code has
been written that performs the merging of a Markov process describing
systems with symmetries at a component and/or a subsystem level. Two
versions ;f this code are available, one being faster than the other
but requiring more information as an input. Once the transition
probability matrix of the merged process is defined, Eq. {2.3) is
solved as in any other case (see Chapter 2). Therefore, only the
steps neéessary for the creation of the transition probability matrix
will be described in this section. A more detailed description of this

code can be found in Appendix B.
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Version 1 is based on the fact that the transition probabilities
among superstates depend only on the labels of the initial and final

superstates [see {3.19)].

Version 1. The input for version 1 consfsts of:
(1) a description of the symmetries of the system, namely:
(1a) the number of classes of components;
(1b) the number of components in each class;
(1c) the number of states and each component in each class
as well as the corresponding transition rates.
(2) a test subroutine providing the criterion of whether a
superstate is operating or failed.
The code then proceeds in the following steps:
{1) It generates all possible state labels.
(2) By virtue of the "test" subroutine, it partitions the set
of Tabels into a set of "operating" labels X, and a set of
"failed” labels Y.
{3) It classifies the labels into subsets X(K) and Y(K) contain-
ing, respectively, "operating” or "failed" labels with K
failed components.
(4) It defines the transition probability matrix according
to (3.19). |
Since the number of state labels is equal to the number of super-
states, this procedure is very fast. It requires, nevertheless, the
correct identification of symmetrical compenents. For a given system,

it is rather easy to identify potentially symmetrical components
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satisfying conditions (1) and (2) of Definition 3.3.1. For large
systems, however, it might be difficult to verify the validity of
condition (3). In such cases if the classes of symmetrical components
are wrongly defined, the merged transition probability matrix that
will be produced by version 1 of the code will not be eguivalent to
the original Markov process. Therefore, whenever the analyst is not
sure if two or more components are actually symmetrical, version 2

should be used.

Version 2. The input of this version consists of the following infor-
mation:

(1) A description of the system, namely:

(1a) the number of the components of the system; -

(1b) the number of the states of each component, and the
corresponding transition rates;

(1c) a "test" subroutine providing a criterion of whether
a system-state is operating or not.

(2) A description of the symmetries, namely, the number of classes
of (potentially) symmetrical cemponents as well as the
individual components belonging to each class.*

Then the code proceeds\as follows:

(1) It generates all the possible states of the system.

(2) 1t classifies the states into operating and failed, using the
"test" subreutine.

(3) It partitions the sets of operating and failed states into

- ,
Note that while in version 1 it would have been sufficient to specify
that class 1, for example, contains 3 components; in version 2 it must
be specified that components #1, #2, and #7 belong to class 1.
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subsets X{K) and Y(K).

(4) Within each subset X(K) or Y(K), the state label of each
state is generated and states with the same label are lumped
to form superstates.

(5) For a pair of superstates I and J, criterion (3.11) is
checked as fd110Ws: ‘

(ba) for every state i of superstate I the transition
probability pid(n) is computed as in (3.2);

{5b) if eriterion (3.11) is satisfied by all the piJ(n)‘s
the program proceeds in step (5¢), if not, if proceeds
to step (7);

(5¢) steps (5a) and (5b) are repeated for all states j of
superstate J.

(6) Step {5) is repeated for all pairs I and J of superstates.
1T a1l of them satisfy (3.11), the merging has been achieved,
if not, the program proceeds in stép (7).

(7) The superstate that does not satisfy criterion (3.11) is
split into two or more superstates, and ste;; (5), (6), and
(7} are repeated until the original process is obtained.

Version 2 cbviously requires more computing time as well as more

memory space, but it guarantees a correct result. With a fairly
- reasonable definition of the symmetries, the merging is achieved

within few iterations. An examp]é of the use of both versions follows.

Example 3.7 The Markov process describing the system shown in Figure

2.1 has been merged with the help of the computer code described in

- 45 -



this section. The necessary computing-storage and computing-time
requirements are given in Table 3.1 for the two versions of the code,
as well as for the original process.

For version 1, the input stated that (1) the system consists of
one class of subsystems containing two subsystems (Leg A and Leg B);
and {2) each subéystem consists of two classes of components; class 1
containing the pump, and class 2 containing the two valves.

For version 2, the input stated that the system consists of two
classes of components, the first containing the two pumps and the
second the four valves. Since this definition of classes is not
correct (see Example 3.1), the code needed several trials before

the merging was achieved.
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CHAPTER -FOUR
MARKOVIAN RELIABILITY ANALYSIS UNDER UNCERTAINTY

4.1 Introduction

This Chapter presents the mathematical form of the problem ex-
amined in this dissertation, namely, the problem of Markovian
reliability analysis under uncertainty.

As discussed in Chapter One, whenever the uncertainties in the
reliability analysis are expressed by regardiﬁg the failure rates*
and the repair rates* of the components of a system as random variables,
the whole problem can be decomposed in the following three subproblems.

(a) Determine the probability density functions (pdf) of the

transition rates of the components of a complex system.

(b} Ca1cu1afe the pdf of tﬁe fe]iability (availability) of the

complex system from the pdf of the transition rates.

(c) Derive evaluators of the éystem?from'the-random variable

reliability (availability).

Subproblem {a) per se is not examined in this dissertation. For
the purﬁcsés of this work it is assumed that the types of the pdfs of
the transition rates as well as the numerical values of their para-
meters are given. The various forms of distributions considered in the
numerical éppiications are, however, presented in this chapter. Sub-
problem (b) is a formidable one.. Its exact mathemafical form is
presentéd in this chapter., and the unfeasibility of an analytical

solution is discussed. The complexity of the problem suggests the

* S .
From now on and for the rest of Chapter Four the failure rates and
repair rates will be collectively referred to as transition rates.
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use of approximate methods for its solution. Subproblem (c) deals
with the derivation of evaluators of the reliability (availability)
from its pdf. The discussion of subproblem {c) precedes fhe others
since the nature of the evaluators suggests ways of calculating them
without the direct use of the pdf of the reliability.

The chapter is organized as follows: In Section 4.2, the
objectives of the reliability analysis under uncertainty are presented.
In Section 4.3, the mathematical statement of the problem is derived
and the difficulties of an analytical solution are discussed. 1In
Section 4.4, the forms of the pdf's considered in the numerical
applications of this work are presented. In Section 4.5, the quantifi-
cation of the uncertainties about the common-cause failure rates and
in general of the interdependences of the transition rates is examined.
And, finally, in Section 4.6, some analytical results for the 2x2 case

are given.

4,2 Q0bjectives of the Reliability Ana]ysié Under Uncertainty

As already stated, the purpose of the re]iébility analysis (under
uncertainty or not) is to provide evaluators (performance indices) to
compare & given system to otﬂérs or with'gifen standards. Whenever a
system is complicated and information exists only about its components,
its reliability* is a function of the transition rates of thé
components. Let the number of the transition rateé be éqﬁa1 to m,

and Tet X, for i=1,2,...,.m denote the i-th rate. Then, the

* : :
Throughout this chapter we will use the term reliabitity for collective
reference to the reliability, failure probability, availability, unavail-
ability or any other reliability index of a system. Whatever will be

said about the reliability holds for any other reliability index.
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reliability of the system at time n, is a function of the form
R(n) = R'(xlgivugxm'gn) L] (4-1)

Whenever the xi‘s are known with certainty, R(n) is a deterministic
function. In the presence of uncertainties, however, the xi's-and R(n)
are random variables. Then the problem is: Calculate the pdf of the
random variable R{n) given the pdf's of the random variables X
i=1,2,...,m.

The reliability R(n} is used in the calculation of several evalu-

ators such as:

(1) The expected value of the reliability defined by

1
E[R]= ‘/R(n) FR) @R, (4.2)

where f(R) is the pdf of R.

(2) The variance defined by
1
var[R] zj (R-E[R]}Z £(R) dR . (4.3)

(3) The probability interval, the probability, a, that the
reliability of a system will be less than a given value Q,

defined by

Q
f F(R) AR . (4.4)

0

a = Pr{R<Q}
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(4) The expected utility of the reliability R, the expected
value of a function u{R) that emphasizes the relative importance

of each particular value of R,

1
CE[u(R)] = fU(R) f(R) dR . {4.5)
0 :

It is noteworthy that the first three evaluators are special cases
of the fourth. Indeed, the first implies a linear utility function
for R, the second a quadratic, and the thifd a step function. Since
almost always one of the above cited quantities is used in reliabiiity
evaluations of systems, we can say that the general objective of the
reliability analysis under uncertainty is tec calculate the expected

value of a given function of R.

4.3 Statement of the Problem

It was said in Section 4.2 that the objective of the reTiabi!ity
analysis under uncértainty is to calculate the expected vaiue of a
given function, u(R), of the reliability R. From (4.2) to (4.5) it
follows that E[u(R)] can be easily’caTcuIated if the pdf f{R) of R
is known.

By virtue of (2.7) and (2.4), it follows that in Markovian analyses

the reliability function has the form
Z

(n)
2 oy (4.6)

;i-- ’ =1

where pgg) denotes the ij element of matrix E?. Since the vector =(0)
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is assumed to be known with probability 1, it follows from (4.2} that
(n),

R(n) is a linear combination of the Pij

therefore, calculated if the pdf's of the p

s. The pdf of R(n) could be,

(n)
1
example, Green and Bourne, or Hahn and Shapiro). The main probiem of

s were known (see, for

this work can be stated, therefore, as:

Given the pdf's of the 22 random variables pij’ find the pdf's of

(n)

the 22 random variables pij 5

where

(n) _

pij y(pkr) for 1,j=1,2,...,z and k, r=1,2,...,z, (4.7}

the function y being
(5 (4.8)

‘Further examination of this probiem requires the following definition

“of a random matrix.

Definition 4.1 A zxz matrix P is called random if its elements

are random variables. The joint pdf of the elements pij is
called the pdf of the random matrix P.
‘A random* matrix can be viewed as a zz-dimensiona1 variable taking

values in the zz—dimensional Euclidean space S.

*
A random matrix must not be confused with a stochastic matrix. A
stochastic matrix is a matrix the elements of which satisfy (2.3a).
The matrices with which we work in this dissertation are both
stochastic and random.
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From Definition 4.1, (4.7), and (4.8) it follows that the problem
of determining the pdfs of ng)'s is equivalent to determining the pdf
of a function of a random matrix. This problem is delineated in the

following subsection.

4.3.1 Functions of random matrices

Let G be a zxz matrix function of a zxz matrix P

6=y . (4.9)

If P is a random matrix, G is also a random matrix if the function
y(P) satisfies certain conditions. For details the reader is referred
to Wilks (1962), p. 58. Here it suffices to say that these conditions
are met by the functions considered in this work.

The pdf of G can be calculated from the pdf of P with the help of
the following proposition. This proposition is stated without proof.

For a proof, the reader is referred to Wilks (1962), p. 58.

Proposition 4.1 Let P be a continuous random matrix with pdf

f(pygsPyps---oP,,) = F(P) - (4.10)

in some open region A of the space of pij’s, let gij = yij
(pll’p12’°"pzz) i=1,2,...z and j=1,2,...,z have a unigue inverse

- 1 .
p-jj_y (9119912,...922) 1.,951,2,...,2 , (4.11)
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where the yij possess continuous first derivatives such that the

Jacobian (sz zz)

3P ;

0 |agkr

\ #F 0 in A.

Let the image of A in the space of (911’912""922) be denoted by
B. Then G is a continuous random matrix having pdf at a point

(911,912,..-,922) in.B given By
N9y 1s0yp0e--o0,,) = TPy sPygee-esPy) 191 =Fly H@TII| (4.12)
or
n(e) = fly™'(e)] IJI. . (4.13)
where it is understood that the pij's are given by {4.11} and

that, therefore, the pij's are to be expressed in terms of the

gij‘s in the righthand side of (4.13).

4.3.2 Need for approximate solutions

An analytical sclution to the problem of determining the pdf of
the reliability R(n) could consist, therefore, of the following steps:
(1) The pdf's of the elements Pij of the transition probability
 matrix P are derived from the pdf's of the failure rates and
repair rates through {2.9).

(2) The pdf's of ﬁgg)‘s, the elements of the matrix Eﬁ, are then
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determined from the pdf's of pij*s and (4.12).
(3) The pdf of R(n) is determined from the pdf's of pgg)'s
through (4.6).
The completion of step (2} is, nevertheless, extremely difficult.
The difficulty 1ies mainly in the determination of the inverse

functions [see also (4.11)]

-1

i (piM, pin ..,pgg)) (4.14)

Pij =Y 11 * P12 o

that are required in (4.12).

Equation (4.14) implies the availability of a closed expression for
the 1j-th element of the n-th root of a square matrix or, equivaiently,
the availability of closed, inversable expressions of the elements of
the n-th power'of a square-matrix in terms of the elements of this matrix.
To our knowledge this problem can be solved only in the following cases:

(a) Smé11 dimensionality of P (e.g., 2x2 case)

(b) Very simple structure of P (e.g., diagonal, tridiagonal).

For more general structures of P, (4.13) can be used only when G is a

linear transformation of P, i.e., when

|

]
o
[~
I

(4.15)
The matrices encountered in Markovian reliability analyses are,

however, both of greater dimension than two and more complex than dia-

gonal. We, therefore, think that the application of the anmalytical
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method described in this section is not possible and that other approx-
imate methods should be employed. Two such methods used in this work

are presented in Chapters Five, Six, and Seven.

4.4 0On the Distribution of the Input Variables

This section is devoted to a description of the various forms of
distributions that are used in this work for the expression of the un-
certainties of the input variables, i.e., the transition rates. The
question of how these forms can be obtained from existing information,
theoretical models, engineering judgement, or subjective considerations
is not addressed in this dissertation.

The transition rates of the various components of a system are
assumed to be positive random.variables taking values in any interval
of the positive real axis. In the numerical applications, two types of
pdf's were considered, the gamma distribution and the log-normal distri-
bution. The methods developed in Chapters Five, Six, and Seven, are,
nevertheless, independent of the nature of the pdf's of the input
variables.

A list of the pdf's considered in various parts of this work

follows.

4.4.1 Gamma probability density function

The gamma pdf is used to describe the distribution of continuous

random variables bounded at one end. The gamma pdf is defined by

fy(x_ir,y) = —gﬂbﬁ’%ﬁxﬁy > (4.16)
r
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where T{r) is the complete gamma function defined by
r{r} = _/er“le'xdx ) (4.16a)
If r is a positive integer
r(r) = (r-1)! (4.16b)
The first four moments of.this distribution are given in Table 4.1.
Equation (4.16) gives the form of a gamma pdf for a random variab}e

bounded from below by zero. If the lower bound is a positive number a,

then the generalized gamma pdf is given by

F (x|ray.a) = exp[-y (x-a)][y(x-a)] 1 y . (4.17)
M r{r)

4.4.2 The log-normal probability density function

The log-normal pdf describes the distribution of a continuous
réndom variable bounded from below by zero, with a logarithm

distributed according to a normal pdf. Thus, the log-normal pdf is

defined by
f, y(x[us0) = o exp |me)? (4.18)
LNVX M0 = = Ton P i :
x>0 , o>0 —o < P < ®

- 57 -



The generalized Tog-normal distribution describes a random variable

that covers an interval other than {0,=) and it is defined by

2
fin (x|u,v.a) = *——~JL--exp [-[1n(x§a)—u] ] (4.19)
o{x-a)v2r 20
x>a s o>0 =60} <00

The first four moments of this distribution are given in Table 4.1.

4,4.3 The Beta prebability density function

The Beta pdf is used to describe the distribution of continuous
random variables bounded at both ends. The Beta pdf for the interval

[0,1] §s defined by

.1 p-1 ;5 _yq-1
fp(xlp,q) B(poar X (1-x) (4.20)
0<x<t p,g0 ,

where B(p,q) is the complete Beta function

Mm@=%%%? : (4.20a)

The generalized Beta pdf describes a positive continucus random variable

varying in an interval [a,b]m It is defined by
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o N e
fB:(Xfp,C]:a:b) = (b}a) B(p:l'q) [;;__:] [l- ‘E‘_—%} (4.21)

a<x<b p,g > 0

The first four moments of this distribution are given in Tabl 4.1.

4.4.4 The log-gamma probability density function

The Tog-gamma distribution is used to describe random variables
taking values in the interval [0,1]. A random variable, x, is distributed
according to a Tog-gamma distribution if its negative logarithm
(z=-1nx) is distributed according to a gamma distribution. It is
defined by

y-1 r-1
fLY(XIP,y)—(X) I.([;{‘”"] y (4.22)

0<xz<1 r.y >0

4.5 Quantification of Common Cause Failure Rates and
Interdependences of Transition Rates

As discussed in Chapters One and Two, the use of a Markov
chain permits the incorporation in the model of interdependences
among the transition rates and the states of the various components.
Thus, if the transition_rate from system state 1 to system state j is
h, the transition rate from system stéte i' to system state j' might
be h* (h*#h) even though the latter transition invelves the change of

the state of the same component. This is because this transition rate
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{h) might depend on the states of the other components which can be
different in system states i and i’'. Since uncertainties might exist
about both h and h*, a first approach to quantify them would be to
consider both h and h* as random variables taking values in the interval
{0,). In general, an overlap of the pdf's (see Figure 4.1) may exist

so that both

h < h*
and

h > h*

could be true, albeit with different probabiiity. In most instances,

however, the relation between h and h* is monotonic. If, for example,

h

Figure 4.1. Overlapping of the pdf's of h and h*.
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h* represents a common cause failure rate, we want always to have
h*>h. Of course this condition could be added in the pdf of h*. In
an idealization of the process we could say that the value of h is
first chosen from f(h) and, then, the value of h* is chosen from f{h*)
with the condition h*>h. But this introduces a statistical dependence
_among the values of the transition rates h and h*. Although the ex-
istence of such dependences is not prohibitive for the methods em-
ployed in this work, it unnecessarily increases the complexity of the
problem. Alternatively stated. we would Tike to have R as a function
of independent random variables [see (4.1)]. To achieve this, we

define h* to be
h* = kh , (4.23)

where k is a random variable taking values in the interval [1.=), is

statistically independent of h, and it is called dependence coefficient.

Thus, the set of variables x.s in (4.1) consists of the generic tran-
sition rates h that characterize the independent operation of the
componénts and of the dependence coefficients k. It is, therefore, a

set of statistically independent random variables.

4.6 Analytical Results for the 2x2 Case

In this section specific analytical results for a two-state Markov
process are presented. The reasons for this presentation are:
(1) these analytical results can serve as a means of checking the
accuracy of the numerical methods presented in Chapters Five and Six, and

(2) the complexity of the results supports our claim that an analytical
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solution for the general case (where the order of the matrices involved
rises in the hundreds) is unfeasible.

A single two-state component is considered having failure rate 2
and repair rate u. The equation of the state probability vector w{t)

in the continuous-time case is then given by

T a(nA (4.24)
Y A
A= . (4.25)
In the discrete-time case the equation of =(n) is
a(ntl) = a(n)-P , (4.26)
where P is the transition probability matrix given by [see also (2.9)}
P=1+AaAt . (4.27)
The solutions of (4.24) and (4.26) are, respectively,
x(t) = x(0)-2 ® (4.28)

and
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w(n) = =(0)-p" (4.29)

where x(0) = [1,0] is the state probability vector at time zero. It

can be easily shown that the availability of the system (i.e., the prob-

ability that it occupy state 1) is given for the continucus time case by
A

Mt) = m(t) = o5+ S ewl-Gm)t] (4.30)

and for the discrete-time case by

p p

21 12 n

A(n) = w,(n) = + [1-(pi,*tPoq)] (4.31)
1 P12*Po1  P12™P2y 12° 721

where [see (2.9), {4.27)]

= A AL and =u At . (4.32)

P2 Pa1

The steady-state availability for both cases 1is

A (=) = ;EX- . {4.33)

If the failure and repair rates p,) are random variables, so are the
variables A(t), A(n}, and A(=)}. Given the pdf's of u,2 we would like to
calculate the pdf's of A{t), A(n), A(«)}, and/or important parameters of

these pdf's. For convenience, we start with A(«).
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4.6.1 The pdf of the steady-state availability of a two-state
component

It is assumed thatu,X are statistically independent and each is
distributed according to a gamma density function. Then, the joint pdf

of those variabies is the product of the individual pdf's or
Fulrsrysy sy,) = fY(klrlsyl) fY(uer,yz)

or [see (4.16)]

Cor r
_ 1 a1 r,-1 1 2
f(a,m) = ETFZY—EIFEY-A 1742 exp[}(yzk+y2u)] Yo T ¥p O (4.34)

We now denote A{«) by w, define the variable s=(a+u) and consider the

transformation [see also (4.9)]

(st) = .y()lsU) s (4-35)
where
s = Aty , (4.35a)
= M
W= sl (4.35b)

If h{s,w) denotes the pdf of the random variables s.w, it follows from

(4.13) that
LTS 'Y
3s oW
h(s,w) = f[y"'l(s,w)] (4.326)
Bw dw
9s aw




By virtue of (4.35a) and (4.35b), it follows that the transformation

(x.,u) = y"l(s,w) is given by
;A = (1-w)s ., (4.37a)
vEws (4.37b)

and that the Jacobian in (4.36) is equal to s:
] =s . (4.38)

The combination of (4.34) and (4.36) through (4.38) yields

ylrl y2r2 r1+r2~1 r2—1 rl-l
h(s.w) = ARG s w ' (1-w) exp{[- y, (1-w)+y,w]s}
' (4.39)

The pdf of A(«) or w can now be derived from {4.39) by integrating out

the variable s or
flw) = J{ h(s,w) ds . (4.40)
(¢]

The integration in (4.40) results in

yl(l—w)rl'1 yzwrZ'l

~ B{r,.r,) rr
U2 1w syl B2

Yi¥p (4.41)
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a pdf that can be called generalized-inverted-Beta distribution. This
name is suggested by the fact that whenever a random variable w is dis-

tributed according to (4.41) then the random variable z, where

_ yl(l'w)
Z = m (4.42)

is distributed according to a Beta-density function.
The expected value of the steady-state availability E[A{=)], is
defined by

1
E[A(=)] = f wf(w) dw

o]

which in terms of the substitution (4.42) can be written as

1
E[A(=)] = Wﬁ%’ET f 17 (1) 20y Mz L (4.43)
where
yzl-—= . {4.44)

As will be seen shertly, it is important that y be defined in such a

way that the following holds

y <1 . (4.443)
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Since Yy is the scale parameter of the pdf for the repair rate while Y1
is the scale parameter of the pdf for the failure rate, we assume that

Yo < ¥p» and therefore that (4.44a) is true. If for any reason Y1<¥ps

then the mean value of the random variable 1-w {unavailability) can

be calcuiated in terms of the value 1-y1/y2.

The integration in {4.43) is not easy to perform. The integral
has been evaluated and tabulated numerically in terms of the hyper-
geometric function (see, for example, Morse and Feshbach, p. 591) but
only for values of ¥12¥9alq 57y that are of interest to problems of
theoretical physics. A series representation of this integral is

presented here in terms of the hypergeometric coefficients defined by

(x), = 5},{%1 : (4.45)

Because of (4.44a) we can expand the term (l-yz)—1 into an infinite

series

o

(1-y2)"! =E k2~

k=0

and therefore write (4.43) as

\ ! r, rytk-1
f (1-z) “z dz

0

E[A(=)] = E(;%j;gy

or in terms of (4.45)

- 68 -



E[A{=)

(ridy
K
E AT +r1+1 - (4.46)

The series (4.46) converges absolutely.

In a similar way it can be shown that the second moment of A(=)

is given by

! -1 r,+l
2 1 " 2 -2
E[A%(=)] = f z ' (1-z) £ (l-yz})™“ dz ,
Blrlrzf P
which in terms of (4.46) can be written as

rolry+1) = (r,)
Y2 k 17k
E[A%(=)] = (ryry) (r ,7) Ek ; (k+1)y Trpr,7ay (4.47)

4.6.2 Conditional pdf of the transient part of the
availability of two-state component

Let the transient part of the availability at time t be denoted
by u where [see (4.29), (4.35a), and (4.35b)]

uzA(t) -w=(1-weS?t (4.48)
Then it can be shown, as in Subsection 4.6.1, that the
transformation {u,w) = y(s.,w) yields
- -r r-1 a-1
g(usw) - K(W) t [} n(]. W)] £1-W H (4-49)

where
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1T T
() = iy ey (1w) ! a (4.49a)
W) = -w W . L9a
T Y‘l T Y‘z
[y, (1-w)+y,w]
2z -t . 2 i (4.49b)
rErytr, . {4.49¢)

By virtue of {4.42) and (4.49) it follows that the conditional {on
the steady—state availability) pdf of the transient part of the

availability is given by

alulw) = sy o [In(E™ [0 (4.50)

4.6.3 Expected n-step transition probabilities*

For this case we assume that the random variables A,u are
distributed in such a way that the variables Pyp and pyy [see (4.31)]
are independently distributed according to Beta distributions.

This means that for constant At=h, A and py vary in the interval
[0, 1/h] instead of the interval [0,=). For convenience we will

calculate the expected value of the unavailability at time n defined by

U(n) = 1-A(n) = 2= {1-[1-(a+0)]"™} (4.51)

where

Pip = @ and Pyy = b, and

*In this section we present results of Martin (1964).
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where

f(a,b) = a"1(1-a)5 P (1-p) 91 (4.52)

1
B{r,s) B(p,q)

Equation (4.51) can be written as

n n-1
o - R <000 0w
=0 _

which can be written with the binominal expansion of the term (1-a~-b)k

as

n-1

u(n) =

k
> E ) (-1a-a)
ko Vo

and therefore
fi-

i k L
E[U(n)] =; Z (t)f f(-l)ubva(l-a)k“vda db
0 v=0 o] o

which in view of (4.52) and (4.45} can be written as

{4.53)}
In a similar way it can be shown that
n-1  j+k
2 (s)y, Gk v (r)j+k+v(p)v
EL(n)] = ey Z (7% (-1) —— . (4.54)
i T 4= Y {res+2) j+k+v(p+q)v
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Furthermore it can be shown that the expected steady-state availability

is given by
- k :
- (r),_, {p)
- - k v k-v vl
E[A(=)] = kzo \,Zo () (-1) (res), (PRl g (4.55)
and
P j“i-k
S (r}, (p)
2/ V1 J¥Ky [ 44V Jtk-v vi2
E[A"(=) ] 3-2:0 UZO ;1 (-1) (755) 50y (PHO) oy (4.56)
k=0

It is noteworthy that the infinite series in (4.55) and (4.56) are
conditionally convergent, and that the difference in the expressions
for E[A(«)] and E[Az(w)] in the discrete-time and continuous-time
case stams from the different distributions considéred for the ) and

v in each case.
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CHAPTER FIVE
THE MOMENT-MATCHING METHOD

5.1 Introducticn

This chapter presents a method for approximating the pdf of the
reliability when its first few moments are available.

If the first few moments of a random variable are known, its pdf
can be approximated by fitting an appropriate distribution to the
existing information (expressed collectively in the form of the first
few moments). Usually the first four moments are adequate for fitting
two-parameter pdf's. The third and fourth moments determine the "shape"
or the form of the distribution while the first two moments define its

parameters. This procedure is called the moment-matching method and

it has been widely usedlin uncertainty analysis, in nuclear and
nonnuclear applications. In the Reactor Safety Study (1975), for
example, the pdf of the top-event of a fault-tree was approximated by
a lognormal distribution, while Apostolakis and Lee (1976) considered
for the same purpose a wider class of distributions.

The moment-matching method for approximating the pdf of a random

variable is described in the following section.

5.2 The Moment-Matching Method

The pdf of a bounded random variable is uniquely determined by
its moments [see Wilks (1962, p. 1271. It follows, therefore, that
pdf's of bounded random variables with a finite number of the lower

moments in common exhibit similarities, since in the Timit (&ll
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moments the same) they would coincide in a unique pdf. Let us now
suppose that only the first few moments of a bounded random variable

- are known. Then if a pdf is chosen in such a way that it has as its
first few moments these known moments, it would constitute an approx-
imation to the pdf of the random variable. This method of approximat-
ing a pdf is called the moment-matching method.

The reliability of a system, being a probability, is bounded since
it can take values only in the interval [0,1], and therefore the
moment—matéhing_method can be applied if its n first moments are known.
Obviously. the more moments available, the more exact the approximation
would be. In most instances, however, the first four moments are
édequate, This is the case when a two-parameter pdf (Tike the ones
presented in Section 4.4 or a member of the Johnson or Pearson families)
is chosen as an approximation. The third and fourth moments determine
the shape or the "type" of the distribution and the firﬁt two its
parameters. More preciseiy,'the shape of a distribution is partly ‘
characterized by: {1) its third central moment or skewness which is
& measure of the assymmetry of the distribution, and (2} its fourth
central moment or kurfosis which is related to its peakedness. In
order to make these two "measures" of the shape of a'pdf independent
from its scale, the following coefficients are defined:

u
coefficient of skewness: /EI'E ~——§§7§ (5.1)

(112.)

and
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coefficient of kurtosis: By = ;h? . (5.2)
where uk.denotes the k-th central moment of a random variable or

1
b = f l{R-E[R]}k £(R) dR (5.3)

o

If, furthermore, “L denotes the k-th moment about the origin or

1 o
u;(zf RE £(R) dR , (5.4)
o]
we have
W, = - (u)? (5.52)
2 72 1 ? :
e ] [] 4 1 3
U3 = 33 = 3u2H1+2(P1) ] (5'5b)
=y - e () 23t (5.5¢)
U4 U4 U3u1 UZ ul Ul . .

Thus, if the coefficients B4 and B, can be obtained, the shape of
the distribution is approximately defined. Figure 5.1 gives numerical
values of the coefficients By and B, of the various "theoretical®
types of densities presented in Chapter Four. [See also Hahn and
Shapiro (1967)]1. From this figure, the type of density that has the
same 81 and By with the sought pdf can be obtained. The remaining two
parameters {defining the Tlocation and the scale of the pdf) are then

determined by the first iwo moments.
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CHAPTER SIX
MONTE CARLO SIMULATION

6.1 Introduction

This Chapter discusses the use of the Monte Carlo simulation
technique in the evaluation of the unceftainties about the reliability
of a system.

As already told, the objective of any reliability analysis under
uncertainty is the calculation of a reliability evaluator containing,
in some form, a measure of the uncertainties. In most cases these
evaluators are the expected values of functions_of the reliability
[see (4.2} through {4.5)], and therefore the Monte Carlo technique is
suitable for their estimation. Even when the pdf of the reliability
is required, the Morite Car]o_meﬁhod can be used to estimate the
moments of the distribution, and then the moment—métching technique
described in Chapter 5 can be applied. The Monte Carlo technique
consists in the generation of a sample of values of the random
variable R (or a function of R) by repeatedly solving (2.4) and (2.7),
each time using randomly selected values of the input variables.

The required quantities can then be statistically estimated from this
sample. The precision of this methed is Timited only by the size of.
the sample, and therefore by the tomputing time necessary for its
generation. For a given sample size {and hence, for a given degree
of precision), the required computing time is directly proportional
to the time necessary for each individual calculation. This latter

time is controlled by three factors: 1} The complexity of the
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structure of the transition probability matrix P; 2) the dimensions
of P; and 3) the size of the time step At which determines the value
of the exponent in (2.4) for a given time horizon. Methods for
reducing the necessary computing time by simplifying the structure of
P and by'reducing its dimensions were presented in Chapters Two and
Three; respectiveiy._ In this chapter the question of the size of the
time step is addressed. |

This chapter is organized as fellows: Section 6.2 presents the
straightforward Monte Carle tecﬁnﬁque along with a numerical example;
Section 6.3 discusses the problem of determining the required size of
the time step for a given set of transition rates; and Section 6.4
examines problems arising from fhe fact that each individual trial
determines. a different sfze of time step, as well as the problem of

very small time steps. A numerical example is alsc presented.

6.2 Straightforward Monte Carlo Sampling

Let us suppose that we want to calculate the integral
1

E[u(R)] =_fu(R) f(R) dR (6.1)

0]
where R is a function of m random variables

R = R(xl,...,xm) , (6.2)

where the x;'s have ajoint pdf g(x;,...,x.). Equation (6.1} can

then be written as
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E[u(R) ] =_[f W(R) Glxpseoox ) dxgeonde (6.3)

Let us now assume that a sample of N m-tup1es.(xli,x21,...,xmi)
i=l,...,N is randomly generated from the pdf g(xl,...,xm). These N
m-tuples provide, through (6.2), a sample of N values of the random
variable R, and this in turn, a sample of N vé]ues of the random

variable u. Then, we say that the quantity 51, where

: - (6.4)

‘provides an eétimator of Efu] in the sense that Gl approaches, almost
always, E[u] as N approaches =. This follows from the Central Limit
theorem* which states that: If Upallpse .o sty is a sequence of independent
and jdentically distributed random variables with common mean m and

standard deviation o, then the average

ﬁl-—-% z u; (6.5)

is asymptomatically normal (m,o/¥N); i.e.,

X pa
mPr{Iul-ml <38 - f et 2% . (6.6)

-0

It must be noted that the Central Limit theorem holds regardless of

the distribution of u as long as m and ¢ exist. Alternatively, by

x
See for example Cramer (1946).
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denoting xo/ VN by e, (6.6) can be written as

2/
ot 24t 4 0(%) (6.7)

] y2
Pelliymleed = ¥3

Equation (6.7) implies that as N approaches «, the probability that
Iul—m[ will be less than or equal to any nonnegative real number ¢ is
equal to one. If the standard deviation ¢ of the distribution of u
were known, (6.7) could provide the required size N for a desired
precision Tevel. In other words, {6.7) would provide confidence
levels or an interval that would contain m with certain probability.
"Of course, it is rather rare that o should be knbwn and m unknown.
Then an estimator 52 of the variance o could be used in (6.7). This
estimator is given by

£ =y 1, - (A, (6.8)

where, of course,

17}

ey
N

=
o

N R
Zu? : (5.9)
)

As noted by Kahn {1956), p. 87, the estimate s of ¢ in (6.8) is

often unreliable unless N is sufficiently large. How much is suffi-
ciently large cannot bé specified, however, and it depends heavily on
the particular application. The estimator s in (6.8) can be, neverthe-

Tess, used in (6.5} to provide negative information, in the sense that
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if the results of (6.7) with s in the place of ¢ are not acceptable,
then this information is usually reliable. One way to get around
this difficulty is suggested by Gelbard(b). This procedure is based
on the fact that if z is a random variable normally distributed
(mean m and standard deviation o)} and a sample pf size n is drawn

from this distribution, then the quantity
Zz = vn (zl -m) (6.10)

where

is distributed normally with mean O and standard deviation o {see

Central Limit theorem), and the quantity
AN s oA n2..1/2 0 n 1 1/2
o= (o7 [E,-(3))" 7 = ()Y s, (6.11)

where

is distributed according to a XZ distribution with {n-1) degrees of

freedom and parameter 1/202. If we now define the quantity
- Z. -
t=2= (21| (6.12)
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it can be shown that the distribution of t is a Student's t distribution
with n-1 degrees of freedom, or
2 -n/2

v _ 1 r(n/2)(q, t _
Sp(t) = — P(E’_;l)(1+~n—_-1—) . (6.13)

Since Sn-l(t) depends only on the sample size n, it can be used to
provide confidence levels for t, and therefore for m [see (6.12)1. In

other words, we have that

b
Pr{a<t<h} = f S (x) dx ,
- n-1
a
or
{3 bs__ s _ _as. _ v _
Priz) - o am < 2y - 77 -jp S.-1(x} dx (6.14)

a

where the right-hand side of (6.14) can be found from probability
tables.

0f course, (6.14) holds only when the sample is drawn from a
normal population. This procedure can be applied in the general case,
however, as follows. Let us divide the total number of trials (N) of

a Monte Cario simulation in I groups, each containing n trials, so that

=
il

n-l . (6.15)

let %j denote the mean of the j-th group, or
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M2
14

s (6.16)

e; _.:.-‘

and let ﬁl denote the mean of the I estimators Ej, or

(6.17)

=
et

m
b | et

M

and

1
B _Z(%*%)z : (6.18)

If n is large enough that the Central Limit theorem holds, then the

~—
o

foamd

w

=

L
[
1l
fmmt

Ej are normaily distributed, and therefore the variable

ts==—— (6.19)

where m denotes the expected value of u, Eful, is distributed
according to a Student's t distribution, and from (6.14) it follows

that

Prifiy-bs; < m < b 3 = 1- zj s,_1(x) dx . (5.20)
5

In using (6.20} one must be sure that the ij are normally distributed.
Usually if n is not sufficiently large, a test of normality should be
applied.

The procedure described above is fcilowed in this work for the
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estimation of confidence levels of any of the evaluators presented in
Section 4.2. Whenever the whole pdf of R is desired, the first four
moments are estimated and the moment-matching techrnique described in
Chapter Five is applied.

A computer code has been written to carry out the Monte Carlo
simulation, and it is described in Appendix C. A numerical example
is provided in the following subsection.

6.2.1 Numerical example of the straightforward
Monte Carlo simulation

As an illustration of the straighitforward Monte Carioc simulation,
wercalcuiated the expected value of the dynamic failure probability
(F) without repair of the sample system described in Section 2.5. The
transition rates and the dependence coefficients were assumed randomly
distributed according to gamma pdfs, the parameters of which are given
in Table 7.4. A random sample of 1200 12-tuples of transition rates
was generated. The corresponding histograms are presented in numerical
form in Tables 6.4 through 6.15 and schematically in Figure 6.2.
Equation (2.7) was solved repeatedly 1200 times, and the E[F] was
estimated as in (6.4). Confidence levels for E[F] were estimated
according to the two methods described in Section 6.2. Method I consists
in Qsing (6.7), considering the 1200 trials as one sample, and the
placing of o with its estimation s given by (6.8). Method II consists
in considering the 1200 trials as 20 samples each of magnitude 60.
Then Equations (6.17) through (6.20} were used. The results are
presented in Table 6.1. The confidence levels provided by Method II

are tighter than those provided by Methed I.
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TABLE 6.1 Confidence ievels for the expectad value of the failure
probability without repair of the sampie system.

90% INTERVAL

TIME | METHOD 95% INTERVAL T 957 INTERVAL
{(HR)

I (.882.05)x1072 | (.84.06)x107% | (.84+.08)x1072
200 -2 -2 -2

11| (.84:.00)x107% | (.84+.05)x10 {.84+.07)x10

I (1.47:.10)x10°2 | (1.47:.12)x1072 | (1.472.15)x1072
400 -2 -2 -2

I | (1.472.07)x107% | (1.472.09)x1072 | (1.47¢.13)x10

I (2.53:.15)x1072 | (2.53+.18)x10°2 | (2.53+.24)x1072
600 |

I | (2.53:.10)x1072 | (2.53+.13)x10°2 | (2.53%.19)x1072

I | (3.60£.20)x1072 | (3.60:.24)x1072 | (3.602.32)x102
800 |

I (3.60+.14)x1072 | (3.602.18)x1072 | (3.60+.26)x10"2

I (4.68+.25)x1072 | (4.68+.30)x1072 | (4.68%.39)x1072
1000 _2 . -

11 | (4.682.17)x1072 | (4.68+.22)x1072 | (4.682.32)x10

I (5.74£.30)x1072 | (5.74+.36)x1072 | (5.74%.47)x1072
1200 - . .

- I | (5.745,20)x1072| (5.74=.26)x1072 | (5.74+.37)x10

I (6.79¢.38)x1072 | (6.79+.41)x1072] (6.792.54)x1072

I | (6.79+.23)x1072| (6.79¢.30)x1072 | (6.79+.43)x10

I (7.83:.39)x1072 | (7.83+.46)x10°2| (7.83+.60)x1072
1600 . 5 -

11| (7.83:.26)x10°2| (7.83:.33)x1072] (7.83+.48)x70

I (8.84+.43)x1072 | (8.84<.51)x1072| (8.842.67)x1072
1800 _2 _._2' “2

11 | (8.84:.29)x107%] (8.84:.37)x1072] (8.84+.53)x10

I (9.84+.47)x1072 | (9.84x.56)x1072] (9.842.73)x1072
2000 - - )

I | (9.84:.31)x10"2| (9.84+.40)x1072

(9.84%.57)x10”
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The pdf of F at a given time can be approximated via the moment-
matching technique. The estimations of 8, B, [see {5.1) and (5.2)1
provide a type of distribution through Figure 5.1 and then the esti-
mation of the first two moments of F can be used for the determination
of the parameters of the distribution. For example, the estimations

of 8, and 8, for F(1000 hr) are, respectively,

31 2.75

By = 6.33

The point (81,62) in the (31,32) plane indicates (see Figure 5.1)
a Beta pdf. The parameters of the pdf were determined from the estima-
tion of the first moment and the variance {see Table 4.1) and the
results are presented in Table 6.2 and Figure 6.1.

TABLE 6.2 Cumulative probabilities for the failure
probabilities without repair at t=1000 hr.

-1 PriF<Fq}
Fy (x10 )
Monte Cario Fitted Beta
0.184 0.399 0.383
0.358 0.563 0.574
0.552 0.682 0.697
0.736 0.772 0.782
0.920 0.842 0.844
1.100 0.878 0.887
1.290 0.915 0.919
1.470 0.944 0.942
1.660 0.953 0.959
1.340 0.968 0.971
2.020 ¢.980 0.979
2.210 0.987 0.986
2.400 0.992 0.9290
2.580 0.995 0.993
2.760 .999 0.995
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f{F)

f3(Flp,q)

S T B | =
0.736 1.29 1.34 2.4
Fix10™)

[
0.184

Figure 6.1. Pdf of failure probability without repair
at t=1000 hr. Beta pdf résuliing from the moment-
matching technique and histogram of 1200 Monte Carlo
trials. .
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6.3 On the Size of the Time Step

For a given transition probability matrix P and a given time-
horizon t, the calculational effort associated with the solution of
(2.4) is directly proportional to the number of time steps n{t=nat).
It is, therefore, desirable to use the largest possibie time step.

On the other hand, it was said in Section 2.3 that tﬁe time step must
be such that assumptions (2.9) are valid. Since the smaller the time
step the more accurate Equations (2.3) are, this second condition re-
quires the use of the smallest possible time step. The problem of
choosing the size of the time step can be viewed, therefore, as one of
choosing the maximum time step for which assumptions {2.9) are valid.
To further explore this question, we consider the discrete-time Markov
model used in this work as an approximation of a continuous-time Markov
model and examine for how large a At this approximation is valid.

A continuous-time Markov process is ore in which the system can
change state at any instant of time. Again, the basic assumption will
be made that a direct transition between two system-states differing
in the states of more than one component is not possible. In other
words, two or more components cannot change state at the same instant.

Let T4 denote the time that the system spends in system state i before

d
it transits to system-state j (i#j). The Markovian assumption that the
transition probability between states i and j depends only on i and j,
implies that the times i3 are generated according to & Poisson random
process. It can then be shown that the tij‘s are distributed exponen-

tially on if f(Tij)denotes their pdf, that
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-h, s ;.
flr,) =h,,e W W gz, (6.21)

ij id

where hij characterizes the particular transition i+j, and therefore
it is equal to the transition rate of the component that changéd,
state. If we now consider a finite period of time At, it follows
from (6.21) that the probability that system will remain in state i
for a time period At without transferring into state j is given by

'hi‘ AL
Pric; ot} = e 1 , idi (6.22)

and therefore the probability that the system will transit some time
during At into j is given by

-h; . At
Pric;<at} =1 - e SN B B (6.23)

The probability that the system will remain at the same time i for
the whole period at, is equal to the probability that it won't transit
to any other state during this period, and therefore by virtue of

(6.22) it follows that

Z -h,; At T
system won't } - ij - { N
Pr{1eave state i T e €xp ;w“ﬁh°‘
j=1
Jj#i

By discretizing the process we assume that: 1) the system can

perform state transitions only at the end of time intervals of
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length At; and 2) the probability that a transition will take place is

equal to the probability that such a transition would have taken place

during this interval if the process were continuous in time. Then,

it follows from (6.23) and (6.24) that

“h.. At
1-e W , i i#j

]
>
=
i
1
Mm
=
=g
sy
Gt
[
o
i
wds
~h
—de
i}
- Cda
-

i#]

and from (2.9) and (6.25) that At should be such that

-h.. At
1-e W = hij At ., 1,j51,2,....2
and that
z z
exp{ - E h,'. At} o ] - E ij At , i=1.2, s &
j=1 j=1
i#3 i#]
holds.

By denoting

- 90 -

{6.25a)

(6.25b)

(6.26a)

(6.26b)

(6.27a)



and

= max {si} s (6.27b)
i

it follows from (6.26) that At should be such that

e SAY L1l st (6.28)

is approximately true. If, for example, sat = 10'1, then

e %1 = 0.9048 while 1.0 - 0.1 = 0.9.

An alternative analysis of the size of at could be done based on
purely mathematical grounds by considering (2.4), a first-order
difference equation, as an approximation to a first-order differential
quation of the continucus time process. This analysis is more
involved, however, and since it leads to simiiar conclusions it

won't be presented here. The interested reader is referred to
Henrici (1964) and Hildebrand (1968).

We conclude this section by noting that the difference between
the discrete-time and continuous-time solutions Ties only in the
transient part, since both yield exactly the same steady-state
solution.

6.4 The Choice of the Size of the Time
Step in a Monte Carlo Simulation _

The Monte Carlo simulation is performed by a computer code that

repeats N times the folilowing steps:
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1. Randomly select a set of transition rates from their
respective pdf's.

2. The transition-rate matrix A is generated such that

'(hﬁg if i#j and states i and j differ only
in the state of component v;
3y = { 0 if i#j and states i and j differ in the

state of more than one component;

Z
\- E Qs if i=§ . (6.29)

3. The maximum, in absolute value, 2 is chosen and the

time step is defined such that

st max{a .} = X ' (6.29a)

where x is predetermined so that e™® = 1-x.
4. The transition probability matrix P is then generated

such that
P=1+Aat . (6.30)
5. Equation (2.4} is solved for the desired time-horizon.

Since for each trial a different set of transition rates

is used, & different time step is determined, and therefore,
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the reliability of the system is calculated at different points in
time. To get around this prebiem the following procedure is followed.

The time horizon Ty is divided into K "large" time steps T such that

Then along with the "small" time step At defined in (6.29a) an auxil-

jary time step Atl is defined such that
T = in[T/at] At + Aty (6.31)

where in[T/At] denotes the integer part of T/at. If now every

in[T/at] regular time step P is changed into Py where Py is defined in
{6.30) with Aty in the place of At, the value of the desired reliability
- measure would be obtained at the end of each large time step for every
trial.

The fact that the transition rates (input variables) are assumed
to be random variables unbounded from above (see Section 4.5) presents
the Monte Carlo simulation with another problem. From (6.29a) it
follows that even if only one of the transition rates has a large
value, the time step At will be very small, and thus the simulation
can be very expensive. Of cburse, a smail time step does not neces-
sarily mean an expensive run, since if all or most of the transition
rates take large values, the steady state is reached by the system
fairly soon and this means a reasonable number of (small) time steps.

If, however, the transition rates are such that one takes values
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significantly larger than the others. then the steady state of the
system might not be achievable within a reasonable number of time
steps. This is due to the fact that the time step is small enough

to describe the‘fast changes of the state of a particular component,
while the system changes of state (as far as system-failure of systen-
repair is concerned) are much slower and they do not require such a
small time step. Whenever such differences exist in the values of

the transition rates, the Monte Carlo simulation can become inhibi-
tively expensive. One way of getting around this problem is presented
in the rest of this section.

Let Xy = {x "’an} be the input set for the n-th Monte

in®’
Carlo trial and let X, by such that one of the transition rates,
Xien for example, is much larger than the rest. Let i{+j* be a sysiem

state transition such that hij* = x,. Then, if At is large enough

that

e =0 , (6.32)
it follows from (6.25a) that

Pyx =1 - (6.33)

Furthermore, by virtue of (6.32) and (6.25b), it follows that

p,. =0 {6.34)
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and that

Pij = 0 it j#i* (6.343)
We assume, in other words, that if the system is in state i, its next
transition at the end of a large time step will be to state j* (where
j* is determined by xkn) with probability 1.
The definition of P (see steps 2 through 4) is then modified as
it follows:
1. Select at random a set of transition rates from their
respecfive pdf's. Examine to find if there is a singie
transition rate larger than a predetermined value x

0

while all the others are smaller than Xy If not, proceed

as in steps 2 to 5 mentioned eariier. If yes, let Xn
be this transition rate. Then:

2. For each state i, examine to see if there is a state j*
such that

ij* = *kn

If such a state j* does exist, then denote state i by i*

and set

1 ifgj=3* ,

0 otherwise . {6.35)
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If a state j* does not exist, then aij is defined as
in {6.29).
The maximum. in absolute vaTue,.aii is chosen and the time

step is defined such that [see (6.2%)]
At max {aii} = X

Note that CP = 0 because of (6.35).

The transition probability matrix P is then generated such

that
.ot oa.. if 1 # i*
15 1 343 At if 141 ,
RS ifi=i*and j = 3*,
if 1= i%and § # 3* ,

where éij is the Kronecker delta. Note that there might be
more than one state designated as i*. It must be emphasized
at this point that this procedure 1is applied only when one of
tﬁé transition rates differs significantlyAfrom the others.
This is due to the special structure of P given in (2.14).
Because the transition probability between two system states
that differ (for example) in-the states of two components, is

given by (see 6.23}
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it follows from (6.32) that if both h1 and h2 have similar

values and At is large enough, then

The computer codes used in this work, however, were written under
the assumption that transitions involving the change of state of more
than two components have negligible probability and that, therefore, P
has the structure given in (2.14). One of course could allow such tran-
sitions to occur. but then the storage requirements would increase in
a way that.would negate the gains from the increase of the time step.
If, on the other hand, only transitions involving the larger, say h2,

wereartificially put equal to 1, the choice of the time step At will

-h.at
be controlled by hy and it will be such that e
-h,At

2

xl-hlAt, and therefore,
the assumption that 1l-e =1 will not be valid.
‘A numerical example of this procedure is presented in the following

subsection.

6.4.1 A numerical example

To illustrate the approximate method discussed in the previous
section, we once more consider the system described in Section 2.5. The
transition rates and the dependence coefficients are assumed to be
random variables distributed according to gamma pdf's. _The parameters
of these pdf's are given in Table 7.4 and the random samples obtained
in the Monte Carlo simulation in Tables 6.5 through 6.15. Histograms

of the negative common Togarithms of the transition rates are also given
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in Figure 6.2. Examination of these tables reveals fhat the transition
rate that takes the Targer values is h6 = k2 uys i.e., the repair rate
of the pumps when only one is failed (see Table 7.3). Furthermore, we
notice that only this transition rate takes values larger than 0.08

(see also Figure 6.2). The cutoff value X4 (see step 1, p. 97) is,
therefore, set at this level: X = 0.08. The Monte Carlo simulation
was executed as it was described in Section 6;4; and the results for the
expected value of the failure probability with on-Tine repair are
presgnted numerically in Table 6.3 and graphically in Figure 6.3. While
the exact calculation (no cutoff value) reguired 170 séc, therapproxi—
mation required only 136 sec. It is noteworthy that even if only 7% of
the values of h6 were above the cutoff value of Xy and therefore

only 7% of the trials were affected, a reduction of 20% in the necessary
computing time was achieved. A higher reduction in the computing time
could be achieved if the cutoff value is set at a Tower level, say at

Xy = 0.04. This time 18% of the values of h. are Targer than X, and

6
the Monte Carlo simulation can be executed in only 95 sec, a reduction
of 44%. The error in the computed expected va]ues; however, is rather
large, on the order of 50%. This is due to the fact that man& values

of the transition h5 are very close to 0.04 (see Table 6.8). In fact,
1% of the values of h5 are above it. Even though the probability that
values of h5 near or above X5 will occur simultaneously with values of

hg above x_ is small, such pairs do occur in the sample and contribute

o
to the error.

To jllustrate the importance of the Tocation of the cutoff value

X, with respect to the transition rate, the expected value of the failure
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Xg=1.1

I0%e=0.08
I

RELATIVE FREGUENCY

Figure 6.2. Histograms of the negative common
logavithm of some transition rates of components
of the sample system.

probability without repair was calculated. This time the dependence
coefficient kl (see Table 7.3) was assumed distributed according to a
gamma pdf with mean value equal to 601, while all the other parameters

5 = ki X
is presented in Table 6.16. From this table it follows that 50% of the

were unchanged. The resulting sample for the transition rate h

values of h5 are above 0.01. Furthermore, examination of Tables 6.4,
6.6, and 6.10 to 6.12 revealis that the rest of the failure rates take
values far below 0.01. Thus, the cutoff value was set at X, = 0.01, and-
the results are presented in Table 6.4 and Figure 6.3. A reduction of
70% in the computing time was achieved and the approximate results differ

from the exact by only 7%.
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various cutoff values Xo'

TABLE 6.3
Expected failure probability with repair for

TABLE 6.4
Expected failure proba-
bility without repair:
regular run (x0=m) and

x0=.01.
ng?ﬁz Failure Probability with Repair F. Preb. without Repair
%
Time Regular % =0.08 X =0.04 Regular X =0,01
(Hr) ) Run 0 ° Run 0
200 0.2x10°2  g.1x1072 0.1x10°% | o.8x107%2  o0.100x107°
400 0.4x10°2  0.3x10°%  0.2x107% | 2.0x107%  1.3x1072
600 0.6x10°%  0.5x107%  0.3x107% | 3.1x107%  2.5x1072
800 0.8x1072  0.7x1072  0.4x107% | 4.3x107%  3.6x107°
1000 Lox1072  0.8x107%  0.5x107% | 5.4x107%  4.8x107°
1200 13102 1.0x07%  0.6x107% | 6.5x1077  5.9x107°
1400 1.5x10%  1.2x107%  0.8x107% | 7.5x107°  7.0x107°
1600 1.7x10°2 1.ax102  0.9x107% | s.6x1077  8.ox107°
1800 1.9x10°2  1.5x107%  1.0x107 10.0x10'2 9.1x1072
2000 2.1x1072 1.7x10°2  1.1x107% | 10.6x1072 10.1x10"2
%ggg”flgg) 170 136 95 70 22
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I. FAILURE PROBABILITY : NO REPAIR
— : EXACT SOLUTION
--- : TRANSITION RATES 2 0.02hr' —Py =I

I FAILURE PROBASILITY WITH REPAIR
— : EXACT SOLUTION
~~ : TRANSITION RATES 20.08 hr™' ~ Py =

--- : TRANSITION RATES 2 0.04 hr™' —Py =

FAILURE PROBABILITY

5x10 >

! | I | _ 1 ! 1 ! i 13 I L|
400 800 1200 600 200C

t(h}

Figure 6.3. Expected value of future probability
for various cutoff values Xg-
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TABLE 6.5 Random Sample for a

1°

CLASS FROM T0 FREQUENCY
1 .08000 .00001 362
2 .00001 .00002 274
3 .00002 .00004 173
4 ,00004 ,00005 146
5 .00005 .00006 73
6 .00006 .00007 48
7 .00007 .00008 43
8 .00008 .00009 19
9 .00009 .00011 19

10 .00011 .00012 16
11 .00012 .00013 7
12 .00013 .00014 8
13 .00014 .00015 4
14 .00015 .00016 5
15 .00016 .00018 1
16 .00018 .00019 0
17 .00019 .00020 0
18 .00020 .00021 1
19 .00021 .00022 0
20 .00022 .00024 0

TOTAL 1200
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TABLE 6.6 Random Sample for Hy-

CLASS FROM TO FREQUENCY
1 .00000 .00196 326
2 .00196 .00392 274
3 .00392 .00588 173
4 .00588 .00784 146
5 .00784 .00980 73
6 .00980 01176 48
7 .01176 .01372 43
8 .01372 .01568 19
9 .01568 .01763 19

10 .01763 .01953 16
i1 .01959 02155 7
12 .02155 .02351 8
13 .02351 .02547 4
14 .02547 .02743 5
15 .02743 .02939 1
16 .02939 .03135 0
17 ;03135 .03331 0
18 03331 .03527 1
19 .03527 .03723 0
20 .03723 .03919 0
TOTAL 1200
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TABLE 6.7 Random Sample for A

-
CLASS FROM 10 _FREQUENCY
1 .00000 .00000 362
2 .00000 .00000 274
3 .00000 .00000 173
4 .00000 .00000 146
5 .00000 .00000 73
6 .00000 .00000 48
7 .00000 | .00000 43
8 .00000 .00000 19
9 .00000 .00000 19
10 .00000 .00000 16
1 .00000 .00000 7
12 00000 .00000 8
13 .00000 .00001 4
14 .00001 .00001 5
15 .00001 .00001 1
16 .00001 .00001 0
17 .00001 .00001 0
18 .00001 .00001 1
19 .00001 .00001 0
20 .00001 .00001 0
TOTAL = 1200
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TABLE 6.8 Random Sample for Mo-

CLASS FROM TO FREQUENCY
1 .00000 .00004 362
2 .00004 .00008 274
3 .00308 .00012 173
4 .00012 .00016 146
5 .00016 .00020 73
6 .00020 00024 48
7 .00024 .00027 43
8 .00027 .00031 19
9 .00031 .00035 19

10 .00035 .00039 16
11 .00038 .00043 7
12 .00043 .00047 8
13 .00047 .00051 4
14 .00051 .00055 5
15 .00055 .00050 1
16 .0005% .00063 0
17 .00063 .00067 0
18 .00067 (0071 1
19 00071 .00074 0
20 .00074 .00C78 0
TOTAL 1200
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TABLE 6.9 Random Sample for h5=k1-'A1.

* CLASS FROM T0 FREQUENCY
1 .00000 ,00319 582
2 .00319 .00636 255
3 .00636 .00958 131
4 .00958 .01277 81
5 .01277 .01597 a7
6 .01597 .01916 23
7 .01916 .02235 20
8 .02235 ,02555 20
9 .02555 02874 9

10 .02874 .03193 12
11 .03193 | .03513 5
12 .03513 .03832 3
13 .03832 .04151 3
14 .04151 .04471 2
15 .04471 .04790 3
16 .04790 .05109 2
17 .05109 ,05429 1
18 .05429 .05748 0
19 .05748 | .06067 0
20 .06067 .06387 0
TOTAL 1200
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TABLF 6.10 Random Sample for h5=k2‘u1-
CLASS FROM 0 FREQUENCY
1 .00000 .01198 507
2 .01198 .02396 282
3 .02396 .03594 145
4 .03594 .04792 89
5 .04762 .05990 64
6 .05990 .07188 28
7 .07188 .08386 20
8 .08386 .09584 20
9 .09584 .10782 1
10 .10782 .11980 11
11 .11980 .13178 6
12 .13178 .14376 5
13 .14376 .15573 4
14 .15573 .16771 1
15 .16771 .17969 2
16 .17968 .19167 3
17 .19167 .20365 1
18 .20365 .21563 0
19 .21563 .22761 0
20 .22761 .23959 0

TOTAL 1200
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TABLE 6.11 Random Sample for h,

=K, <A

3" 22
CLASS FROM 10 FREQUENCY
1 .00000. | .00001 549
2 .00001 .00001 271
3 .00001 .00002 132
4 .00002 .00002 87
5 .00002 .00003 56
6 .00003 .00003 22
7 .00003 .00004 21
8 00004 .00004 17
9 .00004 .00005 12
10 .00005 .00006 11
11 .00006 .00006 7
12 .00006 .00007 3
13 .00007 .60007 3
14 .00007 .00008 2
15 .00008 .00008 3
16 .00008 .00009 2
17 .00009 .00009 1
18 .00009 .00010 0
19 .00010 .00011 0
20 .00011 .00011 0

TOTAL 1200
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TABLE 6.12 Random Sample for h3=k4-k‘.2.

©CLAsS FROM T0 FREQUENCY
1 - .00000 .00001 566
2 .00001 .00002 263
3 .00002 .00003 131
4 .00003 .00004 86
5 .00004 .00005 50
6 .00005 .00007 21
7 .00007 .00008 21
8 .00008 .00009 i9
9 .00009 .00010 11
10 .00010 .00011 12
11 .00011 .00012 4
12 .00012 .00013 4
13 .00013 .00014 3
14 .00014 .00015 2
15 .00015 .00016 3
16 .00016 .00017 2
17 .00017 .00019 1
18 .00019 .00020 0
19 .00020 .00021 0
20 .00021 | .00022 0
TOTAL 1200
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TABLE 6.13 Random Sample for h9=k5-A_

5"
CLASS FROM 10 * FREQUENCY
1 .00001 .00011 582
2 .00011 .00021 255
3 .00021 .00032 131
4 .00032 .00043 81
5 .00043 .00053 47
6 .00053 00064 23
7 ,00064 .00075 20
8 .00075 .00085 20
9 .00085 00096 9
10 .00096 .00106. 12
1 .00106 .00117 5
12 .00117 .00128 3
13 .00128 | .00138 3
14 .00138 .00149 2
15 .00149 .00160 3
16 .00160 .00170 2
17 .00170 .00181 1
18 .00181 .00192. 0
19 .00192 .00202 0
20 .00202 .00213 0
- TOTAL 1200
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TABLE 6.14 Random Sample for h10=k6‘u2.

CLASS FROM T0 FREQUENCY
1 .00000 .00109 566
2 .00109 .00218 263
3 .00218 .00327 131
4 .00327 .00436 86
5 .00436 .00544 50
6 .00544 .00653 21
7 .00653 .00762 21
8 .00762 .00871 19
9 .00871 .00980 11

10 .00980 .01089 12
11 .01089 | - .01198 4
12 .01198 .01307 4
13 .01307 .01416 3
14 .01416 .01525 2
15 .01525 .01633 3
16 .01633 .01742 2
17 01742 .01851 1
18 .01851 .01960 0
19 .01960 .02069 0
20 .02069 .02178 0
TOTAL 1200
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TABLE 6.15 Random Sample for h5=k1-7\1, where E1=60'1.
CLASS FROM T0 FREQUENCY
1 .00000 .00956 584
2 .00956 .01913 255
3 .01913 .02869 130
4 .02869 .03825 80
5 .03825 .04782 48
6 .04782 .05738 22
7 .05738 .06694 20
8 .6694 .07651 20
9 .07651 .08607 9

10 .08607 09563 12
11 .09563 .10520 - 5

12 .10520 .11476 3
13 .11476 12432 3
14 12432 | - .13389 2
15 .13389 .14245 3
16 .14345 .15301. 2
17 .15301 .16258 1
18 .16258 .17214 0
19 17214 .18170 0
20 .18170 .19127 0
TOTAL 1200
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CHAPTER SEVEN
THE TAYLOR SERIES APPROXIMATION

7.1 Introductjon

An approximation of the moments of the reliability can be obtained
by expanding the function R(xl,.,.,xm) [see (4.1)1, into a Taylor
series around the mean vagues of the xi's and retaining only a finite
number of terms. This approximate form of the function R is then used
for the calculation of the moments. This method was originally pre-
sented by Tukey (a.b,c, 1957) in a series of three reports. It has
also been used by Evans {1974) and Hahn and Shapiro (1967) for non-
nuclear applications and by Apostolakis and Lee ‘to Ca]cu1ate the moments
of the top event of a fault tree. A different version of this technique
is found in the 1iterqture under -the name of response-surface method.
This later technique is used to provide an analytical approximation of
a function R(xl,...,xm) whenever its derivatives cannot be calculated,
and the onTy information about R is in the form of specific "responses"
R, to various inputs x”. The responses are made available via real or
numerical experiments. This chapter is organized as follows: Section
7.2 discusses the Taylor series approximation for the calculation of
the moments of a function of random variables; Section 7.3 presents the
method for the calculation of the derivatives of the n-th power of the
transition probability matrix P; Sectibn 7.4 presents results of the
Taylor method for -a two-state system; and Section 7.5 presents results
of the Taylor and the moment-matching methods for the sample system des-

cribed in Chapter Two.
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7.2 Approximate Evaluation of the System-Moments
by Taylor Series Expansion

An approximate closed form of the function R(xl,...,xm) [see (4.1)]
can be obtained by expanding it in a Tay]of series around the expected
values §}’s of xi‘s and retaining only the first few terms. If terms

up to fourth order are retained, this procedure yields

e —_ 3R
RCqseeesXy) = R(Fpseen X ) +Z x (x;%;)
i

TZ Z BX% ax (x; =% (x;5-%5) (7.1)

“3‘"2 Z Z XK 5%, Bx ax (xi"i-i)(xj&j)(_xk&k)

TZ Z ZE X ax ax %I (xi'-’-(-'i)(xj';j)(xk“;k)(xr'x—r) ’

where the partial derivatives are evaluated at the point {Ri,...,iﬁ) and
all summations extend from 1 to m.

This éxpression of R can now be used to determine any moment of R
about the origin [see (5.4)] or about its mean [see (5.3)1. If ”i
denotes the k-~th central moment'bf X;» the combination of {5.3), (5.5),
and (7.1) yields
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m m
2 3
EIR) = R(Ry.en ik ) + e D By o+ LS~ IR
i ax. . 9X.
i=1 i i=1 i
m 4 : m=1 m 4 :
1 3R 1 B 3'R iyr
t o7 Z A T 21 Z x o T ) 05) 5 (7.2)
Ll R i=1 j=i+1 °%§ °%j
m 2 m 2
var[R] =Z(8R \)u;* (aR ) (ag )u;
i=1 3%, i=1 9%y %y

1 [ ) [a%R BRSVI A Y
1 k|
+ o + - lw, - ()15 (7.3)
3 ( ( ,r)“z; T L. <"‘2‘) 4 2
=1\ 9% / o%s =1 v
m 3 m 2
Hal . -§§;— ug * 5 3% 2 R OV RN ERR O
i=1 i=] X
m 4
uy(R) = '(-§§?€> g - 3013)°1 + 3lvarR1)? (7.5)
i=1 :

where it has been assumed that the xi's are uncorrelated (see Section
4.5), and therefore cross products of order E[(x1~§}) (xjéis)] and
higher vanish. These results are also presented by Tukey (a,b,c, 1957)
and Evans (19743, while results for correlated Xi!S are presented by

Tukey and including up to second-order terms by Hahn and Shapiro {1967).
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The problem of estimating the first four moments of the reliability
reduces, therefore, into the calculation of the various derivatives of
R that are encountered in (7.2) through (7.5). This problem is
examined in detail in Section 7.3.

Some general remarks concerning the accuracy and usefu]neés of
this approach are appropriate at this point. The expression given in
(7.1) is not a good approximation of R(xi,...,xm) except for small
deviations of the x;'s from their mean values. Equations (7.2) through
(7.5) could, nevertheless, be good approximations of the various moments
since they are expectations of (7.1) and since this expectation assigns
weights (probabilities) to the various points. The probability that
the point (Xi""’xm) will take a value "far" from its mean (?i,...,i&)
or, equivalently, the probability that all xi‘s will take values
simultaneously "far" from their respective means is usually small.
Equations (7.2) through (7.5) provide, therefore, expressions for the
moments of R that consist mainly of contributions from points (xi""’xm)
that are "near" the mean, and hence of points for which (7.1) gives a
relatively good approximation of R. It is expected, therefore, that
(7.2) through (7.5) will yield good estimations of the central moments
of R in cases that the joint pdf of the xi's is not extremely fTat (in
an m-dimensional sense).

Whenever accurate, this method also provides a tool for performing
a partial sensitivity analysis. Indeed,.ohce the derivatives and the
value of R at (ii,b.b,iﬁ) are evaluated, (7.2) through (7.5) provide
the central moments of R for any set of central moments uz of the xi's.

Alternatively stated, the coefficient of u;, in (7.2) for example,
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provides a measure of the contribution of the variance of X; to the
expected value of R. Thus, once the accuracy of {7.2) te {7.5) has

been checked {perhaps with a Monte Carlo calculation) at a certain

level of the means §}, the sensitivity of the moments of R to variations
of the central moments of the xi’s can be studied. If the mean values
2% are changed, however, the derivatives and the value of R at the new
values of i}'s must be recalculated. This is not a lengthy calculation
per se, but the accuracy of (7.2) to (7.5) at this new level of ig's

must be checked again (possibly by a new Monte Carlo calculation).

7.3 Evaluation of Derivatives

In this section recurrence formulas are developed for the evaluation
of the derivatives of R necessary for the calculation of the moments in
(7.2) to (7.5). For this derivation the following definitions are

needed.

Definifion 7.1 The k-th derivative of an Ixz vector u with
k

respect to a scalar x, is an 1xz vector, denoted by akgjax

and defined by

k k k

[8_11_11'(_ RN ] k] . (7-6)
ax 39X

3

-

e

X

Definition 7.2 The k-th derivative of a matrix Y with respect

to a scalar X is a matrix denoted by aki/axk and defined by

k

k
Y a ‘y'i.j
k

X

» ] (7.7)

9

[H

9 ax
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Furthermore, it can be easily shown that the derivative of a product
of two matrices is given by

5 oY

2 {Y-G) =

0
aX

3

e

5 .§_+__Y_.

»
>

(7.8a)

and that if A is matrix the elements of which are not functions of x

; ot
By virtue of (4.6), it follows that
k 2 ka_gn)
E_Rl((ﬂl= E z m(0) —— . (7.9)
i fex 1 8%
We introduce the symbolism
k n
p{n) - s (7.10a)
—K;i T k7~ "
3X .
j
k
95(:) - ann) (7.10b)
i k
3X..
i
and thus {7.9) can be written as
k
AR - > x(0)-n{" (7.11)
I, ?
1
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or

akRén) =Z$((nz ’ (7.12)

TS
where it has been assumed that m(0) is constant (not a function of the

x;’s). By virtue of (7.8) and of

pl = Pn—} - P,

it follows that

' P

5% 3Ry 3

or that

1)
]

2

p{n) = p{n=1) . p(1) D(n -1) . pf

=151 ;i 7 o3 =1 (7.13)

Repeated differentiation of (7.13) then yields

k
9‘!(:12 -2 Cj) ) 949513 ' 9«()12 ; (7.14)
V=0

or by left muitiplying both sides of (7.14) by =(0)

k

4} - () o) 019

V=0
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Thus, gi?% can be obtained from (7.15) recurrently and then the deriv-
atives of R are calculated from (7.12). The elements of P are linear
functions of the various xi% [see (2.9) and Section 4.5}, and therefore

it follows that

P if v0
P

m - J = . _

E’\)-;'i < *"é-)—(; if v=1 5 (7.]6)
0 if w22

By virtue of (7.15) and (7.16) it follows, therefore, that

ii-g?#)g = ﬁgrﬁ” « P+ aln-1) _D.:EI?)E ’ (7.17a)
R 271 - 1), (7.17b)
i) = afi) e afmh ol (7.17¢)
TGO RN €53 D IO C T IR € ) B (7.174)

431 =431 - =3;1 =1;1

where again because of (7.16)
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_‘iT_(],) if v=0 5

I
o
w

if v (7.18)

|

if w2

Equations (7.17) combined with (7.12) provide the derivatives of R(n)
necessary for the calculations of the-moments in (7.2) through (7.5).
It should be noted that the method just cited can be used for the
calculation of the moments of any function y=u(R) of R. Indeed, the
derivatives of y with respect to the xi‘s can be calculated with the
help of the chain rule. For the first derivative, for example, we have

that

N-WR (7.19)
Since u(R} is a known function, su/aR can be calculated at X=X,

A computer code has been written that calculates the derivatives
of the state probability vector gi?% presented in (7.17a) through
(7.17d). Then, the derivatives and moments of R(n) are evaluated
from(7.12) and (7.2) to (7.5), respectively. Numerical examples of

this method are presented in the next two sections.

7.4 Numerical Example of a Two-State System

Let us assume that the failure rate A and the repair rate n of a

two-state system are distributed according to gamma pdf's with
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parameters ris¥q and TosYos respectively [see (4.16)1,

expl-y; A1 (y; A)17

f (l[rlsyl = P(rz) yl s (7.206)
EXP[—yzu] (yzu)rZ_l
£ (ulraayy) = M) Y2 (7.20b)

Let us furthermore assume that the values of the parameters are

= 4 o= =- {
r1~2, ¥1=107, ry=5, and y,= 400 (7.21)

so that the various moments of A and u-are given in Table 7.1.

7.4.1 Time-dependent unavailability

The time-dependent unavailability of a itwo-state system is given

by [see (4.30) and (4.31)]

U(ﬂ) = —*_]—_I - — [()L"i-u) At] | (7.22)
The various derivatives of U(n} with respect to A and can'be derived
analytically from (7.21) and then used in {7.2) through (7.5), The
resulting moments of U(n) for the data considered in (7.21) are
presented in Table 7.2 where they are aisc compared with the results

of a Monte Carlo simulation.

7.4.2 Steady-state unavailability

By virtue of (7.22) it follows that the steady-state unavailability
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TABLE 7.1 Moments of gamma distributed failure and repair

rates of a 2-state system.

MOMENTS A (i=1) U (i=2)
ui’ 2x10”% 1.250x1072
u 2x1078 3.125x107°
u; ax10~12 1.563x10°7
u 2.4x10°1° | 4.102x10°°

TABLE 7.2 Expected value and variance of dynamic failure

probability of a Z2-state system.

Transition rates

distributed according to gamma pdf's.

Efu(n}] var{U(nj]

TIME TAYLOR | MONTE CARLO | TAYLOR  MONTE CARLO
200 1.62x107% | 1.62x10°2 |1.40x107% |1.65x107
400 1.89x107% | 1.84x107% |2.13x107% |2.56x107%
600 1.97x10°% | 1.90x107% |2.31x107* |2.96x107%
800 1.99x107% | 1.92x107% |2.34x107% |3.15¢107%

1000 2.00x1072| 1.93x107% |2.35x107% |3.24x107%

1200 2.00x1072| 1.93x107% |2.35x107% |3.20x107"

1400 2.00x1072| 1.94x107% |2.35x10°% |3.31x107%

1600 2.00x10°%] 1.94x1072 |2.35x107% |3.33x107%

1800 2.00x102] 1.98x107% |2.35x107% |3.34x107"

2000 2.00x10°2 | 1.94x1072 |2.35x107% |3.35x107¢

ANALYTICAL ANALYTICAL
STEADY-STATE | TAYLOR SOLUTION | TAYLOR SOLUTTON
T=ow 12.00x1072] 1.92x107% | 2.35x107% |2.03x10™
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is given by

U=(=) = ;%5- . (7.23)

The desired moments of U are obtained by calculating the derivatives of
U with respect to A and u and substituting in (7.2) through (7.5). For
this case, analytical results for E[U] and for var[U] can be obtained
as follows: In Section 4.6.1 the first two moments of the steady-state
availability of a two-state system were calculated for gamma-distributed
x and u» [see (4.46) and (4.47)]1. From these moments, the moments of U

can be cglcu1ated from the following relations
E[UT = 1 -E[A] . C o (7.28a)
var[U] = E[U4) - (£ = E(1-ADY - EADY
or
varlU] = E[AZ] - (EIA1IS . (7.24b)

These results are included in Table 7.2.

7.5 An Example of the General Case

As an illustration of the Taylor-series expansion technique, the
first four moments of various reliability measures of the sample system

considered in Chapters Two and Three were calculated. A description of
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the system and of the various interdependences are given in Section 2.5.
The failure rates and repair rates of the components of the system are
presented in Table 7.3 and they are assumed to be random variables
distributed according to gamma pdf‘s. The values of the parameters

of the pdf's as well as of the first four moments of the transition
rates are given in Table 7.4. The dependence coefficients ki are also
assumed to be random variables such that the differences (ki-l) are dis-
tributed according to gamma pdf's. The values of the parameters of

the distribution and their first four moments are also given in

Table 7.4,

The expected value and the next three central moments of the
failure probability with repair and the failure probability without on-
1ine repair were calculated and are presented in Tables 7.5 and 7.6,
respectively. In the same tables the corresponding values of the
moments obtained by Monte.Car1o simulation are presented for comparison.

To illustrate the use of this kind of results in a “sensitivity"
analysis, let us consider the expected value and the variance of the
failure probability without repair at t=1000 hr. The values for these
two. quantities shown in Table 7.6 were obtained by using the formulae
[see (7.2) and (7.3) and Table 4.1]

12

D=E[F] - F(X. (a, + r—* L (7.25)

e i=1

serda

and
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TABLE 7.3 Conditional transition rates for the components
of system in Figure 2.1.

CONDITIONAL FAILURE RATES CONDITIONAL REPAIR RATES
PUMPS
TWO up AT -
ONE UP k1l] k2u2
NONE tiP - iy

T0 THE TO THE FROM THE FROM THE
VALVES  "OPEN POSITION" | "CLOSED POSITION" | "OPEN POSITION" | "CLOSED POSITION"
FOUR UpP AZ | kz - -
THREE UP kalz k3A2 ksuz ksuz
TWO UP k4A2 k4l2 k7u2 | k7u2
ONE P kslz kslz k8“2 k8u2
NONE UP - - My My
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1

var[F] = (7.26)

)

2 C.
1
r 3
1

'I:

where the values of ﬁhe coefficients a5 bi’ and c; are given in

Table 7.7 and r is the parameter of the corresponding gamma pdf's.
From this table it can be seen that the contribution of the uncertain-
ties about the dependence coefficients into the value of D [see (7.24)]
and var[F1 is negligible. More precisely, if the k's were fixed at
their respective mean values (ri=w, i=5,7.8.9), then the value of D
would change by only 9% while the value of var[F] by only 1.5%. It
must be noted, however., that the above statement is true only for the
specific values of ik's and ry and r3 given in Table 7.4,

As an illustration of the moment-matching technique, the pdf of
the reliability without repair at t=1000 hr was determined as it was
described in Section 5.2 and the results were compared with the results
of a Monte Carlo simulation. By virtue of (5.1), (5.2), and the values
of M3 and Hps an estimation of the coefficients By> By Was obtained.
The location of the point (81,82) in Figure 5.1 indicates that the pdf
in question resembles the most to a log-normal pdf. Once the type of
the pdf is chosen, its paraméters‘(here, u,o; see Table 4.1) are
determined from the first moment and the variance. It must be noted
at this point that even though the log-normal distribution describes
variables unbounded from above, it can be used to approximate the true
pdf of F (0<F<1} in the region of interest since the contribution of
the tail of fLN(xiu,u) for x>1 is negligible for the considered values

of u and o. The resulting log-normal pdf is p]otfed in Figure 7.1
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together with a histogram obtained by a Monte Carlo simulation of
1200 trials. Cumulative probabilities from the log-normal pdf and the

Monte Cario simulation are presented in Table 7.8.
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TABLE 7.4 Expected values and central momerts of transition
rates and dependence coefficients.

; 3rp2)(xy)?

RANDOM Gamma pdf ri 1 (x)2 5 2(x)3
VARIABLE X® TV; L | ey M=
hi . 3
X: r. Y. i
1 1 T
Y .18
x;= A; | 1.1]3.67x10% |3x107% B.18x10 1014.46x10 ©715.66x10
X wy | 1.1 [2.20x00° [5x1073 p.27x10”° {2.07x1077 |a.37x107°
X~ A, | L1 1.10x10% | 1x107¢ o.09x10723|1.65x10718 |6.0x10"%4
x;=up | 1.1[1.10x10" | 1x107% p.0ox107 |1.65x10712|6.99x10716
o -3 - 4 6 9
xs= ;| 2 |9.95x1073 | 201 p.ozxac® |4.06x10% |2.45x10
_ -1 1 1 2
xg=k, | 2 |4.00x2070] 5 1.25x100 |6.25x10% |9.38x10
) -1 1 9 4
x;=¢ | 2 |80l 1 5.05x100 |6.65x10% [2.20x10
xg= kg | 2 |9.52x1072| 21 b.20x102 |4.63x10° |2.92x10°
) ' 3 4 6 9
xg~ kg | 2 |9.95x107 f201 o.02x10% | 4.06x10% |2.45x10
xp¢ | 2 |9.52x1078 21 hozoxio® |4.63a0® [2.92x10°
5
e -1 1 2 4
Xy | 2 | 18107t 11 6.05x10% | 6.65x10% |2.20x10
} -1 1 2 3
xpg | 2 | 2.86x1071| 7 2.45x10% |1.71x10% | 3.60x10
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TABLE 7.7 Taylor series expansion TABLE 7.8 Cumutative probabili-

coefficients for the ties for the failure
expected value and the probability without
variance of the failure repair at T=1000 hr.

probability without
‘repair at T=1000 hr.

i{ Variable a; bs Cy ' PF{EEFQ}

1 ll(x10'3)' -15.000 | -0.7700] 3.300 Fo TAYLOR | MONTE CARLO
2| w 0.000 | 0.0000{0.000 {1.0x10™3 0.060 0.100
3 kz(x10'3) 0.039 | 0.0009{ 9x10"%{4.0x1073 0.350 0.340
4|, 0.000 | 0.0000| 0.000 }{8.0x10™¥ 0.580 0.530
5| ky(x107%) |- 9.500 | 18.0000| 0.090 1.2x1072 0.700 0.680
6| k, 0.000 | 0.0000]0.000 {1.6x107% 0.780 0.780
7] ky(x107%) | - 0.067 | -0.0010 1x10°4]2.0x107%] 0.830 0.850
8] ky(x107%) |- 1.600 | 0.0320| 1x10™"}3 2x1072 0.910 0.950
9| ks(x1071%)] -29.000 | 2.0000 4x1075[4.0x107%] 0.940 0.980
10| kg 0.000 { 0.0000]0.000 [4.8x107%] 0.955 0.990
1] &, 0.000 | 0.0000{0.000 |5.6x1072| 0.966 0.994
12 kg 0.000 | 0.0000{0.000 {6.0x1072| 0.976 0.997

T 1 1T T F 1 1T 1T T777°17T T T
m
III‘G.O

F(x10%)

Figure 7.1. Pdf of failure probability without
repair at t=1000 hr.
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CHAPTER EIGHT
RELIABILITY ASSESSMENT OF THE CLINCH RIVER
BREEDER REACTOR SHUTDOWN SYSTEM UNDER UNCERTAINTY

8.1 Introduction

The purpose of this chapter is to present the reliability assess-
ment of the Clinch River Breeder Reactor Shutdown System under uncer-
tainty. In particular, the probability of loss of coolable core
geometry due to failure to scram on a transient has been evaluated in
the presence of uncertainties about the failure data.

A point estimate of the reliability of the Reactor Shutdown System
(RSS) of the CRBR has been presented in the Preliminary Safety Analysis
Report (PSAR), Appendix C, and in WARD-D-0118. In the present analysis,
it has been assumed that there is uncertainty about the failure data
which can be accounted for by expressing the various transition rates
and probabilities as random variables. Thus, the probability density
function of the failure probability of the RSS has been calculated,
and a confidence interval or probability band for the fai]ure'proba-
bility has been derived.

The techniques developed in Chapters 2 through 7 were employed in
this analysis. The probabilistic behavior of the RSS was modeled as a
Markov Process with all input variables being vandomly distributed.

The effect of common cause failures was included in the model by allow-
ing interdependences between the failure rates of component and
the states of other components in the system. In contrast to other

studies, the assumption that the system unavailability is independent
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of the challenge rate was relaxed. This is possible because the model
allows for system renewal after a successful response to a transient,
and because the model does not allow transients and, therefore, failures
to occur whiie the reactor is shut down. The possibility of human
errors during inspection of the system was also included. The proba-
bility density function of the failure probability has been calculated
with both the Monte Carlo and the Taylor-series methods.

The chapter is organized as follows: Section 8.2 presents the
description of the system; Section 8.3 describes the mission of the
system and gives the reliability duty cycle; Section 8.4 develops the
top-model for the system; Section 8.5 deve?ops-the detailed models for
the subsystems and the system inspection; Section 8.6 gives the data
base and the associated uncertainties; finally, Section 8.7 presents

the results.

8.2 System Description

8.2.1 Introduction

The Reactor Shutdown System {RSS) of the Clinch River Breeder
Reactor (CRBR) is designed to provide safe shutdown of the reactor,
when required in response to normal and off-normal events. The overall
RSS consists of two independent shutdown systems, the primary and the
secondary. Each shutdown system is designed to independently terminate
the effects of the anticipated and un]ike]y.fault evehts, without
exceeding specified éore damage 1imits, and consists of-an electrical
and‘a mechanical subsystem. The primary and secondary electrical

subsystems are designed to sense the need for a shutdown and signal the
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primary and secondary mechanical subsystems, respectively, to insert
the control rods into the reactor core.

This section prévides a brief description of the RSS. A detailed
description of the RSS, its subsystems, and its modes of operation can

be found in the PSAR (1975) of the CRBR and its Amendments.

8.2.2 Primary Electrical Subsystem

The Primary Electrical Subsystem design has the potential to
include up to 24 protective functions arranged in a local coincidence
logic configuration. Of these, 16 are intended to provide protection
during full power operation, and the remaining 8 will be used to
provide protection where required during startup and part load operations.
The primary electrical logic diagram is given in Figure 8.1.

Each protective function consists of three redundant channels,
each of which feeds into three redundant logic trains, as shown in
Figures 8.2 and 8.3. A typical protective function channel is made up
of sensors, signal conditioning, a calculation unit, and a comparator.
The sensor measures a plant dynamic parameter which provides the safety
envelope within which the plant is required to operate and converts
this measurement into an e]e&trica1'signa1. The signal conditioning
and calculation unit scales and provides signal processing to the
measured analog electrical signal prior to transmitting it to the
comparator. The comparator compares this analog signal with a setpoint.
The setpoint may be generated either internally or externally via other
sets of sensors, signal conditioning, and calculation units. When

the analog input signal exceeds the setpoint, the output of the
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comparator changes from a reset to a trip state. If more than one of
the three comparators in a protective function trip, a trip signal is
applied to each of the three logic¢ trains. When more than one of the
three logic trains provide a trip signal to their respective scram
breakers, the proper combination of scram b;eakers opens, causing all
power to the 15 primary control rods to be removed,thus activating
their unlatching mechanisms.

Figure 8.3 also inciudes a representation of the way automatic
monitoring of the protective-function channels is accomplished. Each
of the three analog channels is compared with the others. I a
discrepancy is detected in a channel, it will be automatically
announced to the reactor operator via the Plant Data Handling and
Display System. After evaluation, the operator will manually trip the
comparator of the failed analog channel until it is repaired by
maintenance personnel. Thus, the usugl 2-out-of-3 logic configurations
of the protective-function channels will have one tripbed input
{reconfigured to an effective T-out-of-2 logié configuration) unti]
repair of the failed channel! is completed, at which time the channel

is returned to service.

8.2.3 Secondary Electrical Subsvstem

The Secondary Electrical Subsystem design has the potential to
include up to 16 protective functions arranged in a general coincidence
logic configuration. Of these, 11 provide protection during full
power operations, and the remaining 5 are included as spares based on

hardware design considerations. The secondary electrical logic diagram

is given in Figure 8.4.
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Each protective function consists of three redundant channels,
each channel separately feeding a logic train as shown in Figures 8.5
and 8.6. Thus, there is separation between rédundant protective
function channels throughout the Secondary Electrical Subsystems. A
typical secondary protective function channel is similar to the primary
protective function channel. The coupling beitween the protectjve
function network and the logic trains is, however, different, being
optical in the primary and magnetic in the secondary (see Figures 8.2
and 8;5). Whenever more than one of the three logic trains propagate
a trip signal to the four 2-out-of-3 valve configurations, designed
to vent argon whenever two or more valves have their power removed,
the rods are unlatched and fall to their shutdown position.

The monitoring and the manual tripping of the secondary protective

function channels are performed as for the primary channels.

8.2.4 Primary Mechanical Subsystem

The Primary Mechanical Subsystem, which consists of 15 primary
control rod systems (PCRS), provides start-up, reactivity (power)
control, burn up compensation, and primary shutdown capabilities for
the reactor.

The PCRS consists of three major subassemblies: the Primary
Control Drive Mechanism (PCRDM), and the Primary Control Assembly
(PCA). The control rod drive mechanism is connected to the control rod
{movable pin bundle in the PCA) through the control rod driveline as

shown in Figure 8.7.
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The PCRDM consists of a 6-phase, 4-pole dc motor that positions
the control rod to desired elevations within the core of the reactor.
It utilizes a collapsible rotor roller nut drive which is actuated by
signals from the reactor control system. These signa]s energize the
stator and magnetically actuate the rotor assembly segment arms,
causing the roller nuts to engage the threaded portion of the Tead
screw. Rotation of the electrical field of the stator causes rotation
of the roller nuts with respect to the lead screw. The control rod
can thus be inserted, withdrawn, or held at the desired elevation.
Deenergizing the stator allows the roller nut to disengage the lead
screw, thereby causing the control rod to drop into the core at a
rapid rate of insertion. The operation and screw functions of the

rotor and roller nut mechanisms are illustrated in Figure 8.8.

8.2.5 Secondary Mechanical Subsystem

The secondary'Mechanical Subsystem, which cthists of 4 Secondary
Control Rod Systems {SCRS), provides secondary (redundant) shutdown
capabilities for the reactor. |

The SCRS shown schematically in Figure 8.9 consists of three
major subassemblies: The Secondary Control Drive Mechanism (SCRDM);
the Secondary Control Rod Driveline (SCRD); and the Secondary Control
Assembly (SCA). The SCRS utilizes hydraq1ic forces to assist scram
action. The control rod moves axially within the control assembly
guide tube. During normal reactor cperation, the rod is supported
above the core by the latch that is actuated by a pneumatic cylinder.

Appropriate flow paths and orifices within the assembly allow the
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reactor coolant to flow from the high pressure plenum to the region
above the piston. Sodium below the piston is ducted to the Tow
pressure plenum. Therefore, a pressure drop in the downward (scram)
direction exists across the control rod piston continuously during
normal operation. Upon receipt of a scram signal, the control rod is
released by depressurization of the latch-actuating cylinder and is
forced down by the hydraulic pressure force and gravity into the core

region.

8.3 System Mission and Reljability Duty Cycle

During the plant operation, the reactor is exposed to a number
of normal and off-normal transients. If uncontrollied, some of these
transients could cause a loss of core coolable geometry (LCG). Since
LCG is an accident that could exceed 10CFR100 guidelines, the function
of the Reactor Shutdown System-(RSS) is to prevent such an 9vent from
happening. We can say, therefore, that "the mission of RSS is to
sense and successfully respond to a defined set of transients in such
a way that the loss of core coolable geometry is avoided during the
Tifetime of the plant." In Appendix C of PSAR of the CRBRP, it is
assumed that LCG occurs, in the short term, if sodium reaches saturated
conditions (boiling) in the hot channel (m17000F), or in the long
term, if the in-vessel bulk sodium outlet temperature rises in excess
of 1250°F. For a given transient, RSS success or failure depends,
therefore, upon inserting the minimum amount of reactivity in an
acceptable increment of time so that neither of these two events will

happen.
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Since RSS success is defined with respect to acceptable response
to transients over the Tifetime of the plant, the set of the possible
transients affecting the RSS during that period should be defined.
The set of transients to which the RSS should successfully respond
(called also reliability duty cyclie of the RSS) is defined if the
following questions are answered. |

1} UWhat are the possible transients that may affect the RSS

during plant life?

2) Of the transients in 1, which can actually lead to LCG

due to RSS failure?
3) Of the transients in 2, which can get to LCG conditions in
a short period of time?

4} Of the transients in 3, which would require more reactivity

insertions than is necessary to cover the power defect?

A complete 1ist Of the anticipated, uniikely, and extremely
unlikely transients that the CRBR may experience during its 1ifetime
is given in the PSAR and in WARD-D-0118. For the purposes of this
analysis, however, the transients are classified into three major
categories.

1. Redctivity Transients - Those transients occurring as the

result of a positive reactivity insertion producing an overpower condi-
tion (power flow > 1.0). To successfully shut down the reactor, the
RSS must initially insert negative reactivity sufficiently fast to
prevént hét channel sodium boiling and in sufficient magnitude to
assure an in-vessel bulk sodium outlet temperature below 1250°F. The

total negative reactivity inserted must compensate for the reactivity
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associated with the initiating event plus the power defect (reactivity
changes due to temperature difference between any two operational states
of the reactor) associated with going to a stable long-term reactor
condition.

2. Major Flow Transients - Those transients associated with a

reduction in coolant flow and for which a rapid shutdown is required to
prevent LCG.. RSS success criteria for these transients are based on
the same considerations as reactivity transients except that no compen-
sation is required for reactivity changes associated with the initiating
event.

3. Limited Response Transients - Transients in this category do

not require e]ectrica1 protective subsystem response because of the

time available between initiation of the event and the time when rod
insertions must occur to prevent LCG. In WARD-D-0118, it is shown that
transients in this category do not require negative reactivity insertion
for at Teast ten minutes after initiation. Although all of the transients
in this category are sensed by the electrical protective subsystem and
shutdown by that system is .normally initiated, LCG would not result if
action did not occur immediately. Redundant visible and audible an-
nunciation will alert the operator of the occurrence of these transients
assuring a high probability of manual response should the automatic
system fail. Transients in this category are, therefore, only dependent
on mechanical subsystem response and, for the purposes of this analysis,
it is assumed that the combination of automatic electrical profectivé
subsystem response or manual action by the operator assures actuation

of the mechanical subsystems.
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Negative reactivity insertion requirements of the RSS for all
transients in this category are based on compensating for the power
defect between the initial operating power and an acceptable Tong-
term steady-state core condition with pony motor flow.

At the end of each year the reactor is shut down for an extensive
period of time (v4 weeks) for refueling. During this period of time,
a complete overhaul of the Shutdown System takes place and at the
beginning of the next year the RSS is renewed. Sincé we knoW>thap the
system is in the as-new condition at the beginning of each yeér,_we
need only calculate the probabi]ity that the RSS will fail duringvah
typica1 year of reactqf operation. -

We want, therefore, to calculate the probability that the RSS will
fail to perform itS'mﬁESTOn (successfu11y'resp0hd'to'thé above cited

transients) any time during one year.

8.4 System Model and Assumptions

This section presents the model used for the quantitative
evaluation of the probability that the Reactor Shutdown System (RSS)
will fail to respond to a set of'transients'during a typical reactor
year, and the assumptions made in the modeling.

The description of the system was given in Section 8.2. A
simplified logic block diagram illustrating the logical interconnection
of the various subsystems is shown in Figure 8.10. The Primary
Shutdown System (PSS} can be divided into three subsystems; the Primary
Protective Function {PPF), the Primary Output Logic and the Primary

Mechanical Subsystems (PMS). The Secondary Shutdown System (SSS) can
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be divided into two subsystems: The Secondary Protective Function

(SPF} containing part of the secondary Tlogic and the Secondary Mechanical
Subsystem, containing the rest of the secondary output logic. If a
transient occurs, either protective function ¢an sense it and signal

the corresponding mechanical subsystem to insert the necessary negative
reactivity to control the transient. Successful operation of either

the PSS or the SSS guarantees successful operation of the RSS.

The three types of transients under consideration are: 1} re-
activity transients; 2) major flow transients; 3) Timited response
transients. The necessary negative reactivity requirements, given in
WARD-D-0118, are $5 for reactivity transients, $2.5 for major flow
transients, and $2.5 for Timited response transients. The set of all
possible states of the system can, therefore, be divided into the
following six subsets:

1) Subset AR = containing all the system-states in which the
reactor is online {a transient can occur} and the RSS is able
to respond to any type of transient.

2) Subset AMF - containing all the system states in which the
reactor is online and the RSS is able to respond only to
major flow and limited response transients.

3) Subset ALR - containing all the system states in which the
reactor fs online, and the RSS is able to respond only to
L.R. transients.

4) Subset AF - containing all the systeﬁi states in which the
reactor is oniineand the RSS is not able to respond to any

transient.
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5)

6)

Subset S - containing all the system states  in which the
reactor is.shutdown. No transients may occur if the system is
in a state of S.

Subset F - containing all the failed states.

The six subsets of states along with the possible transients are

shown-in Figure 8.11. The systenm has failed if it enters subset F.

The transitions of the system from state to state are random.. The

probabilistic behavior of the system was simulated by a Markov Process.

In the derivation of the Markov model, the following assumptions were -

made:.

1)

la)

1b)

1c)

1d)

A1l failures are random and the times-to-failure are
exponentially distributed. The failure rates may depend on
the state of other components in the following way. -

The faiiure rates of a component of the Primary Protective

- Function or of the Secondary Protective Function depend on the

states of the other components in these two subsystenms.
The failure rates of a component of the Primary Output

Logic depend. on the states of the other components in this

- subsysten.

The failure rates of a component of the SOL depend on the

‘state of other components in this subsystem.

The failure rates of a component of the Primary Mechanical
Subsystem or of the Secondary Mechanical Subsystems depend

on the states of the other components in these two subsystems.

These assumptions enable us to consider common cause failures
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in the electrical subsystems, the'output Togics and the mechanical

subsystems.

2}

3)

4)

5)

6)

8)

9)

10)

Transients occur randomly and they arrive according to a
Poisson random process.

If a transient occurs, the system can either respond
successfully or fail.

Electrical response is reguired for reactivity and major

flow transients only. For limited response transients it

is assumed that thé plant operator will initiate a manual
scram with probability one.

If the RSS responds successfully to a transient, the system

is renewed jnstant]y.

Subset F of states is absorbing, i.e., the system cannot
recover from a failed state.

While the reactor is shut down no transients occur and,
therefore, no failures.

For a given transient, the Protective Function that monitors
the dynamic plant parameters, affected by the transient,
constitutes the Protective Function Network for each electrical
subsystem.

Worst case configurations have been assumed for both electrical
and mechanical subsystems. This assumption will be further
explained at the end of this section and in Section 8.5.
Inspection of the electrical subsystems at predetermined
intervals is possible. The inspection is not perfect. Errors

may occur in the sense that a failure might not be detected
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or a failure may be caused by the inspection itself.

11} The time horizon of the problem is 48 weeks. For the
remaining 4 weeks; the reactor is assumed to be shut down
for refueling and maintenance.

For model simplification the system has been divided into three
subsystems (see Figure 8.10): 1) the Electrical Subsystem, which
contains -the Primary and Secondary Protective Functions Network as
well as part of the secondary logic: 2) the Primary Output Logic; and
3) the Mechanical Subsystem which contains the Primary and Secondary
Mechanical Subsystems. Three separate Markov models, one for each
subsystem, were constructed. The models for the Mechanical Subsystem
and the Primary Output Logic are first solved and the results are used
in solving the model of the ‘Electrica’lSubsystem which represents the
whole RSS. The logic of the overall model is presented in Figure 8.12.
Further details are given in Section 8.5

In the remainder of this Section the conservatism in the "worst
case" assumption is demonstrated. Let S{t) denote the probability
that the reactor is safe at time t or, equivalently, that no RSS failures

have occurred in the interval [0,t]. Symbolically,
S{t)=Pr{System safe at time T}=Pr{No RSS failures in [0,t1}. (8.1)
Then we have

s{t+dt)=Pr{No failures in [0,t]} AND no failures in dt} ,
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or
S(t+dt)=Pr{No failures in [0,t]} Pr{No failures in dt|No failures in [0,t]},
or by virtue of (8.1}
S(t+dt)=S(t)[i—Pr{failure1n at,|-Nolfai1ﬁres in [O,t]}] .
The last equatiﬁn can be written as

S(t+gfiis(tl=—Pr{failure in dt | No failures in [0,t]} . . (8.2)

Since a system failure means that a chal]enﬁe océurs and the RSS is

unavailable, (8.2) can be written as

S(t+dt) S(;l, {challenge in dt AND RSS unava11ab1e| (8.3)
S(t A e

-Pr No failures 1n [0 t]}

A challenge can be any of the various transients. that might occur
during the plant lifetime. If we assume that only one transient may

happen .at any given instant of time, (8.3) can be written as

S(t+dt) S(tl_ Py {trans1ent i occurs in dt AND RSS unava11ab}e]
- Sty . No. failures in [0,t]} :

or

S(trdt)-S(t) __ 2 : Pr{transient i occurs in dthd failures in[0,t1}x
S(t) d Pr{RSS unavailable|Transient i AND No failures in[0,ti}.

i A

, (8.4)
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By virtue of Assumption 2, (8.4} can be written as

%S":"ZH U.(t) dt (8.5)

i
where Aidt is the probability that transient i will occur between t
and t+dt if no system failures have occurred, Ui(t) is the probability
that the RSS will be unavailable to respond to a transient of type
E given a chalienge and that no failures have occurred in [0,t], and
the summation extends over all the transients. Solving (8.5) for the

success probability S(t) yields

. t
5(t) = exp[—Z e f U] (8.6)
H

i

Then the failure probability F(t) is

t
() = 15(8) = 1 - exp[- Dy f uy(mae] (8.7)
0

T
For the purposes of reliability analysis. the composition of the

RSS is a function of both the transient that challenges it and of the

time t at which the chalienge occurs. The Primary Protective Function

and the Secondary Protective Function are those ocut of the 16 and 11

available, respectively, that can sense the transient., while the negative

reactivity available in the Primary Mechanical Shutdown depends

on the position of the control rods at the time of the challenge.

For this system configuration, the unavailability Ui(t} can be calculated
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as a function t and for every i. The failure probability can then
be calculated from (8.7). In the present analysis, however, we have
assumed that for any transient the RSS consists of those PF's that
contain the components with the highest failure rates and that the
control rods are at any time at their worst configuration. Thus

the unavailability U*(t) of the RSS 1is such that
u*(t) 3_Ui(t) for all 1 and t . (8.8)

Thus by virtue of (8.7) and (8.8} it follows that
t

Fr(t) =1 - exp[,-xfu*(r)dq_-} > F(t) (8.9)
0

where

In other words, the assumption that the RSS consists always of those
protective functions that have the highest failure rates, and that the
mechanical subsystems are in their worst configurations is conservative.
If the rate at which challenges occur is very low, then the unavail-
ability of the system at time t can be assumed to be independent of

the occurrence of any challenges in the interval [0,t], and it can be
calculated by simpler techniques such as combinatorial analysis or
fault tree analysis. If, however, the occurrence of challenges affects

the availability significantly, a more precise method should be
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employed.. Such a method is the Markov model used in this analysis.

The unavailability of the system U*(t) is given by the probability that
1t will be in any state of the subsets AMF, ALR, AF (see Figure 8.11),
while the failure probability is directly calculated as the probability
that the system will be in the subset F. The model employed here
allows for the renewal effect of successful challenges (via the tran-
sitions from the sets AMF and ALR back to AR) and for the fact that

a failure cannot occur if the reactor dis shut down for a long time

for sensor repairs.

8.5 Detailed Subsystem Models

8.5.1 Mechanical Subsystem

The mechanical subsystem of the RSS consists of the control rods
that are inserted in the reactor core to add the necessary negative
reactivity for controi]ing a transient. As already stated the mechan-
ical subsystem consists of two.groups of rods, one forming the
Primary Mechanical Subsystem., the other fofﬁing the Secondary Mechan-
ical Subsystem (see Section 8.2). The Primary Mechanical Subsystem
contains- 15 contrel rods which are grouped into 4 basic classes - one
center rod, two row-4 startup rods and six row-7 flat rods (see Figure
8.13 and PSAR Chapter 4). The Secondary Mechanical Subsystem contains
four row-4 safety. rods which are fully withdrawn whenever the reactor
is operating. The reactivity worth of each rod. is a function of its -
location in the core and its-operational. configuration (i.e., amount:
withdrawn and reactivity interactions with other control rods). The .

Mechanical Subsystem was. modeled for the reactor at the beginning of
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an equilibrium cycle. The two row-4 startup rods were fully withdrawn
along with the six row-7 corner rods. This is the worst configuration
for the primary mechanical subsystem because it corresponds to the
smaliest potential negative reactivity insertion. A1l other configur-
ations will have more rods withdrawn to comperisate for core burnup.

The secondary control rods are always fu]iy withdrawn. The changes in
the secondary rod worths with time are associated with the overall
primary rod configuration and with long-term burnup effects in the core
and contrel rod materials.

In this model we use for the mechanical subsystem's success the
same criteria that were derived in WARD-D-0118, namely, that the two
row-4 startup rods in the primary have a worth of $2 each, the six
row-/ corner rods in the primary have a worth of $1 each, and the four
row-4 safety rods inthe secondary have a worth of $2.50 each. As it
is already stated reactivity accidents require the insertion of $5 of
negative reactivity and all other transients the insertion of $2.5.
For a given transient, therefore, either mechanical subsystem is
successful if it has enough rods operating so that their total worth
is at least equal to the reactivity requirements of the transient. A
Markov model was constructed for the mechanical subsystem based on the
following assumptions:

(1) Each control rod constitutes a component that can be in two

states: (a) operating state in which it can insert its
reactivity worth into the core in time,and (b} failed state

in which it cannot.
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(2) The times-to-failure of the components are exponentially
distributed. The failure rate of each component depends
on the number of the components that have already failed.
Thus, for the operating components the failure rate A* is

given by

for i=0,1,...,11 and k0=1. Numerical values for the ki‘s
are given in Section 8.6.
The system consists of 12 two-state components and, therefore,

it has 4,096 states [see (2.1)1. Since there are symmetries in the
system, however, the corresponding Markov process is mergeable (see
Chapter 3). Indeed, the system consists of two subsystems each with
symmetries at the component level. Subsystem I (Primary) consists of
8 components that can be divided into two classes: Class 1 - contain-
ing the two row-4 start-up rods worth $2; and Class 2 - containing the
six row-7 corner rods worth $1. Subsystem IT (Secondary) consists of
4 componerts, the row-4 safety vods worth $2.5, that form a class (see
Definition 3.3.2). Using the code SSTAGEN-I*, the 4,096 states were
merged into 105 superstates. Furthermore, the superstates were grouped
according to the reactivity worth of each subsystem into nine groups
~given in Table 8.1.

The mechanical subsystem can be challenged by Limited Response

*See Appendix B
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Transients (LRT). G&iven a challenge, whether the system will respond
successfully or not depends solely upon its state. Thus, since a LRT
requires $2.5 of negative reactivity, the systém will fail only if it
is in a superstate of group nine (see Table 8.1). 1In all other in-
stances, it will successfully shut down the reactor and, upon start

up, 1t will be in superstate one (all components operating). To model
this behavior an additional superstate, the fajied superstate; was
added. Then, from each superstate of groups one o eight, the system
can transit to?sup9r§tate-0ne with probability equal to the probability
of a LRT arrival, while from éach superstate of group nine it transits
with the same probability to the failed superstate. The probability
that the mechanical subsystems will be in a superstate of group nine

is equal to the probability that the RSS will be in-a state of subset
AF (see Figure 8.11). This is true because in that case the RSS cannot
respond- to any transient regardless of the state of the electrical
subsystem.

The superstate transition probability matrix was generated by the
code MMARELA* and {2.3) was solved for a time period of 48 weeks. As
érrésult; the probabilities that the mechanical subsystem will be in
any of the nine groups of superstates as well as the probability that
12 will be in the failed state were calculated ‘as functions of time.
The former probabilities were used as an input in the model for the
Primary Output Logic, while the latter is the RSS failure probability

due to unsuccessful response to LRT transients.

*See Appendix B
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TABLE 8.1 Superstate Groups for Mechanical Subsystem.

Reactivity Worth

Groups Réactiﬁfty Worth
of of ~of ,
Superstates Primary Secondary
1 W $5 W > 85
2 W > $5 $2.5 < W < §5
3 W>3$5 W< $2.5
4 §2.5 < W < $5 W > $5
5 $2.5_<_ W < §5 $2.5 < W < $5
6 §2.5 < W < $5 W<$2.5
7 W< $§2.5 W $5
8 W< §2.5° §2.5 < W < $5
9 W< $2.5 W< $2.5
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8.5.2 Primary Output Logic

The Primary Output Logic (POL) subsystem consists of the Logic
Trains and the Primary Scram Breakers (see Figures 8.1 to 8.3). If
at least two out of the three channels of the Primary Protective
Function send a trip signal to the output logic, the three logic trains
are energized and if two out of the three together with the right
combination of scram breakers function properly, the power in the
stators of the Primary Control Drive Mechanisms j§ interrupted causihg
the control rods to drop into the core. Thé-logic block diagram for
this subsystem is shown in Figure 8.14.

A Markov model was constructed for the POL based on the following
assumptions:

(1) Each logic train can be in two states: operating and faiied.
The time-to-failure is exponentially distributed. The failure rates of
the operating logic trains depend on the number of the failed logic

trains. Thus, the failure rate, A*, is given by
7\- = k_i A., .i = 03192 [}

where i denotes the number of failed logic trains and k0 = 1. Further
details and numerical values are given in Section 8.6.

(2} Each scram breaker can be in two states: operating and
failed. The time-to-failure is exponentially distributed. The failure
rates of the operating breakers depend on the number of the failed

breakers s¢ that
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Figure 8.14. Logic block diagram for primary
output logic.
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Ay = k_E A,  1=0,1,2,3.4

where i denotes the number of failed scram breakers and k.=1.

0

(3) The system is inspected every four weeks. The inspection
is not perfect. Failures may not be discovered or failures may happen
during the inspection because of human ‘error. Further details about
the inspection and its incorporation_in the model are given in sub-
section 8.5.3. |

Since the system consists of 8 two-state components, it has 256
states. Because of system symmétries, however, thé corresponding Markov
process is mergeable {see Chapter 3). .Indeed,nas seén in Figure 8.14,
the system consists of three subsystems, two of which (subsystems 2 and
3} are symmetrical (see Definition 3.3.7). Thé=brdcess was merged by
the code SSTAGEN-I into 20 superstates. The sét ofhthese superstates
was divided into two groups X and Y of operating and failed superstates,
respectively. Then, the supertransition probability matrix P{n) was
generated by MMARELA. The structure of P{n) is as shown in (2.14)
with the following addition: the first column of P(n) consists of
non-zero ejements. Since the arrival of a Limited Response Transient
and the successful response of the Mechanical Subsystem amounts to a
system renewal, the elements of the first column of P(n) were set
equal to the product of the LRT arrival rate and the probability that
the MS will not be in a state of group nine (see Table 8.1).

The availability and the unavailability of the POL were calculated

as functions of time. Next, the state-probabilities for the mechanical
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subsystem were revised to reflect the availability of the Primary
Qutput Logic. Since the Primary Mechanical Subsystem is connected
in series with the POL-(see Figure 8.10}, the revised superstate
probabi?ities-fqr-the mechanical subsystem are given by

H
Mi(n) = Mi(n) x A(n), i=1,2,....6,

Mipg(n) = My p(n) + [(M(n} + My a(n)] x [1-A(n)], § = 1,2,3,
where:

'Mi(h) is tﬁe probabi]ity that the mechanical subsystem will be

in a state group iat t1me n; 4 _=

Mi(“) is the rev1sed M (n) to 1nc]ude POL fa11ures,

and

A{n) is the availability of POL at time n.

The probab111t1es M (n) were used as an 1nput to the mode1 of

the e]ectr1ca1 subsystem descr1bed 1n the next Subsectaon

8.5.3 Electrical Subsystem

The electrical subsystem consists .of ‘the Primary Protective
Function Network (PPFN)- andthe.Secondary Protective Function Network

(SPFN) which.also contains part of the Secondary Output Logic (see also

- 171 -



Section 8.2}. The function of the electrical subsystem is to monitor
plant conditions and provide the signal processing logic to determine
if scram signal is appropriate for these conditions. ~In the primary
electrical subsystem there are five protective functions that provide
the main defense against LCG. These are

(1) High Flux

(2) Flux - /Pressure

(3) HTS Pump Electrics

(4) Speed Mismatch

{5) Steam - Feedwater Mismatch

As discussed in the PSAR and WARD-D-0118 at Teast one of these
functions will trip the plant, given the occurrence of a transient. In
the secondary electrical subsystem there are three functiohs, at least
one of which will trip the plant given the occurrence of a transient.
These are

(1) Flux - Total Flow

{2) Flow Mismatch

(3} Steam Drum Level

As stated in Section 8.4, a conservative assumption made here is
that the electrical subsystems consist always (for any transient) of
the "worst case" protective function, i.e., of the function that has
the components with the highest failure rates. These functions are:
for the primary the Flux - YPressure and for.the secondary the Flux -
Total Flow. Functional Block Diagrams of the Flux - vPressure and the

Flux - Total Flow functions are given in Figures 8.15 and 8.16,
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respectively. The PPFN and SPFN are similar in layout. Both consist
of three redundant channels operating in a two-out-of-three logic
arrangement. A typical channel of the Flux - /Pressure Protective
Function consists of the following components (see also Figures 8.2,
8.3 and 8.15):

(1) Primary Flux Sensor

(2) Primary Flux Electronics )

(3} Primary Pressure Sensors (two)

(4) Primary Pressure Electronics (two)

(5) Primary Calculation Unit

(6) Primary Comparator

| A typical channel of the Flux - Tota} Flow protective function

consists of the following componénts (see also Figureé 8.5, 8.6 and
8.16):

(1) Secondary Flux Sensor

(2) Secondary Flux Electronics

(3) Secondary Flow Sensors (threé)

(4) Secondary Flow E1ectronics'(three)

(5) Secondary Calculation Unit.

{6) Secondary Comparator

{7) Secondary Logfc Train.

The following assumptions were made about fhe ébmponents of the
etectrical subsystem:

(1) The components are either operating or failed.

(2) A component failure can be either detectable (by the plant

operator) or undetectable.
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(3)

(4)

(5)

(6)

The time-to-detect a detectable failure is exponentially
distributed. Its mean value is of the order of one 8-hour
shift of operation.

Once a detectable failure is detected, the channel in which
it occurred is pﬁt into a trip state by the operator. A trip
signal from one out of the two remaining channels will scram
the reactor.

Repair of the detected failures of the sensors cannot be
started until the reactor is shut down.

Repair of the detected failures of the signal conditioning
(electronics) and calculation units starts upon detection

and is instantaneopus.

Since all the components in a channel are logically connected in

series, the states of the channel tah be merged into the following

five states (see Figure 8.17):

(a)

(b)

(c)

(d)

(e)

State OP - the operating state.

State S - containing components with detectab]e failures
but for which repair cannot start before a reactor is
shut down.

State TR - trip state in which the S-failures have been
detected.

State M - containing components with detectable failures
for which repairs can start immediately.

State U - containing components with undetectable failures.
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Figure 8.17. State flow chart for typical protective
function metwork.

Figure 8.18. GSimplified state flow chart for
typiedl primary protective function network.

Figure 8.19. Simplified state flow chart for
typical secondary protective function network.
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The channel can transit from state OP to states S, M, and U with

transition rates A, AM’ and AU,'respectively (see Figure 8.17). For

the Flux - /Pressure function, these rates are given by

As = Pp (s + Zpg)

+ 2x

b
i

w = PplPee pe + A¢)

(Apg + Phpg + Agp * Dhpp

+ A

b
[
n
et
Ly
o
+
——
—
T
=
L)
S
>

where

C)'

(8.12)

Pp is the probability that a detectable failure will be detected,

X

APS is the failure rate of the (Primary) pressure-sensor,

XFE is the failure rate of the (Primary) flux-electronics,

A

A

A

Fs is the failure rate of the (Primary) flux-sensor,

C is the failure rate of the (Primary) calculation unit,

o is the failure rate of the (Primary) comparator unit.

PE js the failure rate of the (Primary) pressure-electronics,

For the flux - Total Flow function of the secondary subsystem, the

transition rates are given by
Ag = Pp X (xFS + 3 AFLS)

Ay = Pp X (AFE + BAFLE + AC)
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Ay = Agg * (lmpp) X (Apg + g g g + g+ A+ Ay, (8.15)

where

g is the failure rate of the secondary flux-sensor,

Mg is the failure rate of the secondary f]cw-sensor,

Arp is the failure rate of the secondary flux-electronics,
MeLE is the failure rate of the secondary flow-electronics,
A¢ is the failure rate of the secondary calculation units,

Ao is the faifure rate of thE'setondary comparator unit,

Ayp is the failure rate of the secondary logic train.

From state S the channel can trans1t to state TR with transition
rate Brs where 1/8T is the mean time to detect a sensor failure and
trip the channel. If two channe]s are in state TR, the reactor -is
shut down and repair of the fa11ed sensor starts From state M. the
channe] can transit to state OP with transition rate Br where now
1/8T is the mean t1me to detect and repa1r the fa11ure éince the
mean time to detect and repa1r a M-failure is much shorter than the
mean t1me-to-fa11ure of the components (8 versus 50,000 hr), 1t-can
be assumed that the detection and repair of M-failure is instantaneous.
Indeed, calculation of the primary PFN unavailability with and without
M-failures (AM =0 iS'equiva]ent to ST = ) shows that the two models
yield almost identical resuits. For example, the unavailability of PPFN

-5 -5

at t = 720 hr was found to be 2.9 x 10 ~ and 2.4 x 10" with and

without M-failures, respectively {see also Figure 8.20).
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The Markov model was, therefore, constructed under the following

assumptions:

(1)

(2)

(3)

The system consists of the primary and secondary protective

function networks, each comprised of three redundant channels

connected in a two-out-of-three logic configuration

Each primary channel can be in three states: (See Figure

8.18)

(a) Operating state OP

(b) Tripped state S

(c) Failed state U

Each secondary channel can be in four states: (See Figure

8.19)

(a) Operating state OP

(b) Tripped state S

(c) Failed state U1 - containing failures of the protective
function part of the channel

(d) Failed state U2 - containing failures of the logic train.

The additional failed state {U2) for the secondary channel was

considered for modeling the common cause failures of the secondary

output logic, independently of primary protective function failures.

(4)

IT two channels of the same subsystem (primary and secondary)
are in a trip state the reactor is shut down. While in the
shutdown state, the whole system is repaired. The time to
repair the.e?ectrical subsystem is assumed exponentially

distributed, with mean value 1/£R.
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(5) The failure rates Ags Ays for the primary channels are given
in{8.10) to (8.12) and the failure rates Ags Aype and A2 for
the secondary channels in {8.13) to (8.15). |

(6) The following interdependences are considered:

*
{a) A = kesdg  for 1 =0,1,2, |
where i denotes the tripped channels in both subsystems, and
kso
* _ .
(b) A = kysty for 1= 0,1,2,3,4,5,

=1

where i denotes the number of failed channels in both subsystems
and kUO'z 1.
() g = kgdyp for i=0.1,2.
where i denotes the number of failed secondary logic trains
and ko = 1.
The system consists of 3 three-state, and 3 four-state components.
It has, therefore, 1728 states [see (2.1)]. The three primary channels
and the three secondary channels constitute, respectively, two classes
of symmetrical components {see Definitions 3.3.1 and 3.3.2}. The
corresponding Markov process was merged by the code SSTAGEN-I into
200 superstates. From the superstates, 80 contain states with two
tripped channels and, therefore, form the state-subspace S defined
in Section 8.4 (see also Figure 8.11). The other 120 superstateé
{called online superstates) combined with the nine groups of super-
states of the mechanical subsystem (see Section 8.5.1 and Table 8.1)

define subspaces AR, AMF, and ALR (see Section 8.4 and Figure 8.11).

This is done by labeling the 120 ‘online' superstates by (a) PF1, if
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both primary and secondary protective function networks are available;
(b} PF2, if. only the primary PFN is available; (c) PF3 if only the
secondary PFN is‘availab1e; (d) PF4 if both PFN's are unavailable.
Thus, if the electrical subsystgm is in a PF3 superstate, and the
mechanical subsystem in a group-2 superstate, the Reactor Shutdown
System is in a state of subspace AMF. ..Indeed, since only the secondary
electrical subsystem is available (PF3) and since the mechanical sub-
system has availabie only $2.5 of negative reactivity {see Table 8.1),
the RSS can successfully respond to Major Flow and Limited Response
transients, while a Reactivity transient will cause a system failure
(see Figure 8.11). The four types of electrical subsystem superstates
together with the nine groups of mechanical subsystem.superstates

form 36 types of RSS-states. The subspaces to which these combinations
belong are given in Table 8.2. An additional superstate (201) was
added to. represent the subspace F of failed system states.

The transition probability matrix of the process was generated by
the code MMARELA. This matrix has the form shown in (2.14) where the
12¢ ‘online’ superstates and the 80 :tripped' superstates constitute
the sets X and Y, respectively. A successful response to a challenge
corresponds to a system renewal. The first column of P(n,X,X) [see
2.12) and (2.14)] has, therefore, ﬁonzero elements. An unsuccesstul
response to a challenge corresponds to a system failure. The last
column of P(n,X,Y) has, therefore, nonzero elements. The elements of
these two columns are determined as follows: Letrk-RB Xygr s ALRT.denote

the rates of occurrence of reactivity, major flow, and 1imited response
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TABLE 8.2 RSS-State subspaces to which combination of mechanical and
electrical subsystem superstates belong.

Electrical ETectrical Electrical Electrical

Mechanical superstate. superstate superstate superstate
superstate - Worth PF1 PF2 PF3 PF4
| Both ‘ *Onﬁy , Only " Both
‘ _ Subsystems  Primary Secondary  Subsystems
Group Primary Secondary up Up ' Up - Diown
($) (%) |
1 5 5 AR AR - AR - ALR
2 5 2.5 AR . - AR . AMF | ALR
3 5 0 AR AR ALR __ii_\L-R
4 2.5 5 AR AMF AR ALR
5 2.5 2.5 o OAMF | AMF AMF ALR
6 2.5 0 | . AMF AMF ALR ALR
7 0 5 AR AR AR ALR
0 2.5 AMF ALR AMF ALR
9 0 0 AF AF AF AF
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transients, respectively. Then, if the electrical subsystem is in a
PF1 superstate at time n, the probability, PlF(n), that it will fail

‘at the end of the n-th time interval is given by
Pif = [M5(n) + Me(n) + Mg(n) + Mg(n)] Ag At + Mg(n) agat,  (8.16)

that is, it is equal to the probability that a reactivity transient wiil
occur and the mechaniﬁa] subsystem will not be able to insert $5 worth

of negative reactivity or that a major flow transient will occur and the
mechanical subsystem will not be able to insert at Teast $2.5 worth of neg-
ative reactivity (see Section 8.5.2 and Table 8.2). Since for every chal-
lenge the system will either fail or respond successfully, for a PFl super-
state the success transition probability, pls(n), is given by

(8.17)
Pig = D + e + Appdat - pgp |

Similarly, for superstates PF2, PF3, and PF4 we have that
P () =[ M ()15 n) 0 (m) 07 (n) 4 ) s ) | gt [ (m) g sy ()] et
paF(n)=[Mz(n)+M3(n)+M5(n)+M6(n)+M8(n)+M9(ni]ARAt+[h3(n)+M6(n)+M9(ni]AMFAt,

pap(n) = (hgirge)at,

and
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pis(n) = (AR+AMF+hLRT)At—piF for i = 2,3,4

Thus, the first element of the j-th row of P(n,X,X) is equal to
pis(n), depending on the fype of the j-th superstate, while the Tast
element of the same row of P(n,X,Y) is equal to piF(n). Finally, since
the only transitions out of superstates of subspace S are those
corresponding to complete repairs, the elements of the first column of
P(n,Y,X) {see (2.14)] are set egqual to Bpht, where Bp is the repair
rate. A1l the other elements of P{n,Y,X) are equal to zero.

It is noteworthy that a limited response transient Cannot‘cause
a system failure in this model since such failures were incorporated
in the model for the mechanical subsystem.

The electrical subsystem can be inspected, tested, and maintained
at predetermined intervals of time. The-detaj1ed=modeling of the
system inspection is presented in the mext subsection. ]

The code MMARELA performs the multiplication 62.3) for the
necessary number of time steps, and the calculated probability that
the system will be in state F at time n. This probability added to the
corresponding probabiTity calculated by the mechanical subsystem model

provides the failure probability for the Reactor Shutdown System.

8.5.4 System Inspection

The availability of standby safety-related systems of nuclear
reactors can be increased through tests and preventive maintenance.

The testing of a system helps to uncover existing faiTures while
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maintenance helps to prevent future ones. The inspection of a:system
might have, nevertheless, some negative effecfs'on its availability.
These effects are:
"~ (1} The system is not available to perform. its safety functions
during the duration of the test and maintenance.(a)

(2) Failures in compenents might bé caused by the jnspection

itself, because of human errors.(a)

(3) Frequent external interruptions might increase the failure

rates of the components of a system.(b)

Taking into account the positive and negative effects, the optimum
inspection frequency is the one that maximizes the availability of the
system.

.. The electrical subsystem of the Reactor. Shutdown System of the
CRBR is designed so that the components {with the exception of sensors)
of the Protective Function Networks and of the Output Logic can be tested
online. Inspection was, therefore, included in the models for the
primary output logic and the Protective Function. networks. - The follow-
ing assumptions: were made:

(1) The inspection is instantaneous. This is a conservative

assumption. A channel under inspection is put into a
tripped state until the inspection is completed. This

results into a one-out-of-two reconfiguration of the two-out-

(a) See Reactor Safety Study, Appendix III.

(b) Bourne, private communication.
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of-three logic. Thus, even thaugh a reactor shutdown might
result from the tripping or a spyrious#sjgna]ing of cne of the
two remaining channels, an unsafe failure of the system
because of the "unavailability" of the channel under in-
spection cannot happen.

(2} The testing of components be]ongihg to the same subsystem is
simuitaneous. Testing of different subsystems is, however,
staggered, i.e., done at different points in time.

(3) An inspection of a Protective Function Network with one
channel -in a tripped state means a reactor shutdown. Thus
two policies were considered:

Policy I. If at the time of inspection of a PFN one of its
channels is in a tripped state, the reactor is shut down.
Policy II. If at the time of inspection of a PFN one of its
chaanels is in a tripped state, the inspection is not
performed unless the other PFN has also a tripped channel.. .
Policy I results, in genéral, in a lower failure probability for
the RSS ‘but in a higher reactor unavailability than Policy II. 1In
choosing between policies I and I, a value trade-off should be-
established between failure probability and reactor unavailability.

{4} The inspection is not perfect. An inspection error is defined
to be a failure that has not been detected or as a failure
that has been caused by the inspection.

(5) The failure rates of the components are not affected by the
inspection. This assumpiion was made 5ecause of lack of

pertinent data.
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In Markovian reliability analysis, the modeling of system inspec-

tion is done via the inspection probability matrix Q(n}. This matrix

is defined as follows:

I if n# kn,

Q) - g
g if n = kn, (8.18)

where k = 1,2,...,n0 is the inspection period, and the element qij of
Q is equal to the probability that the system will transit from stéte
i to state j because of the inspection. The state probability vector

a{n) is then given by

a(n) = m{n-1)-P(n)-Q(n) . (8.19)

The use of the inspection probability matrix Q is demonstrated in
the following simple example. We consider a system consisting of 2
two-state components connected in parallel. Then the four states of
the system are (1,1), (1,0), (0,1)., (O,D). If now.q, and 9 denote
the probability of zero and one inspection errors, respectively, the

inspection probability matrix g? for the First component is

- .
q, 0 g9, O
0 q. 0 q
1 0 1
e ,
99 %4
0 qo 0 q,-
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while the inspection probability matrix, g?,for inspection of the

second component is

Two inspection probability matrices were considered so that the
two components can be inspected with different frequencies or with the
same frequency at different points in time. The state probability

vector for this process is given by
, . - 1 2
a(n} = x{n-1}-P(n}-q"(n)«Q"(n)

The necessary subroutines have been added into the SSTAGEN-I code,
and two inspection probability matrices QP and g? for the primary and
the secondary PFN, respectively, were generated. Then, the state

probability vector for the electrical subsystem is given by
x(n) = x(n-1)-P(n)-Q"(n)-Q(n) . (8.19)

where

*
. {Iforng kny +ny,
Qp(n) “lop P P*
§Q for n = knP o, (8.20)
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and

*
I forn#kne +n.
S = S
Cn) =7 H (8.21)
g forn-= kns g,
where k = 051,2,3,.,.,np, Ng denote the inspection periods and nP, nS

the times at which the first inspection takes place. Similar inspection
matrices were generated for the two classes of subsystems of the
Pr1mary Output Log1c

The necessary 1nput for the generat10n of the Q_matr1ces COHS?StS
of the 1nspect1on pollcy (see Assumpt1on (3) above) and of the
cond1t1ona] probab111t1es of making one error, two g1ven that one has

been made, etc.

8.6 Data Base

This section presents the failure data used in conjunction with
the models in Sections 8.4 and 8.5 ‘to provide the quantitative evalua-
tion of the RSS faiTure”probabi?ity given in Section 8.7. Uncertainties
about the values of -the failure rates and other probabilities are ex- .
pressed as fallows:. The failure rates and the transient arrival rates
are random varjables with range the positive real axis [0.,~), and dis-
tributed according to Gamma'pdf‘s (see Section 4.4.1).  The dependence
coefficients are random variables with range the interval [1,») and
distributed according to Gamma pdf's (see Sections 4.4.1 and 4.5).

In WARD-D-0118, two sets of data are given. One of them called

“Objective Set" consists of "failure rates andifailure probabilities
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which are evaluated using expected test conditions and analyses to
produce an cbjective reliability which will be demonstréted.by a com-
bination of tests and ana]ysés” (see also references WR-50670 and
WR-50602). Here, it is assumed that these "objective" values are the
most probable values of the corresponding random variables. This-
assumption determines one of the two parameters.of the pdf's. The
second parameter has been defined such that the Upper 90% confiderice
Timit is one order of magnitude higher than the lower 90% confidence
Timit, the latter being of the same order of ﬁagnitude as the most
probable value. The numerical values of the parameters of the pdf'é’
as well as the 90% confidence limits are given for the failure rates
in Table 8.3.
| The parameters of the pdf's and the confidence Timits for the
dependence coefficients arergfvéﬁ in Table 8.4; Thesé‘paﬁametérS'are
subdéeffﬁé@y assessed. The effect of the dependence coefficients on
ihe‘bd%.of some transition rates 1$*sh§wh in Figure 8.21.

The most probable value of thé.rﬁaéior.repair rate is assumed to

be 10 3hr™1.

This corresponds to a condﬁtioﬁa]‘mean‘time-to—repair of
1000 hr. The times-to-repair are assumedito;be'b?;fhat order of mag-
nitude, because the repair involves in~ve$se1'components {sensors).

In WARD=D-0118, the "quecfive" values of the transient arrival
rates are assumed to be s@th that the number ofxéxpected transients
per year (arriving accofding to -a Poisson random process) is less than
that of the design duty cycle with probability 0.95. These "objective"

values are assumed to be the most probable values of the corresponding
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random variables. The parameters ef the pdf's and the 90% confidence
1imits of the reactor repair rate and the transient arrival rates are
given in Table 8.5.

Finally, the parameters and the confidence Timits for the probabil-
ity of failure detection and the probabilities of inspection errors are
given in Table 8.6. In "WARD-D-0118" the inspection of the electrical
subsystems has been assumed perfect. In this study, we assumed that
human errors during an inspection are possible. In fhe Reactor Safety
Study (Appendix III, Human,Re]iabiiity), it was assumed that the

probability of a first error in inspecting the RSS of an LWR is 10_2,

A second error, given the first, may happen with probability 10'1.
Finally, if two errors have happened the probability of a third was
assumed equal to 1. Since the inspections of the primary and secondary
subsystems take place at different points in time, each inspection may
be compared with the inspection of a LWR Shutdown System (LWRs have only
one SS)}. The CRBR is, however, an experimental demonstration plant,

and therefore it is expected that conditions during inspections as

well as procedures will be différent from those in a typical LWR. The
mean value of the probability of making an error in inspecting the

first channel of a subsystem is assumed to be 10'3}*'”The mean value of
conditional probability of an error in the second channel, given an
error in the first, is set equal to 3 x 10“1. Finally, the mean value
of the conditional probability of a third error, given the first two,

1

is set equal to 7 x 107 . The joint probability of three errors, using

- _
See also Apostolakis (1977).
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the above cited mean values as point estimates of the corresponding
probabilities, is equal to 2.1 x 10'4. For an average-of 10 inspections
per subsystem pér year and for 30 years of plant life, the chances of
having one triple error during the plant 11fet1me are approx1mate]y one

-4

in ten (~ 2.1 x 10 X 2 x 10 x 30).

8.7 Presentation and Discussidn"of the Results

This section provides the quantitative assessment of the failure
probability of the CRBR Sﬁutdown System and.the uncertainﬁies associated
with this probabi1ity : FOr this assessment we.uti1ized ﬁhe models
developed in Sect1ons 8. 4 and 8. 5 and the data in Sect1on 8. 6 The “
probability density function of the RSS failure probab111ty was |
calculated by the two methods’descr1bed in Chapters 6 and 7. The
median and 90% cbnfiden&é Timits of the failure probability.at various
times are tabulated in Tabie 8.7 and piotted in Figuré'8n22; These
results were obtained as fo1]@ws3

For the Monte Carlo calcuiation, 37 random samples (qnéhfor each‘
input variable}, each containiné 1200 values, were generated and thé
Markov models were solved 1200 times. This resu]ted in a sample of
1200 va1ues of the failure probability for each point in time. For -
each samp]e, estimatorg of the first four centra1 moments were
caiculated, and from them the corresponding’ pdf was estimated as
described in Chapter 5. It was found that at gach:point;in time,
the fai]ﬁre probabi]ify is very closely distributed accofding to a

Tog—normaT distribution (see Section 4.4.2). For example, fhe coef-

ficients of skewness and kurtosis (81,82) of the pdf of the negative
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Table 8.7 Median and 90% confidence 1imits of the failure
probability as functions of time
TIME MEDIAN LOWER 90% CONF. LIMIT | UPPER 90% CONF. LEMIT
(Weeks) | Monte Carle Tavlor Monte Carlo | Taylior Monte Carlo ; Taylor
4 3.0x10°8 | tae® | z.oxio? | zsao? | ek | 1usa0”
8 2.7x07 | 1.6x1077 | 2.9x1078 | 2131078 | 4.0x107 | 1.2x107
12 s.1x10”7 | 22007 | a.ex10® | 2,000 | 7.4x107¢ | 2.5x078
16 7exi0-] | asxio? | 70078 | sexio® | 1.x1077 | aoox1078
20 1.0x10°8 | 6.6x1077 | o.8x107® | 7.6x10°8 | 1.5x107% | 5.6x107°
24 Laao® | s.x1077 | t.exio? | oasao™® | t.axio™ | 7.3x107°
i | texo® | 1oxio® | 1sao’ | 1axo7 | 2zq0 | 9,107
32 Tox10® | taao® | 11077 | 1.3xi07f 2.7%107% | 110070
36 2.2x1070 | 1.ax1078 | 2.001077 | 1sxi0”7 | 3307 | 130078
40 25008 | 1.6x076 | 2,207 | 17x077 | 37x107° | 1.4x070
44 2.8x107° | 1.7a0® | 2.5a07 | om0 | aax0” | 1.ex0”
48 3310 | 190 | 27307 | 2ax07 | a0 | 1o
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common logarithm of the failure probability at the end of the 48th
week were estimated to be 0.096 and 3.21, respectively. These values
define a point in the (31,82) plane very close to the point (0,3)
corresponding to the normal pdf (see Figure 5.1}. The mean values, the
variance, and the coefficients Bl,sz'of the negative commoﬁ logarithm
of the different points in time are given in Table 8.8. Finally the
median and the 90% confidence Timits of the mean (over a period of

48 weeks) unavailabilities of the system to respond to reactivity,
major flow, and 1imited response transients are given in Table 8.9.

The first four central moments of the negative common logarithm of
the failure probability were also estimated via the Taylor-series method
developed in Chapter 7. First the derivatives of the failure probabi]ity-
with respect to the 37 input variabies were found as shown in {7.17) and
(7.12). Then, the derivatives of the negative common logarithm were

found by applying the chain rule. For example, the second derivative

is gfven by
2 n2 2 gy a2
9 ; - 3 z -(3.F ) + .E.Z;E.—.E- . (_8.22)
ax,i aF a-x_i aF axi

where

and, therefore,
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Table 8.8

Mean, variance and coefficients 8 s- B

of the

negative common logarithm of the fa1?ure
probab1]1ty at various times.
TIME - MEAN VARIANLE SKEWNESS (s])=% KURTOSIS (82)
g | Monte 4 - Monte ' Monte * - Monte .
(Weeks)| Carlo | Tayler | Carlo | Taylor | Carlo | Taylor | Carlo Tayior
4§ 7.8 7.8 | 053 |0.29 lo.108 Jo.7s | 321 | 3.30
8 “ 6.6 6.8 7| 0,44 [0.28 1(0.114 0.042 | 3.25 1 3.26
12 6.3 |- 6.5 | 0.44 [0.30 |0.091 | o003 | 3.2 3:30
16 © 6] 6.3 -1 0.44 0.31. fLOTS, 0.920 3.20 3.30
20 »6.0 6.2 0.44 .0'32 , ¢O;Q7T 0.014 3.18 3.30
24 5.9 6.1_ 0.44 0.33“ 0.068 6.010 3.i6 - 3.30
28 5.8 ‘HG.D ‘ 6.45 0.34 0,066 b.OUéV 3.15 3.29
122 | 57| 5.9 [045 [0.3 |o06s | o007 | 308 | 329
3 | 5.6 | 59 [o.46 [0.35 |0.072 {o0.007 | 314 3.29
=4 40 5.6 {58 | 0.46 }0.35 |.0.078 06.606 | 3.16. | . 3:29
44 .} 5,5 5.8 |-0.47 |0.35 - |0.086. {0.005 | 3.18 3.28 .
48 55 | 5.7 |0.47 /0.35 |0.096 |0.005 |3.22 | 3.28
Table 8.9  Median and 90% confidence limits of the interval
unavailabilities .(mean over 48 weeks) of the
system to respond to reactivity, major flow and
“Timited response transients
Interval unavailability Lower_90% er 90%
to respond_to Median conf. Timit cong Timit !l
Reactivity trans. 5.85x107° 5.36x10"7 6.38x107°
Major flow trans. 5.62x10° | 5.20x1077 5.98x1072
Limited response trans. 6.25x1071° | 4. x10°"7 | 9.59x10°9
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The expected value of the negative common logarithm, its variance, and
the coefficients By» B, are tabulated in Table 8.8 for different times.
From the same Table it can be seen that the results obtained by'the
Taylor series method are in good agreement with the results of the
Monte Carlc calculations. The median and the 90% confiaence Timits of
the failure probability at various times are given in Table 8.7 and
plotted in Figure 8.22. The Taylor approximation of the pdf of the
negative common 1ogarithm;0f the faiTure.brOBabiiity at the end of the
48-th week and the corresponding histogram obtained from the Monte Carlo
calculations are plotted in Figure 8:23.

As already discussed‘in Section 7.5,=the,resu1ts‘oﬁuthe Taylor
calculations provide a meéns‘for c1as$ifyin§‘the QafioUs 1npdt variables
according to their contribution to the uncertainties of the failure
probabiiity. Such a classification has been done for the RSS failure
probability at the end of one year, and the relative importance of the
variables is shown in Tabie 8.10. The variables were classified
according to two "Importance Indices". The first index gives, in per-
cent form, the contribution of each variable to the deviation D of the
expected value of the negative common logarithm of the failure proba-
bility from the value obtained when the input variables are fixed at

their means Jsee (7.2}]. The second index gives, in percent form, the
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Figure 8.23. Pdf of the negative common logarithm
of the R3S failure probability per year. Taylor
series approximation and Monte Carlo diagram.
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contribution of each:variable to the variance of the negative common
1ogarifhm-of the failure probability [see (7.3)]1. In other words
(see Table 8.10}, if the arrival rate of the limited response transients
were fixed in its mean value, the deviation D would have increased by
70%, while the -variance of the negative logarithm would have ‘increased
by 26%. 1t is noteworthy that the importance of the Timited response
transient arrival rate is due not to the failures ‘that these transients
might cause, but to the renewal effect that successful responsés have
on the Shutdown System. This means that the limited response transients
are equivalent to complete, perfect repairs of the system, occurring
randomly in time. Examination of Table 8.10 reveals: that the variables
that contribute the most to the uncertainty about the failure proba-
bility are the afrival-rates of the various transients and the
probabilities of human error during the <inspection of the electrical
subsystens.”

To assess the contribution of theé intérdependences and of ‘the’
human errors in RSS-failure probability, four cases were considered:
(I) the failure rates of the components are completely independent -
and the inspection is perfect, i.e., every.four weeks the electrical
‘subsystems. are completely renewed; (II) interdependences. among the
failure rates and the state of the components have been assumed and
thé'inSpect10n is'perfect; (I11) independent failure rates but imperfect
inspection, i:.e., human errors are possible; (IV) interdependences
exist and the-inspéction is imperfect. The median, the 90% confidence.

V1imits, and the point estimates of the RSS failure probability per
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year are given in Table 8.11. Point estimate is the value of the
failure probability when the input variables are fixed at their mean.
The "objective" (see section 8.5) value of the failure probability
obtained in WARD-D-0118 is aiso included in Table 8.11. The difference
in the "objective" value of WARD-D-0118 and the point estimate of
case I is due to the more detailed modeling of the electrical subsystem
that was employed in this study. In particular, successful responses
to Timited response transients result in the renewal of the electrical
subsystem, and the repair of the sensors (with the reactor shut down)
is not instantaneous. |

We can see from Table 8,11 that: (1) uncertainties in the input
variables (case I} result in a 90% confidence interval for the failure
probability that spans 3 orders of magnitude (4.0 x 10711 t02&5z<10*8);
{2) uneertafntiés and interdependences {case II) result in a 90% confi-
dence interval for the failure prebability of the same size as in case I
but shifted to the right by two orders of magnitude (2.0x 10™% to 6.5 x
10'6); (3) uncertainties and human errors {case I1I) result in a 90%
confidence interval for the failure probability shifted by two orders
of magnitude to the right but narrower than that of case I (1.0 x 10'8
to 5.0 x 10'6); and (4) uncertainties, interdependences and human errors

(case IV) result in a 90% confidence interval for the failure probability
shifted to the rightby three orders of magnitude but narrower than that

7 2.0 x 107°). Finally, it s noteworthy that

of case I (2.0 x 107
the values of the failure probability obtained with the input variables
fixed at their means (point estimates) are very close to the medians for

all four cases.
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TABLE 8.11 Point estimate median and 90% confidence limits of

the RSS failure probability per year under various

assumptions.

Point estimate is the value of the

failure probability obtained when the input variables

are assumed fixed at their means.

Point Lower 90% Upper 90%
Case Descriotion estimate Median Conf.Limit | Conf.Limit
0 | Ward-D-0118 1.5 x 107° - - -
I | No dependences, | 8.0 x 16720 1.0x 1072 | 4.0 x 10711 | 2.5 x 1078
perfect inspec-
tion '
o -7 . n=8 La=9 -6
11 Dependences, 2.0 x 10 8.0 x 10 1.0 x 10 6.5 x 10
perfect inspec-
tion
_ e o -7 Sy -8 -b
111 No  dependences, 1 4.0 x 10 2.5 x 10 1.0 x 10 5.0 x 10
imperfect in-
spection ,
. -6 -6 -7 -5
IV Dependences, 2.5 x 10 2.0 x 10 2.0 x 10 1 2.0x 10
imperfect in- ' '
spection
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CHAPTER NINE
SUMMARY AND CONCLUSIONS

The objectives of this study have been: the development of a
methodology for the calculation of uncertainties about the reliability
of nuclear reactor systems describéd by Markov models, and the assess-
ment of the uncertafnties in the reliability of the Shutdown System of

the Clinch River Breeder Reactor.

9.1 Methodology

The uncertainty about the reliability of.nuciear"feactor systems
stems from existing uncertainties about the failure and repajr'rates of
components as well as from uncertainties about other variabies that
characterize the stochastic behavior of the systems. Wé:qUantified
these uncertainties by assuming that the various transition rates
and the probabilities are random variables distributed acbording to
given probdbf]ity density functions. We:attempted then to answer
the following question: "How does one calculate the probability
density function of the reliability from the pdf's of the input vari-
ables?" For Markovian systems this guestion reduces into: "How does
one calculate the pdf of the state probability vector of a Markov
process, given the transition probabilities of the pfocess are random
variables distributed according to given pdf's?"

The exact mathematical form of this problem was presented in
Chapter 4 where it was stated that, because of the compliexity and the
size of systems of practical importance, we believe that an ana1yfica1

sotution is not feasible. An approximate method was, therefore,

- 210 -



needed, and the moment-matching technique described in Chapter 5 was
employed. According to this technique the first four moments of the
reiiability are calculated and the pdf of the reliability is approxi-
mated by an appropriate distribution with the same first four moments.
The moments of reliability were calculated with the help of two methods:
1) the Monte Carlo simulation method, described in Chapter 6; and 2) the
Taylor series method, described in Chapter 7.

The Monte Carlo simulation method randomly generates a sample of

Nm-tuples x.., 151,2,..., m §=1,2,...,N, where X3 denotes the j-th

]
value of the i-th input variable, and calculates the reliability

N times. one value of reliability for each m-tuple {Xij}' A random
sample of N values of:the reliability is thu; generated and from it

the required mﬂments can be estimated. Because the Monte Carlo method

is used to estimate momentsof, rather than the full, reliability the
required sample size is not too Targe. From the experience gained
during this research we feel that about 103 trials are adequate in

most cases.

The Taylor series method consists in: {1} expanding the reliability
function in a Taylor series around the means of its variables; (2}
truncating the series; and (3) using the resulting simple analytical
expression for the direct calculation of the moments. The Taylor
series representation of a function is more accurate for smail deviations
of the independent variables from the point around which the function
is expanded. ' Therefore, the smalier the probability that the variables

Xij will take simultaneously values "far" from their respective means,
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the more accurate the estimation of the moments. The Taylor series
method also provides a tool for performing sensitivity analyses. In-
deed, once the accuracy of the method has been checked at a certain
level of the mean values of the xi’s {perhaps with a Monte Carlo ¢al-
culation), the other moments of the xi's can be varied and the changes
in the reliability moments can be calculated. The Taylor series method
is faster than the Monte Carlo if the number of the independent variables
X; is smaller than a certain Timit. This Timit can be calculated as
follows. From equations (7.17) it follows that the calculation of the
first four partial derivatives of the vector «(n) with respect to a
variable X are equivalent to 8 multiplications of the form u:M, where
u is alxz row vector and M a zxz matrix. This means that the cal-
culation of the partial derivatives with respect to m independent
variables is equivalent to 8 multiplications of the form u-M or, equiva-
lently, toa Monte Carlo sample size of 8m. Thus, if 103 trials are
required for a Monte Carlo calculation, the Taylor series method will

. be faster if the number of independent variables is less than 175. This
cutoff value, however, will be lower if terms of higher order than four
are included in the Taylor expression, or if ‘the xi's_are correlated.

In general, we can say that for a given system at least one Monte
Carlo calculation is needed to provide a standard against which the
accuracy of the Taylor method is tested. Then, if accurate encugh and
faster, the Taylor method can be used for sensitivity analysis.

In both methods employed in this study the computationa1 effort con-

sists of the repeated so?ytion of the first-order difference equation
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a{ntl) = w{n)-p . (9.1)

Thus, this effort can be reduced if the solution of (9.1) is expedited.
The computing time necessary for solving (9.1) depends on three factors:
(1)s Structure of P -
(2) Dimensions of P
(3) Number of time steps for which (9.1)
must be solved.
The first twe factors affect also the computer storage requirements.
A technique for simplifying the structure of P by ordering the
states of the system was developed and presented in Chapter 2.
A technique for reducing the dimensions of P by merging, whenever
possible, the Markov processes was described in Chapter 3. It was

shoyn there that systems exhibiting certain symmetries are described

by mergeable Markov processes. Since the nuclear safety systems are
highly redundant, they aimost always exhibit these symmetries. A
systematic way for achieving the merging was also developed.

The choice of the maximum possible time step is discussed in
Chapter 6 along with an approximation that permits the use of large
time steps in the Monte Carlo calculations.

The calculations necessary for the implementation of the methods
described in Chapters 2 through 7 are performed with the help of a
computer. The necessary computer codes are briefly described in the

Appendices.
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9.2 Reliability Assessment of the CRRR RSS

As an illustration of the methodology developed in this study, the
~uncertainties about the failure probability of the Shutdown System of
the Clinch-River Breeder Reactor were assessed.

The Shutdown System of the CRBR consists of two shutdown systems,
the primary and the secondary. Each shutdown systiem consists of an
electrical and a mechanical subsystem. The primary and secondary elec-
trical subsystems are designed to sense the need for a shutdown and signal
the primary and secondary mechanical subsystems, respectively, which
respond by inserting the control rods intoc reactor core. The mission
of the reactor shutdown system is therefore "to sense and success-
fully respond'tp a defined set of trénsients in such a way that the loss
of core coolable geometry is avoided during the Tifetime of the plant."
It was assumed that the loss of coolable core geometry occurs in the
short term if sodium reaches saturation conditions (boiling) in the hot
channel @:1700°F),_or in the Tong term if the in-vessel bulk sodium
outlet temperature rises in excess of 1250°F. Therefore given a‘trans-
ient, the success or failure of shutdown system depends upon inserting
the minimum amount of reactivity in an acceptable increment of time, so
that neither of the above cited events will happen.

_ Furthermore, it was assumed that three different types of transients
might occur randomly during the plant Tifetime: (1) reactivity transients
requiring electrical subsystem response and the insertion of $5 of

negative reactivity; (2) major flow accidents that require electrical

subsystem response and the insertion of $2.5 of negative reactivity; and
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(3) limited response transients that do not require electrical subsystem

response and need the insertion of $2.5 of negative reactivity.

The probabilistic behavior of the system was modeled by a Markov

process.

(1)

(2)

(3)

The use of such a model permitted the modeling of:

Common cause failures by a]16ﬁing interdependences among the
failure rates and the states of the components. Interdepend-
ences have been assumed between the components of the two
elTectrical subsystems as well as between the components of
the two mechanical sﬁbsystems.

Interdependences between the unavailability of the shutdown
system and the occurrence of transients. Given a transient,
the system may either respond successfully or fail. Since
there are three types of transients, whether thie system will
succeed or fail depends on the particular state of the system
and on the particular transient. Furthermore, a successful
response to a transient means a reactor shutdown and system
renewal before resuming operations. Thus, the unavailability
of the shutdown system depends on the frequency of transient
arrivals. Finally, if the reactor is shut down, transients -
that l1ead to loss of coolable core geometry cannot occur,
Inspection and maintenance procedures that depend on the state
of the system and include the possibility of human errorﬁ.

To increase the availability of the shutdown system, tests
and maintenance are performed periodically. The policy for

stuch tests may depend on the state of the reactor (online or
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shutdown} or on the state of the shutdown subsystems {number
of channels tripped, etc.). In addition, there is a possibil-
ity of human errors. Such errors may be the failure to reveal
and correct an existing fault or the causing of a fault during
maintenance. X
Uncertainties about the failure rates, the repair rates, the rates
at which transients occur, and ail other input variables were quantified
by assuming that all the variables are random, distributed in such a
way that their upper 90% confidence limit is one order of magni tude
higher than the lower 90% confidence 1imit. The latter limit is of the
same order of magnitude as the most probable value of the quantity in
question. Furthermore, the most probable value of each variable was
assumed equal to its "objective value." The "objective values” are the
values that the Clinch River Breeder Reactor Project Management
Corporation intends to demonstrate by a combination of tests and analyses.
The probability density function of the failure probability was
calculated by the moment-matching technique. The moments of failure
probability were calculated by both the Monte Carlo and the Taylor
series methods. As seen in Tables 8.7 and 8.8, the results of these two
methods are in very good agreement.
The failure probability is distributed log-normally with median

5 and

2 x 10_6, and upper and lower 90% confidence limits = 2 x 10~
2 X 10-7, respectively. This probability band represents a considerable
difference from the 1 x 10'9 point estimate of the failure probability

where interdependences are not considered, the inspection is perfect,
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and the input variables are fixed at their mean values. The results
obtained in this study are in agreement with the analyses and experience
for Light Water Reactors, where human errors during test and maintenance
activities and common cause failures are major contributors to system
unavailability, and therefore to the failure probability. If inter-
dependences and human errors are not considered, the 90% confidence
interval of the failure probability extends from 4J)x10-11 to 2.5 x 1070
with a median of 1.0)(10_9. The inclusion of interdependences alone
(hardware common cause failures) results in a 90% confidence interval

9

from 1.0x10™7 to 6.5 x 10’67with a median of 8.0 xlo’s. Consideration

of human errors (imperfect inspection) has approximately the same effect.

The éorresponding 90% confidence interval extends from 1.0 x 10_8 up to

5.0 x 107 with a median of 2.5x 1077,

Uncertainties of about one order of magnitude for the various input
variables resuited in a two orders of magnitude uncertainty for the
failure probability. Tests and/or analysis can reduce the uncertainties
about the input variables and, hence, the uncertainties about the failure
probability of the CRBR due to shutdown system faiJures. More information
about failure rates can be obtained by testing individual components and/
or by analysis. However, information about the dependence coefficients
(hardware common cause failure), human errors (imperfect inspection),
and the transient arrival rates cannot be obtained from tests of
individual components. Such information can be obtained only by observ-

ing real systems in operation. For this reason we believe that the

experience that will be gained from the Fast Flux Test Facility and the
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Clinch River Breeder Reactor will be of major importance in assessing

the failure probability of large Liquid Metal Breeder Reactors.
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CHAPTER TEN
RECOMMENDATIONS FOR FURTHER RESEARCH : .

The reliability of.a system is an imporiant factor in evaluating its
usefufﬁess and, therefore, ebeicit1y or imp]icitly decisions are made on the
basis 6f:this evaluator. If the value of the re]iabi]ity'is exactly known,
then the decision is usuaf1y médefby comparing this va1de'against a'given
standard. If the re11ab1]1ty is h1gher than the standard the system is con-
sidered "reliable enough" and 1t is accepted If the re]1ab111ty is 1ower,
the system 1is notraccepted. In the presence of uncertainties, however, this
simple procedure cénﬁot be app11ed because the value of the reliability is
not knbwﬁ eXactly. Then we-héve a ﬁfob?em of decision ana1ysis ﬁnder uncer-
tainty. A systematic way for méking a decision under those circuistances is,
therefore, needed. ' | u

A systematic way for making débiﬁions un&eruncertainty is prdvided by
the theory of decision ana1y§is. Decision analysis involves two distinctive
features: an uncertainty ana?ys1s and a preference ana1y51s° Uncerta1nty
analysis deals with the assessment of the uncertainties about the factors
that affect the decision. Preference analysis addresses the prob1em of clas-
sifying all possible outcomes of the uncertain events according to their ‘
importance. Usua]]y'this {é'done with the help of the von Neumanh?Morgensterm
utility theory. In reliability analysis, the application of this theory would
mean the defihition.of a scalar funcfion that describe§ the re?ativé impor-
tance of the various values of the re11abi11ty measures. Once such a'pref-
erence analysis is performed and the uncertainties are assessed, the dec151on

analysis theory can be applied. This d1ssertat1on addressed the prob1em of
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uncertainty analysis. The question of preference analysis remains
open.

Even when the preference and uncertainty analyses have been com-
pleted, an important question is: "Should we base our decision 6n the
available information (on the existing uncertainties) or should we try
to obtain more information before we make our decision?” We can obtain
more information by testing components and by building and observihg
prototype systems. Tests of components provide information about the
independent failure and repair rates while obServatfon of actual
systems provide information about the dependence coefficients and
other system-dependent parameters. Then, the previous question becomes:
"How many components of each kind.shou1d we test and for how long a
time? Furthermore, for how long, if at all, should we observe a
prototype system?" To answer these questions, preferences or value
tradeoffs should be established between relfability and the amount of
money and time spent for the experiments. The answers, then, will
define the "optimum experiment® or the "optimum reliability demonstra-
tion program"; optimum in the Tight of the performed_unceriainty and
preference analyses.

Another important question that need be answered in the presence

of uncertainties is: "Which is the best test and maintenance policy

for the standby safety systems?" This question can be better discussed
in terms of a specific example such as a nuclear reactor. As seen in
Chapter 8, two possible po]icies for the testing of the shutdown

system of CRBR were: (I} If at the time of a scheduled inspection of
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an electrical subsystem a channel is tripped, the reactor is shut down
and the system is overhauled; (II) If at the time of a scheduled in-
spection of an electrical subsystem a channel is tripped, then the
reactor is shut down only if a channel of the dther subsystem is
tripped. Policy I results in a higher reliability, but at the same
time in a higher unavailability, of the reactor than policy II. A
tradeoff between the reactor unavailability and reliability should be
established, and then the best policy can be defined. This analysis
will also define the optimum test frequency. Of course, the optimum
policy need not be static and may vary with time as more inforhation
is obtained about the system. Thus, an adaptive procedure can be
estabiished according to which the optimum policy is determined at
each point of time, taking into account all the information {in the
form of observed failures and repairs) available at this particular
time.

Further research could also be done in the area of uncertainty
analysis. Since computer time and computer storage requirements for
large systems with many states could be severe, research for methods
reducing these requirements is advisable. Three such methods are
briefly described in the sequel.

Substantial savings in both computing time and computing storage
requirements can be achieved if the dimensions of the problem can be
reduced. In Chapter 3, the theory of mergeable Markov processes was
presented. It was seen that the dimensions of the problem could be

reduced by Tumping together system states to form superstates. The
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resulting process could be exactly solved if the transition probabilities
of the original process satisfy a criterion. This criterion guarantees
that the superstate transition probabilities are independent of the

state probabilities ﬁi(HrS'Of the original process (see Egs. 3.3 and

3.1%). For convenience, we repeat here equation (3.3)

(10.1)

where

(10.2)

From (10.1} it follows that if the "weighting coefficiénts" wi(n)'s
were known, the supertransition probabilities pIJ(n)'s could be defined
for any grouping of the statés of the original process. But knowledge
of the wi(n)'s.means knowledge of the ni(n)%s whi;h in turn means
solving the original problem. If approximations ﬁi(n) to the weight—.
ing coefficiénts could be cobtained, nowever, an approximate merging of
the system states could be possible. Such approximate ﬁi(n)'s could

be obtained by neglecting some of the interdependences between the,
components -and, thus, by decomposing the system into several independent
subsystems. The Markﬁv pnocess_of each sybsystem couid be solved
separately, and.from the resulting subsygtem-state probabitities,

the state probabilities of the original system can be obtained. A
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similar idea could be applied in the Monte Cario simulation. There,
the wi(n)‘s obtained by solving the exact problem with the transition
probabilities fixed at their mean values could be used in all the
random trials.

The computer codes for this work were written under the assumption
that the time step of the process is sufficiently small that only one
component-transition is possible at the end of each time step. This
assumption results in a sparse transition probability matrix and, thus,
in computer-storage savings. If this assumption is relaxed, larger
time steps could be used resulting in shorter running times but re-
quiring more core memory. A study of the mémory and running time
requirements of the various techniques for solving first-order differ-
ential equations could suggest a more effective method.

Finally, in his monograph “"Bayesian Decision Problems and Markov
Chains," Martin (1967) develops recurrence formylae for the expected
value and the variance of the state probability, “i(n)’ of a process
with transition probabilities distributed according to a certain family
of pdf's. The possible development of similar formulae for the ex-
pected value of the utility of a reliability measure should be explored.
If such a formuia can be developed, a computer code could be written
using a compiler that handles efficiently recurrence formulae (PL/1,
for example), and the necessary computing time could be compared with the
time required by methods developed in this study.

In summary, we recommend: (1) the application of decision theory

in establishing "Reliability - demonstration" programs for systems;
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(2) the application of decision theory in establishing "test and main-
tenance" policies for safety systems; (3) the investigation of systematic
ways of approximate merging of Markov processes; (4) the investigation

of tradeoffs between core memory storage requirements and running

time requirements of methods for solving Markov models; and (5) the
possible application of a technique developed by Martin (1967) for solving

Markov models under uncertainty.
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APPENDIX A
STAGEN--MARELA

A Computer Code for Markovian Reliability Analysis

This Appéndix contains a brief descriptfon of the computer codes
STAGEN and MARELA thatreva1uate the time-dependent and the average
availability (or reliability) of a system described by a Markov pro-
cess. The methodology upon which the codes are based is presented in
Chapter 2. _ ‘ -

The code consists of two parts: 1) STAGEN, STAte GENerator, that
generates and orders the system states; and 2) MARFLA MArkovian RELia-
bility Ana1ysis, that performs the reliability calculations. A flow
chart of this code is given in Figure A.1. |

Program STAGEN generates the set of 7 of a]]_possib]e states of
the system, partitions Z into subsets X and Y with the help of subroutine
STEST, and then c]aéﬁifies X and Y into subsets X(K) and'Y(K) (see
Sections 2.2 and 2.4). 1In addition, this program calculates the number
of elements of the ordered transition probability matrix that need be
stored and the number of elements of each submatrix EFL, and generates
indices that show the starting point of each submatrix within the 1-
dimensional P-array.

Program MARELA generates the transition probability matrix P and
performs the multiplication in (2.3) for the necessary number of time
steps. The size of the time step is selected internally in such a way

that assumption 2.9 (see Section 2.3) 1is valid.
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MARELA

STAGEN
GENERATE SET GENERATE
A TRANSITION PROBABILITY
OF POSSIBLE STATES| (e = MATRIX P
- =--- SUB- AS
AN ONE-DIM. ARRAY
PARTITION OF ROUTTINE _ Fe A
SET 2 DO 100 ALL TIME STEPS }—
INTO SETS ' "
X &Y o ‘

‘ m(n+l) = ()P

PARTITION OF -
<

SETS X & Y :
S _ an. !

IHTO SUBSETS 100: A(n) m§1rx ]

X(X) & Y(K) : - IeX -

Figure A.l. Flow chart of programs STAGEN and MARELA.

‘ A complete description of the code containing user’s instructions is
contained in a Brookhaven National Laboratory - NUREG Report, under the

title: Computer Codes for Markovian Reliability Analysis.
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APPENDIX B
SSTAGEN - MMARELA

A Computer Code for Mergeable Markovian Reliability Analysis

This Appendix contains a brief description of thercomputer codes
SSTAGEN-I, SSTAGEN-II and MMARELA that evaluate the time dependent
and average availability (reTiability) of systems described by mergeable
Markov processes. The underlying methodology is presented in Chapter 3.

The code consists of two parts: 1) SSTAGEN, SuperSTAte GENera;or,
that generates and orders the superstates of the system; this part has
two versions (I and II); and MMARELA, Mergeable MArkovian RELiability
Analysis, that performs the re]iabi?ity calculations.

Programs SSTAGEN-I and SSTAGEN-II generate the superstate of the
process. In SSTAGEN-I, the superstates are generated directiy from the
component states of the original process. Hereit is assumed that the
symmetries of the system are correctly defined. In SSTAGEN-II the
system states of the origihal‘proceSS are generated and then merged
into superstates on the basis of criterion (3.11).

Program SSTAGEN-I generates the superstates as follows: For each
and every subsystem class {see Chapter 3) it generates all the labels
characterizing the subsystem-states. Symmetries at a component-level
are used at this stage. Then each subsystem is considered as a Compo-
nent that can be in as many states as the subsystem-state Tabels corres-
ponding to this subsystem. Taking into account symmetries at a
subsystem Tevel, the Tabels of the states of the "equivalent” system

are generated. Next, these Tabels are divided inio groups X(K) and Y(K)
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of operating and failed superstates, respectively. In addition, this
program calculates the number of elements of the supertransition proba-
bility matrix that need be stored, and generates indices that shoﬁ the
starting point of each submatrix within the 1-dimensional array. A
flow chart of this code is given in Figufe B.1.

Program SSTAGEN-II generates (as in STAGEN)} the set of Z of all
possible states of the system and partitions it into subsets X(K) and
Y(K). Next, it generates all the possible labels Lv and Tumps all the
states of the original process with the same label into superstates.
The mergeability of this partition is then checked by eriterion (3.11),
and 1f‘the latter is not satisfied,a new grouping is attempted and so
on until a mergeable grouping is-achieved. A flow chart of this code
is given in Figﬁre B.2. |

Program MMARELA, using information generated by either version of
SSTAGEN, generates the supertransition probability matrix.

A complete deséription of these codes, containjng user's instruc-
tions, is presented in a BNL-NUREG report under the title: Computer Codes

for Markovian Reliability Analysis.
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S3TAGEN-I

ﬁoa EACH SUBSYSTEM CLASS GENERATE
ALL SUBSYSTEM-LABELS USING SYMMETRIES
AT COMPONENT LEVEL.

THE Jth CLASS HAS NBLS(J) LABELS.

"EQUIVALENT" SYSTEM IS DEFINED BY
CONSIDERING EACH SUBSYSTEM AS A
SUPER-COMPONENT THAT GAN BE IN
NELS(J' STATES. ﬂ

- LABELS DESCRIBING THE STATES OF THE
"EQUIVALENT" SYSTEM ARE GENERATED

USING SYMMETRIES AT SUBSYSTEM LEVEL.

SUPERSTATES CORRESPONDING TO LABELS
GENERATED IN STEP 2 ARE PARTITIONED
INTO GROUPS OF OPERATING AND FAILED
SUPERSTATES X(X) AND Y(X).

Figure B.1. Flow chart of program SSTAGEN-I.
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SSTAGEN-IT

GENERATE SET 2
OF POSSIBLE STATES
{ AND PARTITION IT INTO
SETS X(X) & Y(K)

:
GENERATE ALL STATE-
LABELS USING ASSUMED
SYMMETRIES AT COMPO-
NENT LEVEL.
4
CREATE SUPERSTATES BY|
GROUPING TOGETHER ALIL
SYSTEM STATES HAVING
THE SAME LABET.

_~—" 18 S - |PAIR OF
~MERGEABILITY CRITERIO: —  No |[SUPESTATES
SATISFIED FOR ALL - TNOT SATISFYING
«. PAIRS OF SUPERSTATES. THE CRITERION
~ ' IS SPLITTED INTC
|SEVERAL SUPER- |
STATES.

Figure B.2. Flow chart of program SSTAGEN-II.
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APPENDIX C

Modification of MMARELA for Use in Monte Carlo Simulations

This Appendix contains a brief description of the modified version
of MMARELA used in the Monte Carlo simulation. The objective of this
modification is to minimize the necessary calculations for the generation
of the transition probability matrix of each trial.

The transition probability between two superstates I and J is given

by (3.19) or
pryln) = a’ - h;k(nlIv)At . (C.1)

where a; is the number of components of class v that are in the component-
state m,‘and h;k(n{Iv) is the transition rate from component-state m to
component-state k for components of class r at time n, given the state
of the system at time n. Since the transition rates h's have different
values for each Monte Carlo trial, the same is true for the transition
probabilities pIJ's, The values r,m,k, and a; are, however, the same for
all trials. On the basis of %hese observations, the following modifications
were made in MMARELA.

An one-dimensional array TR(.) is created, the elements of which
correspond to the various h;k's. Thus, if ¢ denotes the number of com-
ponent classes and s the maximum number of component-states the components

of any class can be, index I defined by

I =¢(r-1) + s(m-1) + k (C.2)
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is such that

TR(I) a_hmk . (€.3)
Then, instead of defining the transition probability matrix P, two

matrices M and L are defined such that
m.. = a (c.4)
~and

11J =1 =c¢(r-1) + s(m-1) + k . (C.5)
As seen from (C.4) and (C.5), the elements of matrices M and L are
functions of the variables c¢,s,r.m.k., and a; only and, thus, need be
defined only once. Then, at each trial, the array TR is redefined to
contain the new values of h's and the value of Prg is given by (see also
C.1, through C.5)

*TR(1

=m (C.6)

Prg = Mpg TR )
In this way, only the one-dimensional array TR need be redefined with
each trial. Furthermore, this redefinition does not involve comparison
of superstates.

For nonmergeable processes, the a;“s are always equal to unity and,

therefeore, matrix M is not needed.
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