

















The generalized force conjugated to the j-th
parameter f; is defined by either of the two relations

f; = (3E/2Bjls, g =T (35/8Bj) p.g (113
when volume V 1s a parameter, the negative of the
generalized force conjugated to V 1s called pressure,
denoted by p, and given py either of the two relations

p=-(3E/V)g g =T (@S/aV)g g g (12)

Equality of temperatures of two systems is a
necessary condition for the two systems to be in mutual
stabie equiiiprium. Equality of total potentials of a
component common in two systems is a necessary
congition for the two systems to be in mutual stable
eguilibrium if that component in each of the two systems
can be changed over a range of values. Equality of
pressures of two systems, each having volume as 2
parameter, is another necessary condition for the two
systems to be in rytual stable equilibrium if the volume
of each sysiem can be changed over a range of values.

WORK AND WORK INTERACTIONS

interactions resuit in tne exchange of properties
across the pounaaries of the interacting systems. Various
combinations of exchanges are wused to classify
interactions into different categories.

An interaction between two systems that results i
3 transfer of energy between the two systems without any
transrer of entropy is classified as a work interaction,
anda the amount of energy excnanged as g resuit of such an
interaction as work. All interactions that resuit In the
exchange of entropy between the interacting systems are
called nonwork interactions.

A process of a system experiencing only work
interactions is called an adiabatic process. Any process
that involves nonwork interactions is called nonadiabatic.

In the course of an adiabatic process, system A
changes from state A, to state A., the energy exchange
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negative of e
(EA=p

{(EA<2 equais the work dene on the
environment WA=, ie, and the entropy

exchange (SA+)8 = O wnere the superscript "a” denotes that
the process of A 1S aglabatic. Therefore, the epergy and
entropy balances are

- W'A—’

a3

(E2 - E])a = -WA=

(52"51)a= S,'”- (14)

A special example of a nonwork interaction that is
entirely distinguishable from work is an interaction
between two systems, initially differing infinitesimally
in temperature, that results in a transfer of energy and a
ransfer of entropy between the two systems such that the
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ratio of the amount of energy transferred to the amount of
entropy transferred equals the almost common
temperature of the interacting systems. It is called a
heat interaction, and the amount of energy transferred
as aresult of such an interaction heat .

Often, in applications, a system A consists of many
subsystems, one of which A" is in a stable equilibrium
state at a temperature Tq Similarly, a system B consists
of many subsystems, one of which B {s in a stable
equilibrium state at temperature almost equal to To If
the two subsystems A and B experience a heat
interaction, then we say that systems A ana B experience a
heat interaction at temperature Tg, even though A and B
are not necessarily in stable equilibrium states.

in the course of a process that invoives only a heat
interaction at temperature T, system A changes from

state A, to siate Ao, the energy exchange is (EATI = QAT,
and the entropy exchange (SAT)h = QA</T, where the
superscript "h” denotes that the process of A invoives heat

interactions only. Therefore, tne energy 2and entropy
balances are

(19)

m

= OA‘_

(16)

[9)]

= QAP/TO * Sirr

if 2 orocess of a system A invoives both work and
neat pul no other interactions, the energy and entropy
Dalances for A are

E5 -y = QAT - WA= a7n
S0 =3y = 0AY/Tq + S (18)
or, for difrerential changes,
dE = 3QAT - SWA- (19)
as = 80AT/Ty * 6Sim 20)
werk znd heat interactions are most freguently

encounterea in engineering applications.

A NOTeworthy 0bservation emerges very Cigary irom
our presentation so far, namely, 03t me wldespreac
iargon by whiIch the energy balance equation is Czlied "the
Tirst !aw" and the entropy bDalance eguation "the second
law’, i3 incorrect ana misieaqing. Inceeaq, t nouig suffice
0 note tnat the main consequence of the first 'aw is5 the
very existence of the additive property energy, anc¢ that
the cefinition of entropy and the entropy Dalance equation
reguire both the Tirst and the seconc iaws, as well as

many other important auxiiiary concepts.



GRAPHICAL REPRESENTATIONS ON
THE ENERGY VERSUS ENTROPY DIAGRAM

Because they are defined in terms of the values of
the amounts of constituents, the parameters, and a
complete set of independent properties, states can in
principle be represented by points in a muitidimensional
geometrical space with one axis for each amount,
parameter and independent property. Such 2
representation, however, would not be enlightening
because the number of independent properties of any
System is indefinitely iarge. Nevertheless, useful
information can be summarized by first cutting tne
multidimensional space with a piane corresponding to
given values of each of the amounts of constituents ang
each of the parameters, and then projecting the result onto
@ two-gimensional piane -- a Dlane with two property
axes. One such plane that illustrates many of the basic
concepts of thermoaynamics is the BNergy versus entropy
piane.

We consider a system with volume, V, as the oniy
parameter. For given values of the amounts of
constituents and the wvolume, we e
muitidimensional state space of the system onto the £
Versus 5 plane. This projection must have the shape of the
tross-natched area shown in Figure 1, namely, all the
siates that snare the given characteristics have property
values that project on the area between the Two heavy
iines -- the vertical line denoted as the iine of the zero-
entropy states and the curve denoted as the curve of the

Stabie equiiibrium states.
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A poInt either inside the cross-natched area or on
the vertical line S = 0 represents a large number of states.
Each such state has the same values of amounts of
constituents, volume V, energy E, and entropy S, but
differing vaiues of other properties, and is not a stable
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equilibrium state. It can be any type of state except a
stable equilibrium state.

A point on the convex curve of the stabie
equilibrium states represents one and only one state. For
8ach of these states, the value of any property is uniguely
determined only by the values of the amounts of
constituents, the volume, and the pair (E,S) of the point on
the curve.

This projection of states on the £ versus S plane is
novel because it inciudes both stable equilibrium states
and other states that are not staple equilibrium whereas,
usually, graphical representations of thermodynamic
relations are restrictea to stable equilibrium states only.

Zero Entropy Line

The tine of the Zerg-entropy states corresponds to
all the states that have the least amount of entropy. This
alfiount-Ccan be assigned the value zero because no states
EXist witn lower entropy. Thus, entropy has absolute
values greater than or equal to zero. it turns out that the
Zero-entropy line represents all the states that are
cerined in mechanics {classical or gquantum) without
concern about the laws of thermodynamics. So mechanics

Can be thought of as a speciai case of thermodynamics,
nameiy, as zero-entropy physics.

Lowest Fpnergy States
For tne given values of the amount
and the volume, the lowest znergy of the system |
COrresponds ¢ 2 unique stable aguilibrium state having
Z870 eniropy and Zero temperature -- the slope from apove
of the stable-equilibrium-state curve at point £, is equal
t0 zero. The siope from below of the curve at point Eq IS
indeterminate because no states and, therefore, no curve
Of stable equilibrium states exist for S < 0.

The energy Eq is the lowest energy for which the
System can exist with tne given types and amounts of
tonstituents, and for the given value of the volume. For
example, if the system consists of one nydrogen moiecule
N a2 smaii Coniziner, &, would be the smallest value of the
energy of the nydrogen moiecule. The smallest energy of
two nyarogen atoms in the same container or two protons
and two electrons in the same container would Ciearly
differ from kg For other values of the amounts of the
constituents and the volume, the lowest energy state wiil
Ge different from that in Figure | but still a stable
8QUITIDrium state with zero entropy and zero temperature.

e o1

The Fundamental Relation

The stable-equilibrum-state curve can be regarded
as representing either the convex stable equilibrium state
relation £ versus S or, equivalently, the concave
fundamental relation S versus E, both for the given values
Of the amounts of constituents and the volume. It is 3
single-valued relation because for eacn set of values £, g,



and V there is one and only one stable equilibrium state
and, therefore, a unique value of 3.

The shape of the stable-equilibrium-state curve is
convex as shown because this is the only shape consistent
with the results derived from the laws of
thermodynamics, and that we summarize below with
reference to Figure 2.
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Each stable equilibrium state is a state of Jowest
energv among all the states with the same values of 3,0,
and V. For each set of values S, 0, and V, the stable
equilibrium state Agy on the vertical line S = 5y is the
state of lowest energy -- no states exist below Ag that
correspond to the same values of n and V, and that lie on
the line S = S,. State Agy can be reached starting from any
state A, on the line S = S, by means of a reversible weignht
process without net changes innand V. Indeed, in such a
process the net change in the entrooy of the system is
zero, Sg; = S, and the energy Ey - Egy IS transferred out
from the system to the weignt.

Each stable equilibrium state is a state of highesl
entropy armongd all the states with the same values of E, D,
and V. For each set of values E,, n, and V, the stabie
equilibrium state Ay on the horizontal line E = Ey is the
state of highest entropy -- no states exist beyond Ay that
correspond to the same values of 0 and V and that lie on
the line E = E,. In an isolated system -- a system
experiencing no interactions -- state Ag can be reached
starting from any state A on the line £ = £, by means of a
spontaneous change of state. Any such spontaneous
process would be irreversible because It entalls an
increase in the entropy of the system without any effects
on the environment.

Temperatyre is positive and increasing with energy.
Because each stable equilibrium state is unigue, the
temperature (3E/3S)y at each point on the convex
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boundary is uniquely defined. Temperature is not defined
for states that are not stable equilibrium because then E
depends on more variables than S, p, and V and, therefore,
more quantities should be kept fixed while finding the
partial derivative of E with respect to S More
importantly, however, even if the variables in addition to
S, p, and V were specified, the partial derivative of E with
respect to S would not be the quantity that enters the
temperature equality requirement for systems in mutual
stable equilibrium and, therefore, such a derivative would
not have the same meaning as the absolute temperature of
thermodynamics.

Perpetual Motion of the Second Kind

Starting from a stable equilibrium state Agy on the
convex boundary EgAgiAg, the system cannot transfer
energy to a weight without net changes in the values of
the amounis of constituents and the volume because no
state of lower energy exists that has an entropy equal to
or larger than the entropy of state Ag). Indeed, if energy
were transferred to a weight, the energy of the system
would be reduced. But starting from state Agy all states
with smaller energy have also smaller entropy. Because
the weight receives only energy, and entropy cannot
decrease by itself, it follows that no such transfer can
occur under the conditions specified. This feature of the
graph represents the impossibility of perpetual motion
machines of the second kind.  This impossidility 1S
sometimes expressed as the nonexistence of a Maxwellian
demon, the nonexistence of a superbeing that would be
capable of extracting energy but no entropy from a stable
equilibrium state without affectingn and V.

Classical T —

For each set of given values of amounts of
constituents and volume, the convex boundary E£4AgiAg
represents the corresponding stable equilibrium states.
These are the states considered in classical
thermodynamics, which is sometimes also called
"thermostatics” because it contemplates only states that
are equilibrium. These states are often referred to in the
literature as the thermodynamic equilibrium states. 50
classical thermodynamics can be thought of as another
special case of ‘thermodynamics, namely, as highest-
entropy physics.

Adiabati 1apilit

For a given state A;, the energy E; - Es; shown
graphically in Figure 3 is equal to the adiabatic
availability w, of A, because the change of state from A,
to Agy represents the change specified in the definition of
V). We see from the figure that, in general, w is smaller

than the energy of the system above the ground state
energy, E; - €, It varies from Ey - E5 to zero as the
entropy S, of the state varies from zero to the highest



value that is possible for the set of values £y, D and V. 30
entropy affects the usefulness of the energy of a system,
i.e., the larger the entropy for given values of £, o and V,
the smaller the adiabatic availability. This limitation on
the amount of energy that can be transferred from a
system to a weight in a weight process without net
changes in the values of p and V is a consequence of the
laws of thermodynamics of paramount theoretical
importance and with many practical implications.
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For given values of n and ¥V, we see grapnicaily from
Figure 3 that stable equilibrium states, such as for
example state Agqp, have Zero adiabatic availabilily, and
that any state with nonzero adiapatic availability cannot

be stabie equilibrium.

. iabatic F

in an adiabatic process without net changes in
amounts and volume, the work gone by the system siarting
from state A, and enaing In a state different from Ag,

(Figure 3) is always smaller than the agiabatic
availability wy.

If the process is reversible, the final state A; = Agy
must have entropy S, = Sy, and energy £, > Egy. Therefore,
2n

(WA gy = By = B2 < By ~Egy = Wy

If the process is irreversible, the final state As =
Agy must have entropy Sz > 5. But for Sz > Sy, the graph
shows that Az must have energy Ez > Egy and, therefore,

(WA—’)i" =k - :3 < Ey - ESI F Yy (22)

Here, the entrepy increase S5z - 9, is nol supplied by
another system because the process is adiabatic and,
therefore, is generated by irreversibility.

: : N labili

The generalized adiabatic availability is illustrated
graphically in Figure 4. For a given state A, with values
of amounts 0’ and volume V', the energy £, - Eg; is equal to
the generalized adiabatic availability wy, of A, with
respect to given vaiues p of the amounts and V of the
volume which may aiffer from p' and V', respectively.
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Figure 4

Availaple Epergy

The ER versus SR diagram of a reservoir R is just a
straignt line of slope Ty (Figure 5) because the reservoir
passes througn stable equilibrium states only, and has a
constant temperature. it is noteworthy that, for very
small values of entropy, no system can behave as a

constant nonzero temperature reservoir because as
entropy approaches zero, the temperature of any system
must also approach zero. Moreover, no system at zero
temperature can be regarded as a reservoir because its
entropy cannot be both decreased and increased, and
because for a finite entropy increase the temperature
becomes greater than zero.
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Given the £ versus S diagram of a2 system A with

specified values of amounts of constituents and volume,
and a reservoir R at temperature Tp, we can draw a line of
slope TQ tanuent to thp convex stable-equilibrium-state
tangent to the curve EgAgiAg N
Figure 6 'he pomL of tangency A, represents the state Ag
in which system A i3 in mutual stable equilibrium with the
reservoir because in state A, the sysiem has a
temperature T, = (2E/2S),y and, therefore, ecuai to the
temperature Tg of the reservoir. in state A, the sysiem
has eneray Eq and entropy 5o
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The tangent is also useful in providing a way to
represent graphically the available energy of any state of
A. Specifically, for a given state A,, the vertical distance
of point A, from the tangent, ie. the energy &, - E,
represents the available energy Q,R of A, with respect to
reservoir R.

Indeed, with respect to reservoir R, the available
energy QR of state A, with energy E; and entropy S5y is
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given by the relation
Q'R=E‘ 'Eo'Tg(S1 "So) (23)

because the available energy QqR of state Ay is zero. We
recal! that the available energy Q)R equals the work that
would be done in the course of a reversible weight process
for the combination of systems A and R in which A would
end in state A, (Figure 6) and R would change from state
Ry to state R, {Figure 3).

The term E, - £, In the right-hand side of Equation
23 is the length bA, in Figure &, ie, the negative of tn2
change in energy of system A as it goes from state Ay 0
state Ay The term -Tp(S; - So) is the iength ab Decause
30 = {bAg)tans = (Sp - S)Tp. Of course ab 15 also ecuai to
the negative of the change in energy ER - Exf of the
reservols as it goes from state Ry to state Ry (Figure S)
Thus, the length aAy = bA, + ab is indeed the negative of
the energy change of the combinaticn of A and R and,
therefore, the available energy 07 of state Ay

The graphs in Figures 5 anc 6 aiso account 7or
entropy changes that correspond o any reversiblie proces
that yxeu:fs *he available energy. They show that the
change in entropy So - 5y of system A is equal anc opposite
the change in entropy SoR - 547 of the reservoir R

By comparing the graphical representations for
and QR (Figures 3 and 6), we see that in general
available energy QR is greater than the adiabati
availability w,. We also see that ;% can be are
the energy of the system above the grouna stale energy,
E, - I For states with energy E, the availabie ene rgy
varies from the largest value £ - £5 10 the lowest value

£, depending on the entropy 5y of sLase Ay, i.e., gepencing
on whether the entropy is zero or the largest for the given
4, respectiveiy.

it is noteworthy that aithough the available energy
can be extracted as a result of an adiabatic process for the
combination of systems A and R, the processes
experienced by both A and R are not necessartly agiabatic
pecause they may involve excnanges of both energy and
entropy. in fact, it is precisely the exchange of entropy
petween A and R that results in sometimes the available
energy being greater than the energy of A, or in getting
work even when A is in a stable equilibrium state,
orovided that A and R are not initially in mutual stable
equilibrium. In this sense, the reservoir acts as a source
or sink of entropy for A. Of course, this entropy exchange
petween A and R is always accompanied by a cefinite
energy exchange because the reservoir must change both
its entropy and its energy as it passes from stable
equilibrium state to stable equilibrium state.

One of the many ways of extracting the available
energy of, say, state A; (Figure 6) is as follows. We first
use machinery that interacts reversibly and adiabatically
with A only, and extracts the adiabatic availability w..
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Thus, system A is brought to stable equilibrium state Agy.

At this state, the system is in general at a temperature
different from that of the reservoir. Next, we connect the
System to the reservoir via reversible heat engines that
heat the system to temperature Ty while producing work.

Thus, the total work done QR is greater than y,.

Generalized Available Fnergy

For a given state Ay, with values of amounts o' and
voiume V', the generalized available energy Q¢R with
respect 1o reservoir R and values n and V is represented
grapnicaily in Figure 7 and given by the relation

- \

y-R= [ Tp(Sg - SQI

(24

ry

Wwnere In state Ag system A is in mutual stable ecutiibrium
with the reservoir, and has values n and V that may aiffer
from o' ana V', respectively, of state Ay
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Examples of work Interactions

Grapnical illustrations of work-only interactions
between two systems A and B are provided by Figure 8.
The combination of A and B is isolated and immersed in a
vacuum, so that both A and B can change volume with no
external effects. Moreover, the process for each system is
reversible. Accordingly, the energy change of A is equal

ana opposite to the energy change of B, and the entropy
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changes of both A and B are zero because a work
interaction does not transfer any entropy and the
processes for both A and B are reversibie.

System A

System B

(a)

SA

Eigure 8
As aresuit of the interaction depicted in Figure 8z
the stats of A changes from state A, [0 state A, and that
of B from state B, to state B,, none being a stabie
2quiiibrium state. Morecver, the voiume of either SY3Lem
A, or system 3 or both may or may not change.
As a result of the interaction shown in Figure 8b,

the state of A changes from Az £0 A4 anad that of B from B-
L0 By, ail being stabie equiiibrium states. Here the volume
T system A changes from VsA to V.A, and the volume of
system B from VB to V2.

As a resuit of the interaction shown in Figure &,
the state of A changes from stable equilibrium state A=z 10
state Ag that is not stable equilibrium and may or may not
have a cifferent volume than As, whereas the state of B
thanges from state S5 to state Bg both being stable
equilibrium states, but with different volumes VB and
VB

For the conditions specified in Figures 8a and 8c,



the processes for systems A and B could evolve into
irreversible processes because some of the final states of
A and B are not stable equilibrium and, therefore, the
potential exists for spontaneous entropy creation within
the systems. In the example of Figure 8a, irreversibility
could occur in either A, or B, or both because state Ay, or
state B,, or both could evolve spontaneously towards the
corresponding stable equilibrium states. Again, in the
example of Figure 8c, irreversibility could occur in A but
not in B because only state Ag could evolve spontaneously,
whereas stable equilibrium state By could not.

The processes in Figure B8b cannot become
irreversible because the final states of both A and B are
stable equilibrium states and, therefore, each has the
highest entropy compatible with the corresponding energy.

These simple examples illustrate the well known
fact that spontaneous creation of entrooy by
irreversibility can occur if and only if the system
experiences a departure from stable equilibrium.

Examples of Heat [nteractions

Graphical illustrations of heat-only interactions
between two systems A and B are provided in Figures 9 and
10. In each illustration we assume that the combination
of A and B is isolated and that the processes for both
systems are reversible. Therefore, the changes in energy
and entropy of system A are equal and cpposite to the
changes in energy and entropy of system B, respectively.

System A System B
A A B__ Be
EA)P a5t - 55"" o ds®= -85
e’
dE® - ss“l“ Slopo Ty dEB. - 5EB* T
A S
T A 2 B,
e 782
slepe Tg
sh s8
d9E*= T, as? dE® = T, ds®
SEA" .. 5E%"
557" - - 555"
Figure 9

As a result of the heat interaction shown in Figure
9, system A changes from state A, to state A,, system B
from state B, to state B,, all being stabie equilibrium
states, without net changes in values of amounts of
constituents and volumes. The temperatures of A and B
are almost equal to Tq. The two systems exchange energy
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and entropy. The ratio of the energy exchanged to the
entropy exchanged is equal to the common temperature.
Because the final states are stable equilibrium, no
spontaneous changes of state can occur and, therefore, no
entropy can be generated by irreversibility.

As a result of the interaction shown in Figure 10,
system A changes from state A; to state A, system B
from state B; to state B,, none of which is a stable
equilibrium state. However, systems A and B each contain
a subsystem A' and B’ changing from stable equilibrium
states A, and By to stable equilibrium states A, and Bj,

System A

System B8

Subsystem A° Subsystem B

System A System B
T A
g* g?
28
A B2

Paat

AY

s? g8

Subsystem A’ Subsystem B’

Figure 10

respectively, all with temperatures aimost egual to Ty
Thus, the interaction between subsystems A’ and 8' is of
the same kind as that sketched in Figure 9. When viewed
as an interaction between systems A and B, however, it is
clear that the interaction may be followed by irreversible
spontaneous rearrangements of energy and entropy
between either A" and other subsystems of A, or B' and
other subsystems of B, or both.



Nonwork interactions that are not heat between two
systems A and B are illustrated in Figure 11 where the
combination of A and B is isolated and all processes are
assumed to be reversible.

System A System B
A
8
E 52\
B, (8)
gh 58
AT EBT
Ag Ba
/ ®
Ay B3
54 58
Figure 11

As a result of the interaction shown in Figure 11a,
the energy of system A decreases but its entropy
increases as A changes from state A; to state A; and,
correspondingly, the energy of system B increases but its
entropy decreases as B changes from state By to state B,
It is clear that this interaction is not heat in the strict
sense of the example in Figure 9 because neither system A
nor system B pass through stable equilibrium states. it is
not heat even in the generalized sense of the example in
Figure 10 because the ratio of the energy exchanged to the
entropy exchanged is negative.

As a resuit of the interaction shown in Figure 11b,
the energy and the entropy of system A are both decreased
as A changes from nanequilibrium state Az to stable
equitibrium state A4 and, correspondingly, the energy and
entropy of system B are both increased as 8 changes from
stable equilibrium state By to nopequilibrium state B,
Assuming that the temperatures T4 and T3 of stabie
equilibrium states A, and Bx are not equal, then the
interaction cannot be heat in the strict sense illustrated
in Figure 9. [t is not heat even in the generalized sense
represented in Figure 10 because, even if the exchanges
occurred between two subsystems A and B’ passing
through stable equilibrium states, the temperatures of
these two subsystems are not aimost equal to each other.
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The reason is that the temperature of A" must be equal to
Ta, and that of B’ to Tg Decause in state A4 subsystem A’ is
in mutual stable equilibrium with the other subsystems of
A, and in state Bz subsystem B' is in mutual stable
equitibrium with the cther subsystems of B.

All the processes represented in Figure 11 could
evolve into irreversible processes. For example, in Figure
I1a, irreversibility could occur in either system A, or
system B, or both because the final states of both A and B
are not stable eguilibrium.  Again, in Figure 11D,
irreversibility could occur only in system B because the
final state is not stable equilibrium, but not in system A
because the final state A4 is stable equilibrium.

A
£
dEA - SEA"' slape TQ
)
—A
A - B / !
: T Az
! k— d5* = 554
Ae
‘J = 564/ T,
T
ds*= §54%
2 spA*
2 8ER/ T,
N
7

Figure 12

The need for the distinction between heat and other
types of nonwork interactions is illustrated by the
changes of state shown in Figure 12. System A is initially
in a stable equilibrium state A, at temperature To. As a

result of interactions involving no net changes in values of
amounts of constituents and volume, A decreases iis

energy by an amount S8EA~.  As the graph illustrates, this
change in energy is consistent with each of the final
states on the line ApAs. Except for state A,, every state
on this line corresponds to a transfer of entropy 354~
different from §EA™/T,. Therefore, either we call heat all
the interactions that involve an exchange of both energy
and entropy, but then we cannot use the relation §QA~ =
TadSA™, ie, 8EA™ = To8SA=, for all these interactions, or
we reserve the term heat for interactions for which 5QA~
= To8SA=, and then we need the term nonwork for

interactions that involve exchanges of both energy and
entropy, ana we must realize that heat is only one special



it is the latter choice that
present exposition of

kind of nonwork interaction.
has been made in the
thermodynamics.

Optimum Changes in Avaliable Fpergy

Figure 13 !s a graphical {llustration of the result
that the optimum amount of energy that can be exchanged
between a weight and a system A in combination with 2
reservoir R as A changes from state A, to state A, equals

the change in available energy between these two states.
T
3
A, l—"v‘
V"
, Ay & g
R R A
Q‘ - QZ ) .."ﬂzavz
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Figure 13
in Figure 13, avaiiable energies ar e evaiyatag witn
respect (0 fhe vaiues p and v ol he amounis of
constituents and the volume, for which system A is in
mutua! stabie equilibrium with reservoir R in tateq Ag.
We have aiready shown that the jength Az = O®, and is

the largest amount of energy that can be transferred to the
weignt as sysiem A changes from state A, t0sfate Ag in 3
weight process for the compination of A and the reservoir
R. Simiiariy, the neqative cf the ienath Asb eauais the
negative of (2,R, and is the smaliest amount of energy that
must be transferred from the weight to the combination of
A and R in order to change system A from state A5 to state
A, Accordingly the difference 2,° - QR depicted by the
‘2ngth A;c 1S the optimum amount of energy exchanged
with the weight as A changes from A; {0 A,, where point ¢
is determined as the intersection of the vertical line A,ca
and the line A;c which passes through A, and has slope
2quai to Tg, the temperature of the reservoir.

It is noteworthy that states Ay and A, need not have
the same values of amounts of constituents and volume.
indeed, Figure 13 must be viewed as the supernosition of
three E versus S diagrams for system A, corresponding,
respectively, to the values n,, V, of state A,, the values
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Dy, V7 of state A5, and the values p, V chosen as reference
values to evaluate available energies. The optimum
amount of energy exchanged with the weight, QR - QR
can be positive, negative, or zero. If it is positive, then
QR - QR corresponds to the highest work that the
combination of A and R can do as a result of an adiabatic
process for the combination in which A changes from state
Ay to state Ay If it is negative, then QR - QR
corresponds to the lowest work that must be done on the
combination of A and R in an adiabatic process for the
combination in order to change system A from Ay 10 Ay,

£t lzble E

We have already iilustrated the adverse effect
irreversibility in adiabatic processes for system
i4 provides a graphical explanation of the advers
of irreversibitity on the capacity to dc work of 3
that is in combination with a reservoir R
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aure
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Figure 14
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ger a reversible
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To make ideas specific, we cons
aciabatic process for the combination of A and R in which
the state of A changes from state A, to state As; having
energy Ex = E;. The work done by the combination is given
by the length A;d on the vertical line A,ca. Because state
Az 15 not stable equilibrium, it could change spontaneousty
{0 state A, thus generating an amount entropy
Sipr Sz - 53 due to irreversibility.  During this
soontaneous change of state, no work is done by either A
or the combination of A and R, and the energies of both A
and R remain fixed. However, had state A, been reached as
a result of a reversible adiabatic process for the
compination of A and R, the work cone would have been
given by the length A,c which is greater than A,d. We can
reacily verify that the difference ¢¢ = A\C - Ad is equal
t0 TrSi, and s0 confirm again the adverse effects of
irreversibijity.

nf
e



MODIFIED STATEMENT OF THE SECOND LAW

To obtain the results just summarized, the second
law must be stated with the proviso that "starting from
any state of a system it is always possible to reach a
stabie equilibrium state with arpitrarily specified values
of amounts of constituents and parameters by means of a
reversibie weight process.”

Ameng other implications, this proviso results in
the conclusion that for each given set of values of amounts
of constituents and parameters a system admits z unique
ground-energy state and, therefore, that the E versus S
curve for the stable equilibrium states has the shape
sketched in Figure 15, Using the language of guantum
theory, we may express this conclusion by saying that each
ground-energy value is nondegenerate , in the sense that
't is reaiizec only oy one state.

A
- E = E(S.n,f)
2 :
g’ for fixed nand g
-4
ad
Ground
Energy
State A,
e
Eg Slepe = T, = 0
N
7
Sq: 0
Entropy S
Figure 15

I the proviso were modified to read: "starting from
any state of a system it is always possible to reach either
2 stabie equilibrium state or 3 ground energy =rare witn
arbitrarily specified values of amounts of constituents
and parameters by means of a reversible weignt process”,
then the second law wouid be consistent with the
possibility that for a given set of values of amounts of
constituents and parameters a system admits more than 3
single ground-energy state, ie, consistent with the
possibility that a ground-energy value be degenerate , in
the sense that it is realized by more than a singie state.

indeed, with the modified statement and for given
values of the amounts of constituents and parameiers of a
sysiem A, we wouid conclude that the curved boundary of
the projection onto the E versus S plane couid take the
shape shown in Figure 16. Specifically, the horizontal line
EqAq represents the E versus S relation for all the states
that are not stable equilibrium but have the ground-state
energy kg, and the curve AgAg the E versus S relation for
the stabie equilibrium states. Each point on th

e tine E?Ag,
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except A, is the projection of states none of which can be
stabie equilibrium, whereas each point on the curve Aghg
is a unigue stable equilibrium state.

T
E
El A1 A3 Ao
Ground~energy
Stable Equilibriuvm
State fixed values
/ of nand 8
E
’ Az Ay (A,
' >
S S S
1 3 g s
Figure 16
To verify the last ye note that aiven 2

ZSSErtion. w
el of values of amounts of constituents ang caramerers
or which & is the ground- wcrcy stabie equiiibrium
state, a reversiple welgnt proce re :

y::em A womc reacn 3 st

The v='fue I, O the entrepy of the groung-enerqgy
3tabie equl: ‘sum’ 5i3te Ay
icwWest [oss mte for the states of svsiem A, and could be
gifferent for cifferent values of amounts of constituents
ang parameters. However, inthe Himit of very large values
0f amounts of constituents, it turns out thal the stable
equitibrium states with sufficiently nigh temperature
have entropy that grows linearly with the amounts of
constuuenzs, whereas the entroby Sq of the ground-energy
table equilibrium state grows only iogarithmically with
2 amounts of constituents and, therefere, in this iimit,
h value of 5, can be taken for practical purposes to be
negligible, and the modification of the statement of the
second law 1o have negligible practical implications. In
many texts on ther’nodvnamics where the treatment is
restricted from the outset to the stable equilibrium states
of systems with very large values of ‘“e amounts of
constityents, the conclusion just cited is added as part of
the third law by stating that 34 Is equal to zero for all
values of the amounts of constituents and the parameters.

The graph in Figure 16, however, has a dist urbing
feature. Star*mq from any state A, with entropy 3, <« Sq
and using a reversible weight process, we can reach a
ground-enerqgy state A, that is not stabie equilibrium. The

adiabatic avallability w, is represented by the length

would Zg [zrger thin Ihs

L:'A

-t .-1



AtA,. Similarly, starting from any state Az with energy
Es = Ey and entropy S; < Sz < 54, and using a reversibie
weight process, we can reach a state A4 that is not stable
equilibrium. Now, the adiabatic avaiiability ¢z =y, and is
represented by the length AzA4 But state A; can evolve
spontaneously into As, and the increase in entropy Sz - Sy
would be created by irreversibility. Then we would
conclude that irreversibility does not affect the values of
adiabatic availabilities for states with entropy between
zero and Sg, a conclusion that is an exception to our

understanding of the adverse effects of irreversibility.
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