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WHAT IS THE THIRD LAW?

by
Gian Paolo Beretta
Universita di Brescia, Italy, and
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
and . .
Elias P. Gyftopoulos
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

ABSTRACT

We discuss entropies of systems at very low temperatures or, equivalently, the third law of
thermodynamics. We conclude that definitive values of such entropies can be established
only by experiments on systems with very few degrees of freedom, such as one-particle
systems.

1. INTRODUCTION

In contemporary experiments, temperatures of a few nanokelvins have been measured(1],
and single ions have been trapped and laser-cooled within suitable electrodes(2]. Such
experiments call for a theoretical understanding of the behavier of systems with very few
particles. and at very low entropies and temperatures.

In most expositions of thermodynamics, entropy is defined only for systems that consist
of a very large number of particles in equilibrium states{3], the third law is stated 1n
the form either “the entropy vanishes at zero temperature’{4] or “the entropy at zero
temperature depends on the ground-energy degeneracy”(5-10] without reference to the
statement of the second law, and opinions differ about whether the third law is useless{11]
or useful(12.13]. For a system with a large number of particles. the difference between
the two forms of the third law is negligible.

In our exposition{14], entropy is defined for all systems. including a system consisting
of one particle only, and for all states, including nonequilibrium states: the third law
is useful and certain of its aspects are direct consequences of the second law; and the
precise form of these aspects can be decided only by experiments on systems with very
few particles.

In this paper. we present the third law in the context of our exposition. The statement
of the second law is discussed in Section 2, absolute entropy in Section 3, the third
law in Section 4, the quantum-theoretic underpinning of the third-law in Section 5, a
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modified statement of the second law in Section 6, and conclusions in Section 7. Complete
definitions of terms, and elaborate proofs of many assertions herein are found in Ref. 14.

2. THE SECOND LAW

The essence of the second law of thermodynamics is contained in the 1824 pioneer-
ing study by the French physicist Nicolas Leonard Sadi Carnot {1796-1832) entitled
“Refléxions sur la puissance motrice du feu,” the study that gave birth to the science of
thermodynamics.

Of the many correct statements of the second law, the most notable are those of the
German mathematical physicist Rudolf Julius Emanuel Clausius (1822-1888), the English
physicist William Thomson, Lord Kelvin (1824-1907), the German physicist Max Karl
Ernst Planck (1858-1947), the Greek mathematician Constantin Carathéodory (1873-
1950), and the American mechanical engineers George Nicholas Hatsopoulos (1926- )
and Jeseph Henry Keenan (1900-1977).

In their pioneering textbook “Principles of General Thermodynamics,” Wiley (1965),
Hatsopoulos and Keenan argue that all correct staternents imply the existence of a
stable equilibrium state for each set of values of energy, amounts of constituents, and
parameters—an implication that they take to be the essential element of the second
law. In our work, we adopt a statement of the second law which is an outgrowth of the
Hatsopoulos-Keenan statement, and prove explicitly that among its implications are the
Clausius, the Planck-Kelvin, and the Carathéodory statements.

We state the second law as follows: “Among all the states of a system that have a
given value E of the energy, and are 4:011»4)0;&'61:31 with a given sei of velues n (=
{ni.na,...,nr}) of the amounts of the r constituents, and B (= {B1,89,....8s}) of the
s parameters, there ezists one and only one stable equilibrium state. Moreover, starting
from any state of a system it is always possible to reach a stable equilibrium state with
arbitrarily specified values of amounts of constituents and parameters by means of a
reversible weight process.”

For systems in which all internal mechanisms capable of changing the values of the
amounts of constituents and the parameters are disallowed. the only states that are

1. The concept of compatibility of a state with a given set of values of amounts of constituents
and parameters plays a special role in the statement of the second law. It is defined as follows. A state
Ay with values (n)y, (8)1, (P}, where (P); denotes the set of values of all the properties of the
system. is compatible with a given set of values n of the amounts of consittuents and [ of the parameters
if the two sets (n)1, (B)1 and n, B are compatible. Two sets of values of amounts of constituents and
parameters (n)1, {8)) and (n)g, (B)q ate compatible if the change from one set to the other can occur
as a result of the allowed internal mechanisms of the system, such as chemical reactions, interconnections,
and internal forces. For example, if a system has two compartments of volumes V! and V", respectively,

interconnected so as to satisfy the constraint V! + V" = constant, then the two sets of values Vll , Vl"

and V?{. Vz" are compatible if Vll + VIH = V?{ + Vé’ because then the internal interconnection between the
two volumes allows the change from one set of values, say, Vll =3 mS and Vl" =3 m3, to the other set
of values, say, V?i =2m? and Vé' = 6 m3. The same two sets of values would not be compatible if the
two compartments were not interconnected.
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compatible with given values n and B are the states that have the given values. For these
systems, the first part of the second law can be restated in a simpler but equivalent form,
namely, “Among all the states of a system with given values of the energy, the amounts of
constituents, and the parameters, there ezists one and only one stable equilibrium state.”
For simplicity, we restrict our discussion here to these systems. Moreover, we assume
that the value of the energy of a system can be increased without limit.

The existence of stable equilibrium states for various conditions of matter has many
theoretical and practical consequences. It is a major augmentation of the principles of
mechanics, essential to understanding and explaining many phenonena, including the
behavior of systems with very few degrees of freedom. such as a system consisting of one
particle only.

The second part of the statement of the second law is an indispensable premise of the
exposition of thermodynamics. Its validity is essential to that of most basic results, such
as the existence of entropy as a property of any state, be it stable equilibrium or not,
and of temperature as a property of stable equilibrium states only. Yet, in traditional
expositions, this part has never been recognized explicitly.

Among the implications of the second law are its traditional statements. In terms of the
concepts of stable equilibrium state and temperature, these statements can be expressed
as follows:

o Clausius’ statement (1850): “No process is possible in which the sole net effect is the
transfer of energy from a system in a stable equilibrium state at a given temperature
to a system in a stable equilibrium state at a higher temperature.”

e Planck’s statement (1897). which is similar to one of several statements given by
Kelvin: “It is impossible to construct an engine which will work in a complete cycle,
and produce no effect except the raising of a weight and the transfer of energy out of a
system in a stable equilibrium state.” This statement is known also as the impossibility
of a perpetual-motion machine of the second kind, impossibility of a PMM?2.

o Carathéodory’s statement (1909): “In the neighborhood of any given stable equilib-
rium state there exist stable equilibrium states that cannot be reached by any weight
"process that starts from the given state.”

Additional implications of the second law are related to the notions of creation, annihili-
ation. and formation reactions. Another important implication is that for each given set
of values of the amounts of constituents and the parameters there is one and only one
ground-energy state. This state is stable equilibrium, and has a value of entropy that is
independent of the values of n and 8 and can be taken equal to zero. In traditional
expositions, this implication of the second law is stated as part of the third law.

What does not follow from the second law is that each of the ground-energy stable
equilibrium states has a temperature equal to zero. We discuss zero temperature in
Section 4.
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Figure 1. Schematic representation of the projection of the states
of a system with given values of the amounts of constituents and the
parameters on the energy versus entropy plane.

3. ABSOLUTE ENTROPY

Prior to discussing zero temperature, we introduce a new and very useful graphical repre-
sentation of the states of a system on an energy versus entropy graph.[14] For given values
of the amounts of constituents and the parameters, we project the multidimensional state
space of a system on the energy versus entropy plane. This projection of states includes
both stable equilibrium states and other states that are either nonequilibrium or nonsta-
ble equilibrium. It is not to be confused with the standard graphical representations of
thermodynamic relations which are strictly applicable to stable equilibrium states only.

For any system, the projection has the shape of the cross-hatched area shown in Figure
1, namely, all the states that share the given values of the amounts of constituents and
the parameters have property values that project on the area between the vertical line
denoted as the line of the zero-entropy states, and the curve of the stable equilibrium
states.

A point either in the cross-hatched area or on the vertical line S = 0 represents a
large number of states. Each such state has the same values of amounts of constituents,
parameters (such as the volume V'), energy £, and entropy S, but differing values of
other properties, and is not a stable equilibrium state. It can be any type of state except
a stable equilibrium state.
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Figure 2. Projections of the states of a system with given values
of amounts of constituents, and two different values of the volume,

- Vi and V. (a) Projection on the same E versus S plane; and (b)
projections on two different planes in £-S-V space.

A point on the convex curve of the stable equilibrium states represents one and only one
state. For each such state, the value of any property is uniquely determined only by the
values of the amounts of constituents, the parameters, and the pair {E, 5} of the point on
the curve. The temperature T, defined only for these states, is represented graphically
by the slope of the convex curve of the stable equilibrium states.

For the same values of the amounts of constituents but a different value of one of the
parameters, say, the volume V', the projection of the multidimensional state space onto
the E versus S plane is again an area bounded by the zero entropy line and a convex
curve. but the convex curve is shifted in the vertical direction. For exampie. for two
values of volume Vj and Vi, and such that ¥} < Va, the relative position of the two
convex curves is as shown in Figure 2a. The two projections may also be presented on
different planes of a three-dimensional space with axes E, S and V, as shown in Figure
2b. '

For stable equilibrium states having values of energy and entropy that may be both
increased and decreased without net changes in the values of amounts of constituents
and parameters, we show in Ref. 14 that the stable-equilibrium energy versus entropy
relation is indeed convex, and that temperature is positive. We prove also that the
value of the entropy of a ground-energy state, that is, a state for which the value of the
energy may be increased but not decreased (without net changes in the values of amounts
of constituents and parameters) can be taken equal to zero. The proof is completed by
showing that: (1) among all the stable equilibrium states with given values of the amounts
of constituents n and the parameters 8, the ground-energy stable equilibrium state has
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the lowest entropy and the lowest temperature; (2) the value Sy of this lowest entropy
is the same for all values of n and B of a system and, hence, it is the same for all
ground-energy states of all systems; and (3) no other state of the system has entropy
lower than S§;. Conclusions (2) and (3) do not hold if we adopt the modified statement
of the second law discussed in Section 6.

In Ref. 14, we first define entropy in terms of an arbitrary reference value, and then
we choose this value by setting S; = 0. We can do so not only because the value of
Sg is common to all the ground-energy states of all systems and is the lowest possible
value of the entropy, but also because the choice is consistent with quantum-theoretic
considerations (Section 5). In other words, in view of the conclusions (1), (2), and (3)

Just cited, we can set
Sg =0 for all values of n and 8 (1)

and in the definition of entropy we can choose a reference state 4, that is a ground-
energy state so that the resulting entropy values are nonnegative. Entropy values thus
obtained are called absolute.

4, THIRD LAW

In Section 3, we use quantum-theoretic concepts and show that the temperature Ty
of a ground-energy stable equilibrium state is equal to zero. However, such concepts
are beyond the scope of a traditional exposition of thermodynamics. Short of quantum
theory, the temperature of each ground-energy stable equilibrium state cannot be deduced
from the first and second laws. It must be introduced as an additional fundamental law,
the third law of the:rmadyn.mnic.s.2 For systems with energy that can be increased
without limit, we state the third law as follows: “For each given set of values of the
amounts of constituents and the paremeters, there ezists one stable equilibrium staie
with zero temperature.”

For given values of n and § of a system with energy that can be increased without limit,
the temperature is nonnegative and its lowest value occurs at the ground-energy stable
equilibrium state. So, we readily conclude that the stable equilibrium state with zero
temperature required by the third law is the ground-energy state. As shown in Figure
3. for given n and f, the least energy E; corresponds to a unique stable equilibrium
state at zero entropy and zero temperature.

The energy Ej is the least energy for which the system can exist with the given values of
n and B, but it varies as n and B vary. Nevertheless, for all values of the amounts of
constituents and the parameters, the ground-energy state is always a stable equilibrium
state at zero entropy and zero temperature.

5. QUANTUM-THEORETIC CONSIDERATIONS

Within the mathematical framework of quantum theory[15], the third law cited in Section
1 follows as a theorem. To see this clearly, we consider a system for which the energy

2. In some expositions, the third law is referred to as Nernst’s principle.
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Figure 3. Schematic representation of the energy versus entropy
relation for stable equilibrium states with given values of n and £
at low temperatures.

E, entropy S, and temperature I' of the stable equilibrium states are related by the
canonical formulas

H(n,p)exp|~H(n, B)/kT)

EmeP) =TT ol Hn. B)/AT] @
and
L expl=H(n,B)/KT] | expi=H(n.B)/T]
S(Tin B) = =k Ir g S H(n, B)JFT] " Tr expi—H(n, B)/FT] @)

where H(n,B) is the Hamiltonian operator, Tr the trace functional on the Hilbert
space of the system. and % the Boltzmann constant. For such a system, the Hamiltonian
operator is a function of the amounts of constituents n and the parameters . For
example, if the system consists of structureless particles in a box, the Hamiltonian is a
function of the number of particles and the geometrical characteristics of the box. We
emphasize that all that we say holds even if the number of particles is unity, that is, even
if it consists of a single particle.

The spectral expansion of the Hamiltonian operator can be written in general as
oo
H(n,B) =) &j(n.B8)Pi(n,B) (4)
j=0
where €j(n, #) is the jth eigenvalue, and Pj(n, B) the projection operator onto the
corresponding eigenspace. Without loss of generality, we assume that the eigenvalues are
listed in increasing order with respect to the index j, thatis, ¢g < e; < ---¢; <---. The
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dimensionality of each eigenspace D;(n, 8) = Tr Pj(n, ). It is called the multiplicity
or degeneracy of the corresponding eigenvalue. Alternatively, for given values of n and
B we say that the jth energy eigenvalue ¢; is either D;fold degenerate (or, simply,
degenerate) if Dj(n, B) > 1, or nondegenerate if D;(n, B) = 1.

In terms of the spectral expansion, and for a given set of values of n and 8, we can
write :

exp[-H(n, B)/kT] _ Po+ 3321 P; expl—(¢; — ¢9)/kT]
Tr exp[~H(n, B)/kT] Do+ 3 72 D;j exp[—(ej — €9)/kT]
where, for simplicity, we drop the explicit dependences but recall that P;, €¢;, L); for
7=0,1,2,..., co are, in general, all functions of n and 8.

(%)

Substituting Equations 4 and 5 into Equation 2, and using the property of orthonormality
of the projectors P;, that is, the fact that P;P; = é;;P;, we find

€0 Do + 3321 €;D; exp[—(e; — eq)/ kT
Do + 32521 Dj exp~(e; — €0)/kT]

where 4;; is the Kronecker delta, the inequality follows from the fact that ¢; > €y for any
Jj > 0 and, therefore, eg Do+ 32 ¢;D; exp[—(e; —€9)/kT] 2 g Do+ Y_52 e Dj exp[—
(e; — €0)/kT) = eg(Do + 2_52; Dj exp[~(¢; — €9)/kT]), and the equality obtains for
T = 0, that is, E(0;n, B) = ¢(n,f). Thus we conclude that, for given values of n
and f, the lowest energy equals the lowest eigenvalue of the Hamiltonian operator, that
is, Eg(n, ) = ¢g(n,f), and that the stable equilibrium state with lowest energy has
temperature I' = 0. These conclusions are equivalent to the implications of the third
law given in the preceding section. But within the quantum-theoretic context, the third
law is a theorem and not an independent postulate.

E(T;n,B) = 2 eg(n. B) (6)

Another important theorem regards the heat capacity at constant volume and other
parameters Cy at T = 0. Starting from Equation 2, we can readily verify that3

—-1
~—

OE 4
CV..(-&:LJ?-»O as T —0 (

In addition, for T = 0 Equation 5 becomes

3. Indeed,

Cy = ?£> 1 3?‘;0 G?Dj ex?[—ej/kﬂ _ ;?‘_3__0 €;D; expl~e;/kT] 2
g 320 Dj expi=;/kT] ~ \ 232 Dj expl—e;/kT]

kT j=0Y;
Do ¥F2le - €0)?D; exp(~(¢; — e0)/kT]/kT?
) (DO*’Z}?‘;l D; exw[-(fj—f(J)/kT])2
P IN Ch €;)2D; expl~(; — €9)/KT1 D; expl~(e; — €0)/kT/kT?
2(Dg + T2, Dj expl—(e; - 60)/1:7'])2

Because € —¢qg > 0 for every j > 1, and exp(—a/T)/T2 — 0 for a > 0 and T — 0, we readily verify
Relation 7.
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expl-H(n, B)/KT] _ Py _ Py ©
Tr exp(—H(n,B)/kT} TrP Dy

and, therefore, Equation 3 yields

Py Py TrPyln Py Tr Py

. =k + k n =kln ,

Do In Do Dy Dy Dy = Dg(n,B) (9)

because Tr Pyln Py = 0 and Tr Py = Dg. I Do(n, B) > 1, the value of the entropy *
of the ground-energy stable equilibrium state 5(0;n,B) = klnDgy(n,B) # 0. This
conclusion is in conflict with the second law—more precisely, with conclusions (2) and
(3) listed in Section 3. One way to avoid the conflict is by asserting that every system
has a Hamiltonian operator with a nondegenerate lowest energy eigenvalue, that is,

Dy(n,p)r=1 for all values of n and 8 (10)

S(0;n,B)=~kTr

because only then

S(0:n, B) =0=S54(n.f) (11)

However. many authorsi6-8] question the generality of Condition 10 because of lack of
conclusive experimental evidence. As a result. they suggest that, in general, Dg(n, 8) 2
1.

In our exposition. the question of degeneracy of the lowest energy eigenvalue concerns
neither the statement of the third law given in Section 4. nor the first part of the statement
of the second law. The possibility that Dg(n.8) > 1 is in condict only with the part of
the statement of the second law which avers that “Starting from aeny state of a system
it is always possible to reach a stable equilibrium state with arbitrarily specified values of
amounts of constituents and parameters by means of a reversible weight process.” In the
next section we show how a slight modification of this part eliminates the conflict with
the possibility that Dg(n, 8) > 1 without affecting any of the major implications of the
second law, such as the existence of entropy as a property of any state.

6. MODIFIED STATEMENT OF THE SECOND LAW

To account for the existence of a system with a Hamiltonian operator such that
Dy(n.B) > 1 for some or all sets of values of n and B, we express the second part
of the statement of the second law as follows: “Starting from eny state of a system it
is always possible to reach either a stable equilibrium state or o ground —energy state

with arbitrerily specified values of amounts of consiituents and parameters by means of
a reversible weight process.” In this form, the second law is consistent with the possi-
bility that for a given set of values of amounts of constituents and parameters a system
admits many ground-energy states, that is, many states with energy equal to the lowest
eigenvalue of the Hamiltonian operator for the given values of n and f. Of course, the
first part of the statement of the second law remains unchanged and implies that even
among all these ground-energy states one and only one is stable equilibrium. Moreover,

1. As we discuss in Section 7, we are especially concerned with systems with few particles. Accord-
ingly. the discussions in Refs. 8 to 10 about taking the limit as the number of particles goes to infinity are
not germaine to our purposes.
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Figure 4. Shape of the energy versus entropy diagram consistent
with the statement of the second law modified to account for the
possibility that for a given set of values of n and £ a system admits
more that a single ground-energy state.

by virtue of either the quantum-theoretic treatment or the statement of the third law,
the temperature of the ground-energy stable equilibrium state is equal to zero.

Indeed, with the modified statement of the second law, we conclude that the curved
boundary of the projection onto the E versus S plane can take the shape shown in
Figure 4, rather than the shape shown in Figure 3. Specifically, the horizontal line E; A4
represents the E versus S relation for all the states that are not stable equilibrium but
have the ground-state energy E;, and the curve 4gAp) the E versus S relation for
the stable equilibrium states. Each point on the line EjA,, except 4,4, represents the
projection of many states none of which is stable equilibrium and, hence, none of which
has a temperature, whereas each point on the curve A;Ap| represents only one state-—a
stable equilibrium state.

To verify the last assertion, we note that given a set of values of n and 8 for which 4,
is the ground-energy stable equilibrium state, a reversible weight process starting from
a state A; can reach either a stable equilibrium state if the entropy S; of A4, is greater
than or equal to the entropy S; of Ay, or a ground-energy state with energy E = E; if
the entropy 0 < 57 < S55. In the latter case, the final state is not a stable equilibrium
state because its entropy is smaller than the largest value corresponding to the given
values Ey, n, 8.

Whereas the zero slope of the stable-equilibrium-state curve £ = E(S, n, B) at state 4,
corresponds to a zero value of the temperature, the slope of the horizontal line Eg44 for
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0 < § < Sy is zero but does not correspond to a temperature because no single-valued
relation of the form E = E(S,n, B) exists for the states represented by points on this
line.

The modified statement of the second law results in an interesting exception to our general
understanding of irreversibility. Starting from any state A; with entropy S1 < Sy, and
using a reversible weight process we can reach a ground-energy state Ay that is not stable
equilibrium (Figure 4). The amount of energy that can be transferred to a weight in a
reversible weight process is represented by the length ¥ = A1Ag. Similarly, starting
from any state A3 with energy E3 = E; and entropy 51 < S3 < Sg, and using a
reversible weight process we can reach a state A4 that-is not stable equilibrium. Now,
the energy transferred to the weight is the same as in the weight process starting from
A, and is represented by the length ¥3 = A3A4. But state 4; can evolve spontaneously
into Az, and the increase in entropy S3 — Sy is generated by irreversibility. Thus, for
the states with entropy between zero and S, we conclude that irreversibility does not
reduce the value of the energy that can be transierred to a weight—a conclusion that is
an exception to our general understanding of the adverse effects of irreversibility.

This exception does not contradict any experimental observation. As such it is not
sufficient to dismiss the existence of degenerate ground-energy eigenvalues. Rather, the
exception should stimulate further theoretical and experimental investigations.

7. CONCLUSIONS

The third law can be stated in a manner consistent with the second law. This can be
done for all systems, including one that consists of very few particles. A question that
remains unresolved is: Is there any experimental evidence that can be rationaiized only
in terms of a Hamiltonian operator with a degenerate lowest eigenvalue? If the answer is
ves, then the modified statement of the second law should be adopted, and the exception
cited in Section 6 better understood.

Should Condition 10 be satisfied by all systems? We have seen that neither the formalism
of quantum theory nor the laws of thermodynamics forbid to model a system with a
Hamiltonian operator that has a degenerate lowest cigenvalue. thus violating Condition
10. The question is whether such a system describes something that exists in nature and,
therefore. can only be resolved experimentally.

Though presented in different terms, the question has been long debated[6-13]. Invariably,
with various justifications{9,10}, the question is analyzed for systems with a very large
or infinite number of particles N . In this limit. however, the entropy per particle varies
as (1/N)klnDo(n,B) and is negligible and hardly measurable if the dependence of
Do(n.B) on N is weaker than (1 +a)¥, where a is of the order of unity{10]. In addition,
the Hamiltonian operator must be necessarily based on an oversimplified model of the
interactions between the many particles. otherwise the model is intractable. So, in our
view, the question cannot be resolved by studying systems with many particles.

We suggest that the question is more likely to find a resolution from experimental studies
of systems with very small values of the amounts of constituents, that is. systems with
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very few particles. Then, the entropy S¢(n, ) = klnDg(n, #) is nonnegligible unless
Dy(n, B) = 1. In view of the experimental achievements mentioned in the introduction(1-
2], we believe that such a study is feasible with current techniques. But, of course, the
study requires that it be fully understood that the laws of thermodynamics hold for all
systems, including one that consists of a single particle[15].

(o~
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