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ABSTRACT

Starting from the properties of the electromagnetic radiation
field at stable equilibrium, we derive expressions for the flows of
energy and entropy between two black bodies at different temper-
atures, interacting only through electromagnetic radiation. We
find that in general the interaction through radiation is nonwork
but not heat. It is heat only if the temperature difference be-
tween the interacting systems is infinitesimal.

1. INTRODUCTION

The electromagnetic field pervades all matter, fills the inter-
atomic and intermolecular spaces, and interacts with atoms and
molecules. As such it is one of the constituents of every phys-
ical system. Its properties are well known and experimentally
verified[1-6]. Its stable equilibrium states provided the semi-
nal ideas of modern physics. Its interactions with atoms and
molecules are the subject of extensive experimental studies and
the source of many recent technological developments.

In this paper we review the stable-equilibrium-state properties
of the electromagnetic field, and discuss the model for a special
class of nonequilibrium states that constitutes the foundation
of the engineering discipline traditionally called radiative heat
transfer. In general, the interactions considered in this discipline
are nonwork because electromagnetic radiation flow carries both
energy and entropy. Under very special limiting conditions. these
interactions become heat. These limiting conditions are of inter-
est in the exposition of thermodynamics because they provide
a practical proof of existence of the heat interactions defined in
Ref. 7, and discussed in a companion paper presented at this
meeting(8]. In addition, the results provide a vivid illustration of
entropy as a property of a system because even a single photon
may have entropy in the same sense that it has energy.

2. STABLE-EQUILIBRIUM-STATE PROPERTIES
OF THE ELECTROMAGNETIC FIELD

The stable-equilibrium-state principle implies that within the
set of the stable equilibrium states of a system the value of any
property is fully and uniquely determined by the values of the
energy, the amounts of constituents, and the parameters such
as the volume. In particular. for a system with volume V' as
the only parameter. and amounts of its r constituents denoted
by n = {n1,n9,....nr}, the entropy S of the stable equilibrium
states is fully and uniquely determined by the value of the energy,
U, and the values of V and n so that

S =S(U,V,n) (1)

We emphasize that, in our exposition[7], this conclusion is reach-
ed without any extraneous considerations.such as lack of informa-
tion, difficulty associated with complicated calculations, unpre-
dictability of initial conditions, lack of interest in making detailed
analyses of large systems, weak interactions between members of
a statistical ensemble, or equilibrium with a reservoir. It is a
precise, simple, exact, general, and far-reaching consequence of
the first and second laws of thermodynamics about the existence
of very restrictive interrelations among the properties of stable
equilibrium states of any system.

For each system and most ranges of conditions, no explicit
analytical expression of the fundamental relation (1) is available
because the mathematical expressions of the interrelations be-
tween stable-equilibrium-state properties are transcendental. So
the stable-equilibrium-state principle and its innumerable impli-
cations are used mostly to provide guidance about the number
of properties that need be considered, about interpolations be-
tween and extrapolations of experimental results, and about pro-
cedures for carrying out measurements of properties. Exceptions
to these general observations obtain for either special ranges of
conditions, or special systems, or both. Examples of these ex-



ceptions are the high-temperature, low-pressure behavior of any
substance (ideal gases), and the high temperature behavior of
the electromagnetic field in a cavity.

For our purposes, we consider first the high temperature sta-
ble equilibrium states of the electromagnetic field in a cavity of
volume V that confines all frequency modes. For this system,
there is only one constituent, that is, the electromagnetic fleld.
Its amount is fixed and equal to unity, that is, equation (1) be-
comes S = S(U, V) because n is fixed and equal to unity. The
fundamental relation is given by the expression

S= % (avv?) v (2)

where a = 87%k1/15h33 = 7.565 x 1016 J/m3K*, k is the
Boltzmann constant (k = 1.38066 x 102 J/K), h the Planck
constant (A = 6.6260 x 1073 Js ), and c the speed of light in
vacuum { ¢ = 2.9979 x 108 m/s).

Using equation (2) and the definitions of temperature, T =
1/[(8S/0U)y ], and pressure, p = T (85/0V)y;, we find the ex-
pressions for the internal energy U = U(S, V), the temperature
T =T(S,V) (also T = T(U,V)), and the pressure p = p(5, V)
(also, p = p(U, V) )
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Rearranging these expressions. and defining the energy per unit
volume u = U//V and the entropy per unit volume s = S|V . we
find

u:%_—:al‘“1 (6)

a=§=§ar3 (7)
1

p=zaT (8)

Next, we consider the high temperature stable equilibrium
states of the electromagnetic field in a cavity of volume V' that
confines only the modes with frequencies between v and v + dv,
in the limit as dv tends to zero. The fundamental relation for
this system can be expressed as

L ATT 3 3
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- o= (9)
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where b = 87h/c3 = 5.553 x 10797 Jst/m3.
Defining U, = dU(v)/dv, S, = dS(v)/dv,
U, _1dU(v)

T (10)

and substituting in equation (9), we find
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Moreover, using the definition of temperature, we find

1 [a8dS(v)\ _ k bv®
T= <5dU(V)>v =g (1 ) (13)
8wk w3/ (1)
" exp(hv/kT) -1 )
8k v hv/ET 1 .
wETS (exp(hu/kT) —1tleg ——exp(-—hu/kT)>(la)

Of course, we can express the same results also in terms of
the wavelength A = ¢/v. For a cavity that confines the modes
with frequencies between A = ¢/v and A +d) the fundamental
relation can be written as
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A graph of the dimensionless spectral energy density
uu/(STrhu3/c3) {or u)‘/(87rhc/)\5)) versus dimensionless spectral
entropy density s,,/(87rku2/c3) (or s3/(87k/X*)) for a given fre-
quency v (A = c/v) is shown in Figure 1.

Using the definition of pressure, we find

[ 8dS(v) _ kTbiidv AR
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Moreover, defining py = dp(v)/dv and py = dp(A)/dA, we find
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wavelength A = ¢/v. The equation of the curve is
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Finally, another important property of the field is the number
of photons dN{v)—the quanta of the field—in the modes with
frequencies between v and v + dv, or the number of photons
dN()) with wavelengths between A and A+dA. In a mode with
frequency v, each photon contributes an energy hv (or hc/A for
A = ¢/v). Thus, dN(v) = dU(v)/hv, dN(A) = dU(A)A/hc and.
defining n, = dN(v)/V dv and ny = dN(X)/V dA, we have

I 1dN(v) _uw _ 872 /3 97
YTV dv hv explhu/kT) —1 (27)
f LAVOY | wy 8x /) (28
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The expression (87v%/c3)dv is the number of modes with fre-
quencies between v and v + dv, and the expression (87/ Ahyda
the number of modes with wavelengths between A and A 4 dA.

It is noteworthy that the electromagnetic field in a cavity that
confines all modes may be regarded as a composite of noninter-
acting, uncorrelated systems, each consisting of one of the modes.
In other words, the field can be viewed as the superposition of
the various modes that are confined in the cavity, each being
entirely unaffected by the presence of other modes. This is a
general feature of the electromagnetic fleld, valid for all states.

Here, we verify it for the stable equilibrium states by noting that
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where uw (2. ). wy(MT), su(v.T), sx(AT), pus(v.T). and
py( A, T) are given respectively by equations (14), (21}, (151.{22).
{25), and (26), and ((3) = 1.2020569, the value of the Riemann
zeta function. {(z) = Zg?;l 1/¢*%, for z = 3.

Compazrison of equations (29) and (6) [and (31) and {8)] shows
that the energy of the field with all the modes equals the sum
of the energies of the modes, each confined by itself. and each
at the same temperature as the fleld with all the modes. This
additivity of energy proves that the various modes are separable.
that is. noninteracting. Comparison of equation (30} with (7]
shows that the entropy of the field with all the modes equals the
sum of the entropies of the modes each confined by itself at the
same temperature 7. This additivity of entropy proves that the
various modes are uncorrelated, that is, independent.

The fact that the various modes do not interact with each
other means that modes cannot exchange energy and entropy
with one another. Only interactions with matter. for example
the atoms and molecules of the walls of the confining cavity, can
promote indirectly exchanges between different modes. Another
intriguing aspect is that each mode in a stable equilibrium state
has both energy and entropy.

It is interesting to evaluate the photon compressibility ratio
for the field with all modes, the field with only the modes between
v and v -+ dv. and the field with only the modes between A and
A+ d\, that is. respectively,

o
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For the low frequency modes, i.e.. as hv/kT = hc/ART — 0.
the photon compressibility goes to zero, whereas for the high
frequency modes. i.e.. as hv/kT = hc/AT — oc. it goes to
unity.

Graphs of the dimensionless spectral distributions of energy.
entropy, pressure and photon density are shown in Figures 2 and
3.

The Gibbs free energy per unit volume of each mode of the
feld is zero. i.e..

uy —Tsy +pu=10 {36)

and so is the Gibbs free energy of the field. By simple differen-
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tiation we can readily verifv the interesting relations

du/dT _ Ou,/0T _ Guy\/O0T _
ds/dT ~ 9s,/8T  8s\jOT

T (37)

that we use in Section 3.

3. ENERGY AND ENTROPY FLOW THROUGH
RADIATION

Among the properties of the electromagnetic field, velocity
{i.e.. speed and direction) of propagation plays an important role.
Inside the cavity, that is, in the absence of interactions with
matter, a measurement of the speed of propagation of radiation
in any state always results in the value c. the speed of light in
vacuum. In addition. for the field in a stable equilibrium state in
an isotropic cavity, measurement results of velocity are uniformly
distributed over the entire solid angle 4x, that is. the fraction
of measurement results in directions that lie within a given solid
angle df) is equal to d2/4w. Thus. the value of the velocity of
the fleld in a stable equilibrium state. i.e.. the mean value of all
measurement results, is zero.

If it communicates with vacuum through a small aperture, the
cavity behaves as a black body. Radiation propagates through
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as functions of y = AkT/hc. The area under each of the curves (&), (b). {c).
and (d) is unity. The maxima occur respectively at (a) y = 0.201405, (b)
y = 0.208713. (¢) y = 0.252417. and (d) y = 0.255057.

the aperture out of the cavity with speed ¢ and directions uni-
formly distributed over the outward solid angle 27. At the aper-
ture the radiation is no longer in a stable equilibrium state be-
cause it has a nonzero {mean) value of velocity. It is a nonequi-
librium state. For a sufficiently short time interval, however, we
assume that the presence of the small aperture does not perturb
significantly the stable equilibrium state of the field inside the
cavity, and that velocity measurement results in the neighbor-
hood of the aperture are identical to the corresponding results
inside the cavity for the outward directions, but are nil for the
inward directions.”

Accordingly, the fraction of measurements that result in di-
rections that lie within a given solid angle df is equal to df/4w
for the outward directions. and zero for the inward directions. To
find the mean value c; of the velocity component normal to the
aperture surface, we denote by 6 the angle between the velocity
direction and the outward normal to the aperture surface, and
integrate over all outward directions. so that

ci :/ccosf)-d—q
g _i-

37

2 x/2
: :/ do/ ccos@sinddf =
0 0

because d{) = sinf df do.

(38)

El )



The volume of radiation which in a time interval df flows
across the element of area da of the aperture surface is ¢, dtda,
that is, c; represents also the volume rate per unit area and unit
time or volume flux of radiation crossing the aperture surface
from inside to outside the cavity. Because inside the cavity each
unit volume contains radiation with energy u, entropy s and
photon number n, with the volume flux are associated also an
energy flux uc, , an entropy flux sc, , and a photon flux ncy,
so that

J;’:Eu-_-aT‘* (39)

—_c 4

J; =Zs=§aT3 (40)
0¢(3

J:=§n=37ri(k)dT3 (41)

where we use equations (6) to (8), the Stephan-Boltzmann con-
stant o = ca/4 = 279k%/15h3 = 5.67083 x 1078 W/m K*,
and 30¢(3)o/m*k = 1.52057 x 10% 1/m?sK3.

Similarly, with the volume flux are also associated the energy
spectral flux density per unit frequency range J;, = uyc/4 or
per unit wavelength range J;; = u)c/4, the entropy spectral
flux density per unit frequency range Ji, = s, ¢/4 or per unit
wavelength range J_y = s)c¢/4, and the photon spectral flux
density per unit frequency range Ji;, = ny ¢/4 or per unit wave-
length range J7} = n) c¢/4.

More generally, for an aperture that allows only outward direc-
tions within a cone of apex angle § centered around the normal
to the aperture surface, we find

+ 71

cy(8) = /ccosﬁéf—_l-

8 27sinfdfd ¢ . 9.
= e 2 G111 (42
= /0 ccosé o 7 sim ¢ (42)
For such an aperture we have
Jg (8) = —Eu sin?§ = oT? sin® 6 (43)
4

J7(6)=2ssin’ 8= 5 T sin® § (44)

- c .9 30¢(3 . 9. .

o) =Snsnts= 5o snls  (49)

and similar relations for the spectral lux densities. Clearly, equa-
tions (38) and (41) concide with (42) to (45), respectively, for
§=m/2.

4. ENERGY AND ENTROPY
THROUGH RADIATION

Now we study the interaction between the electromagnetic
flelds in two cavities A and B that commmunicate with each
other through a small aperture. We model the flow of radia-
tion through the aperture by assuming that the field within each
cavity is initially in a stable equilibrium state at temperatures
T4 and Tpg, respectively, and that for a sufficiently short time
interval the presence of the small aperture does not perturb sig-

EXCHANGES

nificantly either of the two stable equilibrium states. Of course,
the state of the field in the vicinity of the aperture cannot be
stable equilibrium, unless the fields in both cavities are at the
same temperature. We assume that measurement results in di-
rections that are outward for cavity A are identical to those that
would obtain if cavity A communicates with vacuum, and mea-
surement results in directions that are outward for cavity B are
identical to those that would obtain if cavity B communicates
with vacuum.

As a result of these assumptions, the fluxes at the aperture
between the two cavities are nonzero, that is

— — — c . ,
TR = Ui = 7] = J(e4 - ¢B) (46)

where ¢ denotes any one of the volume densities u, s, n or
spectral densities uy, s, Ny, Uy, Sy, 1), JA4= s the flux (flux
density per unit frequency range or wavelength range), out of an
aperture between A and vacuum, and similarly J B— is the flux
from 4 to B.

Specifically, for the energy, entropy, and photon fluxes in the
direction from 4 to B normal to the aperture surface, we find

T8 = o(T) - T3) (47)
4
JTP = o1 - T)) (48)
g 30C(3) .3 3. 1 _
T8 z‘j;%(’.‘“‘«ri“Té)=mJﬁ B (a9

Moreover, the energy, entropy, and photon flux densities either
per unit frequency range, or per unit wavelength range in the
direction from 4 to B normal to the aperture surface, we find

A—p _ 27h 3 1 _ 1 -
Fa = ct [exp(hu/kTA) —1 explhvfklg) -1 (50)
JA—B _ orki? hv kT B hv/kTg

v ¢t |explhv/kT4)—1 explthv/kTpg)—1

o, 1 —exp(—~hv/kTpg) .
ety Y
JA—B _ 2712 1 B 1
s ¢t |exp(hv/kT4)—1 explav/kTpg)—1
JiB
e 52
o (52)
J.~1—~B - 27.'}7_.62 1 _ 1 (53)
A A lexp(he/AkT4)—1 explhe/AkTg)~1}"
JA—B _ ke he/AKT _ he/AkTg
A M |exp(he/AkTy)—1 explhc/AkTg) -1
1 — exp(—hc/AkTg) .
P R )
jA—B _ 27¢ ! _ !
™A M lexp(he/AkT4) ~1  explhc/AeTg) -1
Ji—B
— A =
= hea {55)

Equations (50) to (55) can be used to evaluate the net exchange



rates between two cavities that confine only modes within a given
frequency or wavelength range, or between cavities confining all
modes but communicating through a filtering aperture that is
permeable only to modes within a given frequency or wavelength
range.

5. NONWORK AND HEAT INTERACTIONS
THROUGH RADIATION

We see clearly from equations (47) to (53) that the interac-
tion between the fields in the two cavities 4 and B (through
an all-passing or a filtering aperture) is an example of a non-
work interaction. It is not a work interaction because it entails
an exchange of entropy. In general, it is not a heat interaction
because the temperature difference between the two interacting
radiation fields is finite and not infinitesimal as required for a
heat interaction {7,8]. In particular, we note that the ratio of en-
ergy exchanged and entropy exchanged between the two cavities
is well defined but different from the temperature of the radiation

in either cavity, i.e.,

J&‘i—*B _ u(TA)"U(TB> _.§T‘§* —Té (56)
JA=B T s(T4)-s(Tg) +T3-T3 ’
Ji=B _ w(Ty) ~ wiTp) (57)
Jg'}/”‘B su(T4) = sv(IB)

A—B (T4 (Tg)
Ty~ uaTa) — ua(Tp) (58)
Ja—8 " sa(Ta) = sx(TB) }

However. in the limit of an infinitesimal temperature differ-
ence between the fields in the two cavities. the interaction is
heat, whether the aperture is all-passing or filtering, provided
that both cavities confine either all modes or the same range of
frequencies (wavelengths). We emphasize this limiting case be-
cause it constitutes an important experimentally verified proof
of existence of heat interactions as defined in {7.8].

Indeed, for Ty =T +dT, Tg = T, and dT — 0, we find

Ji—B  w(T+dT)—w(T) _ dufdT _ 59)

J§4~B - s(T+dT) - 3(T) - ds/dT - (
A-—B N —

J-,:J 0 up(T+dD) —wy(T) _ Dur/OT _ 7 g,
Jg=8  s(T+dD) = su(T)  9s/0T

T8 uy(T+dD) = uy(T)  8uy/OT _ T (61)
JA=B T S\(T+dD) —s\(T) ~ 0s\/0T ~

where in writing the last of each of equations (59) to {61) we use
equations (37). We see that, in the imit of Ty — Tg = T, each
of the ratios of energy and entropy flows equals T’ as it should

for a heat interaction.
Finally, we note that some authors{2,3] have defined a “tem-

perature” even for states of radiation that are not stable equi-
librium by the following procedure. The spectral energy density
uy (v, ) is measured, where Q2 denotes direction. This density is
used in equation {11), and a function T(»,§2) is determined. In
our view, calling T(r,Q) a temperature is wrong and mislead-
ing. Temperature cannot be defined for states, such as nonequi-
librium states, for which energy and entropy are not interdepen-
dent. Moreover, the function T(v,{2) cannot be measured by a
thermometer.

6. CONCLUSIONS

From a review of the properties of the stable equilibrium states
of the electromagnetic field. we find that the interaction between
two black bodies at different temperatures involves both energy
and entropy flows. In general, this interaction is not heat because
the ratio of the energy and entropy exchanged is not equal to the
temperature of either black body. It is heat only in the limir
of infinitesimal difference between the temperature of the two
black bodies. This limit is an important experimental proof of
existence of heat interactions as defined in Refs. 7 and 8.

It is noteworthy that the interaction between two black bod-
ies 4 and B at different temperatures involves irreversibilities in
both black bodies. The reason in that Ji—8/J3i—58
£ (8U/8S),* = T4 and JB—4/JB—4 2 (8U/8S), P = T3.
In the limit of Ty — Tg, however, both irreversibilities disap-
pear as they should for heat interaction.
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