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ABSTRACT

The concept of thermodynamic temperature is examined in different
contexts, that is, classical thermodynamics, quantum physics, and fluctuations. It
is shown that none of these contexts imposes restrictions either on® the values of
the amounts of constituents—or the corresponding number of degrees of
freedom—or on the values of the constraints or parameters—such as the
volume——of the system. So wé conclude that temperature is well defined and valid
for any system, including one with a single elementary particle with only one
degree of freedom, such as a one—dimensional harmoric oscillator of specified
frequency of oscillation. :

INTRODUCTION

A long standing consensus in practically all authoritative freatises on
classical thermodynamics and statistical mechanics is that thermodynamics and
"its most important -conception, temperature" [1] applies only to macroscopic
bodies. A sample of this consensus’is reflected in the following statements.
Pippard states [2] "The science of thermodynamics, in the widest sense in which
the word is used nowadays may be said to be concerned with the understanding
and interpretation of the properties of matter in so. far as they are affected by
temperature... . For a consideration of the behavior of a large assembly of atoms,
molecules, or other physical enditigs, it may be shown, with a fair degreg of rigour
(enough to satisfy most physicists but few pure mathematicians), that those
properties of the assembly which are observable by macroscopic measuremerits are
zelated in obedience with the laws of thermodynamics." Modell and-Reed state [3}
“"The essence of the theoretical siructure-of classical thermodynamics is a set o
natural laws governing the behavior of macroscopic systems.”" Callen avers [4] "By
definition, suggested by the nature of macroscopic observations, thermodynamics
describes only static states of macroscapic systems.” Tolman indicates [5] "...And
the principles of thermodynamics are devised for giving a phenomenological
account of the gross behaviour of macroscopic physical systems in comnditions
corresponding to the specification of a limited number of thermodynamic variables
such as volume, pressure, energy, temperature and entropy. Landau and Lifshitz
declare [6] "Like entropy, the temperature is seen to be a purely statistical



quantity which has meaning only for macroscopic bodies." And most recently,
Feshbach concludes {7] "These observations, which are based on rather simple
considerations, suggest that for small systems thermodynamics is not always
quantitatively valid, and therefore requires appropriate modification."

What is the justification for this consensus? A scrutiny of the foundations
of thermodynamics and its relation to quantum physics reveals that there existe
nejther experimental nor theoretical compelling evidence in support of the
consensus, and that the statistical interpretation of thermodynamics leads to
serious inconsistencies [18]_. In response to these conclusions, an alternative
viewpoint has been developed. It is a unified, quantum but nonstatistical theory
which encompasses within a single conceptual structure all systems, large and
small, and-all states, static and not static [9,10].

The purpose of this paper is to present only one aspect of this alternative
viewpoint, that is, to prove that temperature is equally well defined for a
microscopic system as it is for a macroscopic system, including a system consisting
of a single elementary constituent, such as one spin with spin orientation in one
direction as the only degree of freedom, and a one—dimensional harmonic oscillator
of specified frequency of oscillation. The proof is discussed in three different
contexts, classical thermodynamics, probabilistic derivations, and fluctuations.

CLASSICAL THERMODYNAMICS

In classical themi‘odyﬁ‘amics} whenever temperature is introduced without
circylar arguments, the concept is well defined in theory and very demanding in
application. If the vector n = {nl, n2,...,nr} denotes the types and the amounts

of the r constituents of a system, and the vector f§ = {ﬁl’ ﬁ2"--“"ﬁs} the types

and values of the s constraints or parameters of the system, the thermodynamic
temperature is defined by the relation (Landau and Lifshitz [6], Callen [11],
Gyftopoulos and Beretta [12]) )

T = (08/i5), 4 (1)

where E is the energy, and S the entropy of the system.

Equation 1 indicates that the concept of temperature T applies to states
for which the energy E is a function only of the entropy S, the values of the
amounts of the ¢onstifuents n, -and the values of the constraints f. The only
states for which E = E{S;n,f) aré the thermodynamic equilibrium or stable
equilibrium staftes. This consequence of theé first and second laws of
thermodynamics [13] is oftén referred to as the state principle.

As it is well known, each stable equilibrinm state has the smallest! energy of
all the states with the same values of S, n, and # or, altetnatively, the largesi
eniropy of all the states with the same values E, n, and A These two results
are sometimes referred to as the lowest emergy principle and the highest entropy
principle, respectively [14]. For states that are not stable equilibrivmm, E

! Spin systems have values of energy that are bounded both from below and above.
For each set of values S, =n, and B, the state with the smallest energy

corresponds 0 a positive temperature, and the state with the largest to a negative
temperature. .



depends on more independent variables than §, n
Equation 1 is inappropriate. L . )
Of course, one might -consider states that depend on more independent
variables than 5, m, and f, and define a property T by eithet a partial
derivative similar to that in Equation 1 by keeping all variables fixed except for S,
or some other procedure, Though such a definition might be well specified, it
would be useless for the thermodynamics of stable equilibrinm states.
To clarify the last assertion, we recall & criterion for two systems A and
B to be in mutual stable equilibrium, that is; for the composite of two systems A
and B to be in a thermodynamic equilibrium state. The criterion is that the
entropy of the state of the composite system be the largest of all the states with
the same values of energy B + EB, amounts o’ + nB, and constraints
4 ﬁB . It can be readily shown that a necessary condition for this criterion to
be satisfied is that ~

; and f, and, therefore,

(ae/8), 9 = ((3F/38), g5 @
or, equivalently, |
A = 7B ' (3)

namely, that A and B be in temperature equality. The temperature equality is
important not only as a necessary condition for mutual stable equilibrium but also
as a unique operational tool for finding the value of the temperature by means of a
null measurement. '

Because only the thermodynamic temperature satisfies the temperature
equality, any definition of T different from Equation 1 might be well prescribed
but irrelevant to the requirements of mutual stable equilibrium beiween systems
and, therefore, to the most important and unique operational technique we use in
temperature measurements. - o

As a result of this review of all the procedures of classical thermodynamies
that lead to the definition of the thermodynamic temperature by Equation 1, we
find that none requires that any restrictions be imposed either on the types and
values of the amounts of the constituents, or on the types and values of the
constraints. So. we must reach the inescapable conclusion that, in classical
thermodynamics, the concept of thermodynamic temperature is valid equally well
for a system with large amounts of constituents—Iarge values of the corresponding
nuniber of degrees of freedom-—and large values of constraints, such as a large
volure, as it is for a system consisting of a single structureless particle, confined
ogf%r a short straight line, namely, a system with one constituent with one degree
of freedom.

PROBABILISTIC DERIVATIONS

Ever since the inception of thermodynamics in the 1850°s, countless efforts
have been devoted to reconciling the conirasts between the predictions of
mechanics and thermodynamics. For example, in the context of mechanics all the
energy of a system above the ground state can be transferred out of the system in
the form of work. However,"in the context of thermodynamics, the energy that



can be transferred out of the system in the form of work is smaller than the energy
above the ground state, and it can be even ZETO, _ : K

Though perhaps expressed in different terms, the contrast just cited has
been the subject of intensive inguiry and controversy. Invariably a reconciliation
. 18 proposed-in terms of a statisticzl interpretation of thermodynamics.2

Whenever a statistical interpretation of thermodynamics is attempted, the
question arises whether the thermodynamic tefiperature is restricted not, only to
systems in thermodynamic equilibrium but also to systems with particular values
of either the amounts of constituents, or the constraints, or toth. As already
indicated, practically all treatises on statistical thermodynamics asseit that
thermodynamics, in general, and the concept of temperature, in particular, apply
to macroscopic systems only [4-6]—systems with constituents with innumerable
degrees of freedom-—because conly then the statistical interpretation is valid.
Close scruting of the issue, however; reveals that such an assertion is entirely
unfounded. The first scientist to make this observation was Gibbs {15] himself,
and the problem was worked upon also by Wilson [16]. .

We can state unequivocally that, even in the context of a statistical
interpretation of thermodynamics, temperature is equally well defined for systems
with a single constituent with one degree of freedom as it is for systems with many
constituents and correspondingly many degrees of freedom, and for systems with
any values of the constraints. We can illusirate the rationale of this conclusion by
using the language of quantum physics.

We consider a gystem with a Hamiltonian operator H and a well defined
energy eigenvalue problem : ; : :

Huwy=eu for i=12. {4)

where for simplicity we assume a discrete energy eigenvalve spectrum £ denote

each eigenstate by a different subscript i, and recognize that each & is-a
function ei(n,ﬁ) of the values of the amounts of constituents mn, and the values of

the constraints . We impose 5o restriction on the values of either the amounts
n and, therefore, the corresponding nmumber of degrees of freedom, or the
constraints f because none is reguired by the specification of the energy
eigenvalue problem. In other words, the encrgy eigenvalue problem may
correspond to oné spin with two energy elgenstaies, two spins with four energy
eigenstates, one structureless particle or a harmonic osciilator in a box (large or
small, one—dimensional or three—dimensional) with an indefinite number of energy
cigenstates, or many molecules in a box (large or small} again with an indefinite
number of energy eigensiates. _ , ,

Regardless of the specifics of the energy eigenvalue problem, it is well
known that each thermodynamic equilibrium state of the system has values of
energy and entropy given by the relations

E =3 x¢ S=-kExInx 1=% x %20 (5)

2 A statistical interpretation means that probabilities are introduced because of
lack of information. They can be eliminated by improved information,
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where the distribution % is determined by the highest entropy principle, that is,

by the requirement that $§ be a maximurm subject to a given value E, the
summation Ei x; being equal to unity, and fixed values of either the amounts of

constituents m and the constraints £ or, equivalently, a fixed vecior ¢ = {61,
€5} The coefficient k is Boltzmann’s constant. The result of this constrained
maximization is [17] ’

x, =exp(—e;/k A)/A, for i=1,2,. (6)

where 4y and kg are the two Lagrange multipliers of the constrained
maximization problem. Upon substituting: Equation 6 into, Ei xi =1, we find

Ay = I exp(=e. [k A) (7
and
x; = exp(—'ei/k A/ exp(—e¢,/k A) for i=12,. (8)

Moreover, upon-substituting Equation 8 into E = Ei- xie-i,‘ we find ’11 as a

function E. We can easily show that each value of E yields one and only one
value ).1. The distribution represented by Equation 8 is called canonicel. 7

Now we raise the question "For given values of E, n, and g or,
equivalently, E and e, is the Lagrange multiplier A related to any property
other thar E of the corresponding thermodynamic or stable equilibrium state?
The answer is yes, and we find it as follows. We compute the partial derivatives
{191*3/3(1./)._1)]‘E = [BE/B(I/AI)}n,ﬁ and {53/3(1[11)16 = [S/d(1, Al)]n,ﬁ and then
take their ratio. We can easily show that '

2 ; 2
[ IE ] Sk S O G
L/ 5 k

2 2
- a_s ] =E - E'i xiC'i (10)
|9(1/3,) np kA

and, upon solving Equations 9 and 10 for- )\1, thai

S C VA e <



We see that A equals [6E/8S] g But, in classical thermodynamics,
[6E/} BS]Il 8 is defined as the the_rmodynz’umic- temperature T and, therefore,

=T . (12)

T4 is clear that no aspect of this statistical interpretation of thermodynanic
equilibrium imposes any restriction whatever on n and #. The statement of the
energy eigenvalue problem, Equations 5, and the constrained maximization
procedure are all not conditioned by the magnitudes of m and A So here, asin
clagsical thermodynamics, we must reach the inescapable conclusion that
temperature is defined for stable equilibrium states of systems with constituents
with any number of degrees of freedom, including unity, with any number of
distinct energy eigenvalues equal to or greater than two, and any values of
constraints, including a small or large volume.

This elegant and concise derivation of the canonical distribution (Equation
8), and the identification of the exponent )ll with the thermodynamic

temperature (Equation 12) do not require the consideration of either a heat bath
or interactions between subsystems of a large system, as often claimed in most of
the literature on statistical physics [18,19]. The reason is that each of these two
artifices is neither necessary nor correct.

T'o clarify the last assertion, first we note that the canonical distribution is
obtained from the constrained maximization. of the entropy, -and that the
temperature is either determined by the energy or derived by differentiation of the
energy with respéct to entropy along a path of stable equilibrium states. As such,
both X and T are propetties of stable equilibrium states, in the same sense that

energy, enthalpy, and Gibbs free energy are properties of these states. So, % and

T are not and need not be tied to a bath or thermostat. A trivial illusiration of
this conclusion is the maintenance of cold, lukewarm, hot, of superheated water
inside a well manufactured thermos bottle, in the same environment; be it outer
space, or an oven. The temperature of the water is determined solély by the
amount of energy of the water and not any other factor whatsoever. Another
illustration is the creation of a thermonuclear plasma inside an electromagnetic
nest of forces. Here again the temperatute of the plasma is solely a function of the
energy transferred to the plasma and not the environment in which the
thermonuclear plasma, is created. : ’

: Next, we recall that for a body to be a system with properties, such as
energy and entropy, it must have a Hamiltonian operator that is separable from
the Hamiltonian operators of systems in the environment, and probabilities
associated with measurement results that are statistically independent of the
probabilities associated with measurement results on systems in the environment
[20]. In principle, neither separability nor statistical independence is satisfied in
the presence of interactions of a body with a bath or thermostat, especially if the
body consists of one particle of a dense phase.

An important question that transcends the issues surrounding the definition
of temperature relates to the meaning of the distribution x. In statistical

mechanics, the distribution represents probabilities that reflect lack of information
about the exact state of the system. Such probabilities can be eliminated by
improved information. Although more than a century old, this interpretation
leads to inconsistencies [8]. The inconsistencies disappear if we recognize’ the
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existence of quantum-—theoretic probability distributions® associated with a
homogeneous ensemble ever though its density operator may have the form
traditionally associated with inhomogeneous quantal énsembles (mixiures of pure
states or wave functions). The discussion of this important discovery is beyond

. the scope of this paper but can be found in References 9, 21, and 22.

FLUCTUATIONS

Concerns about the applicability of the concept of temperature to small
systems are sometimes expressed in terms of the magnitude of fluctuations 7l
Because the term fluctuation is not defined expliciily in Reference 7, we examine
its two principal meanings and find that neither implies any restriction on the
concept of temperature. ,

One meaning of the term fluctuation relates to. the standard deviation of a
probability distribution associated with measurement resulis of a gquantum
observable. For example, the Ax and :!ip}/c that appear in the Heisenberg

uncertainty relation Ax pr > h are related to the standard deviations of position
x and momentum b, measurement results, respectively, where % is Planck’s

constant divided by 2r. Regardless of the magnitude of this type of fluctuation
of a quantum observable, the EEXpe'cta.tion) value of the observable is well defined,
and no restriction is imposed on its validity. If temperature were a quantum
observable, and its measurement results had a standard deviation or fluctuation,
this fluctuation would not impose a limitation on the validity of the concept of
temperature. So the fluctuation of temperature discussed in Reference 7, on the
basis of which the anthor concludes that "for small systems thermodynamics is not
always quantitatively valid," cannot be related to a standard deviation.

Besides temiperatire is not an observable in the sense of quantum physics.
The reason is that temperature is a property only of stable eqeilibrium staies
whereas a quantum observable represents a property of .any state, stable
equilibrium or not. Because it is not 2 quantum obsérvable, temperature
measurement results are not associated with a spectrum of eigenvalues and a
corresponding probability distribution. It follows that no standard-deviation-like
fluctuation is associated with temperature. _ :

The other meaning of the terni fluctuation relates to changes of value of a
propefty as a function o% time, that is to variations of the property abomt some
mean value as time goes on. If observed, such fluctuations imply that the system
is not in a thermodynamic equilibrium statet and, therefore, the concept of
temperature is inapplicable not because the valie of the number of degrees of
freedom is small or large but because of departure from equilibrium. So, if the

3 Quantum—theoretic probability disiributions are conceived to be inherent to
natural phenomena, and cannot be eliminated by improved information.

¢ It is important to recall that, by definition, when a system is in a
thermodynamic equilibrium state or stable equilibrium sfate, the system is
isolated, none of its properties changes as a function of time, and no change of the
state can be brought about without mnet effects on other systems in the
environment.
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large fluctuations discussed in Reference 7 are of this second type, they cannot be
used to decide the validity of the concept of temperature bécanse they arise from
nonequilibrigm. In fact, as pointed out-by Kittel [23], the expression "temperature
fluctuation™ is an cxymoron because temperature refers to a siable equilibrium
state that does not. vary with time, whereas here fluctuation results from a state
that does vary with time. : :

A third, statistical notion of the term temperature fluctuation has been
given by Mandelbrot [24]. Although correct in the context of statistics, the notion
described by Mandelbrot is never used either in measurements or in theoretical
explanations of temperature. So his arguments are not germane fo the concepts,
principles, and procedures of thermodynatnics.

CONCLUSION

The discussions of temperature from the standpoints of classical
. thermodynamics,. probabilistic interpretations, and fluctuations disclose mno
restriction imposed on the concept of temperature by the number of degrees of
freedom of the constituents of the system. Accordingly, we conclude that the
thermodynamic temperature is a well defined concept that applies equally well to
both macroscopic and microscopic systems, including a system with one
constituent with one degree of freedom.
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