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ABSTRACT

We discuss relations among properties of systems that con-

(ni)gp = kin;y.for i =1,2...., r. By the energy relation. state

Ay has enerzy Uy = U4 (kS1. kV], M(n ).

sist of any amounts of constituents (including one particle),
that have volume as the only parameter, and that are in ther-
modynamic equilibrium or stable equilibrium states. For large
amounts of constituents, we introduce the concept of a simple
system. and derive additional relations among properties.

1. INTRODUCTION
Gibbs{l] devoted more than five pages of somewhat convo-
luted discussion to justify the validity of the Euler relation

U—-TS+pV =) pn;=0 (1)
i=]

All subsequent expositions of thermodynamics of which we are
aware have overlooked the serious concern addressed by Gibbs
in those pages.

An essential prerequisite of the derivation of Equation 1 is
that the stable-equilibrium-state energy relation I” = (5. V. n)
be a homogeneous function of degree one of each of its vari-
ables. entropy S. volume V. amounts of constituents n =
{ni.na.. ... nr}. This prerequisite is either postuiatedi2.3] or
presented in a few lines as an almost obvious consequence of the
fact that each of the quantities I, S. V', and n; is additive[4.3].
The former is not always warranted. and the latter is faulty and,
perhaps, the reason for Gibbs’ five-page discussion.

The logic of the usual but faulty derivation is as follows.
Two different systems are considered. One is a system 4 with
no internal partitions and a stable-equilibrium-state energy re-
lation U = U8V, n). Of this system, two different states
are considered. The first is a stable equilibrium state 4; with
entropy 51, volume ¥]. and amount (n;); of constituent 1,
for i = 1.2....,r. By the energy relation, state A; has energy
Uy =U4 (5. 1.(n )1). The second is a stable equilibrium state
Ag with entropy Sp = kSy, volume Vi = £V}, and amount

The second system is a composite system A consisting of &
identical reptcas of system ., each in a stable equilibrium state
identical to 4;. By the additivity of energy. entropy, volume,

and amounts of constituents, system I has energy {5 = &0,
entropy S; = kS|, volume Vi = k1. and amount (n;i =
Mng)p for i =1.2,....r.

Now. the Zact that system A consists of & separate sub-
systems. eact with constituents confined in a partition of voi-
ume V] of tze entire volume kV7, is overiooked. Ii is stated—
and here is the fault—that Uy = U7p. It then follows that
UASp A dn)) = Up = U =40 = 5048 1 ini ).
namely. tha: the function U = U4(S.17n/ is a homogeneous
function of cegree one. But the conclusion is based on the
faulty assumption that the stable-equilibrium-state energy re-
AiS.V.n) of system I (with internal partitions)

lation [ =1
is the same as that of svstem A (without internal partitions).

thatis. U™ S 1 n) = U8 Vin).
Inn this paper. we recognize and emphasize that in general

UH1S.Vn = U4S. V. n) except under a condition specitied
lefizition of a simple system introduced in Rei.§ ( Chap-
e condition turns out to be valid in the limit of
relatively large values of the amounts of constituents, and is the
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reason why certain results. including the Euler relation. are valid
only for macroscopic systems. Though expressed in a different
language. the condition captures the essence of the concerns
discussed by Gibbs[1].

2. SYSTEMS WITH VOLUME AS THE ONLY
PARAMETER

2.1 Definition

In any pavsical study, we always focus attention on an iden-
tifiable coliection of constituents that may be subjected 1o a
nest of forces. When the constituents and the nest of forces



are well-defined, we call such a collection a system. For defi-
niteness we briefly review the requirements for constituents and
nest of forces to be well-defined, that is, the requirements for
the definition of a system.

The forces required to define a system are of two kinds. in-
ternal and external. Internal forces describe the influences that
hold the molecular structure of a constituent together, such
as the forces between the nuclei and the electrons of H90,
the influences between constituents, such as the forces between
H50 molecules, and the forces that promote or inhibit reaction
schemes by which some constituents may combine or dissociate
to give rise to other constituents. All are part of the specification
of the system, and may differ from study to study of the same
constituents. For example, in some studies of H9 and O3, the
forces involved in the formation of water out of hydrogen and
oxygen, the chemical reaction mechanism 2 Hy + Q9 = 2 H90,
may be neglected as unimportant, whereas in other studies,
these forces may be included as important. Each internal force
on a given constituent depends on the coordinates of that con-
stituent and on the coordinates of one or more of the other
constituents of the system, but not on any coordinates of con-
stituents of bodies in the environment.

Each external force describes a well-defined influence on the
constituents by bodies not included in the collection under
study. such as the influence of applied gravity, electric charges,
magnets, and the solid walls of the container that confines the
constituents within a region of space. Each external force on a
given constituent depends on the coordinates of that constitu-
ent and one or more external parameters or. simply. parameters
that describe the overall effect of the bodies in the environment,
but not on the coordinates of any other constituent. either of the
system or of bodies in the environment. For example. the effects
of gravity on the water molecules in a small container depend
on the elevations of these molecules above sea level. and on the
intensity of gravity, but not on the coordinates of the substances
of the earth. The gravitational potential v is the parameter as-
sociated with this external gravitational force. where v =gz, g
is the constant gravitational acceleration. and : the elevation
above sea level. Again, the effects of the walls of an airtight
container on an enclosed gas depend on the positions of the
gas molecules relative to the internal surface of the container.
but not on the coordinates of the molecules of the materials of
the walls. For a wide variety of applications, the effects of the
walls are completely described by the volume of the container.
i.e., volume is the only parameter needed to characterize such
effects. For other applications, we may need a more detailed
geometrical description of the shape of the enclosure in which
the consituents are confined. For example, if the enclosure is a
parallelepiped, the lengths L1, Ly, and L3 of its sides may be
required as parameters to describe the confining external forces.

For certain systems, the characterization of the external for-
ces may require two or more parameters. For example. in a
system consisting of a fixed amount of hydrogen, half of which
is confined in a volume V', and the other half in a volume V",
we need the two parameters V' and V", and their respective
ranges, for the characterization of the effects of the confining
walls.

Because external forces are independent of coordinates of

constituents in the environment, a system is also said to be sep-
arable from the environment or, simply, separable. This distinc-
tion is not trivial. If the forces exerted by a body not included
in the object of study depend explicitly on the coordinates of
the constituents of that body, then the object of study is not
separable, and cannot be a system. To proceed in this case, we
must redefine the collection of constituents so as to include the
body in question. Thus, the troublesome forces become internal,
and a system may be defined. For example, this situation arises
when we wish to study the oxygen atom in a molecule of water.
Such an atom cannot be defined as a system because it expe-
riences forces that depend explicitly on the coordinates of the
two hydrogen atoms in the water molecule. However, by includ-
ing the two hydrogen atoms in the object of study, these forces
become internal. and the oxygen and hydrogen atoms bound
together in a water molecule can be well-defined as a system.

We emphasize that whenever we use the term system, such as
in the statements of the laws of thermodynamics, we imply that
the system is well-defined according to all the specifications and
restrictions summarized in the present section, and discussed
thoroughly in Ref.6.

2.2 Stable Equilibrium States

We restrict our study to the stable equilibrium states of a sys-
tem that: {1) is confined in a region of space of variable volume:
and (2) has volume as the only parameter. Such a system has
no internal partitions and is not influenced by external forces re-
sulting from gravity, electricity. magnetism. shear deformation.
capillarity and other surface effects, because each of these effects
requires one or more parameters in addition to volume.

The fundamental stable-equilibrium-state relation of the sys-
tem is written as

S=S(U.V,n) (2)

where the explicit form of the function S{{".1V.n) is determined
by the structure of the system. the constituents. and the internal
and external forces. Moreover. Equation 2 can be solved for 7
to obtain the energy relation

U=U(S.V.n) (3)

where again the explicit form of the function {'{ 5.V, n) depends
on the system.

For any system. large or small. we can use the energy relation
10 evaluate the temperature. pressure. and chemical potentials
at each stable equilibrium state by means of the relations

. 15188
_—ry
(U i
pS.V.m) = "<W>s.n (5)
pi(S.Vin) = <gf%>51n fori=1.2,...,r (8)

In terms of these properties. we can express dU/ as a total

differential of Equation 3, that is,
AU =TdS — pdV + pydny + podno + -+ + yrdn,  (7)

where in writing this differential we use the definitions of T, p,



U1, #9, ..., pr (Equations 4 to 6). This differential is known
as the Gibbs relation.

We can also use Equations 3 to 6 to define other properties
such as the enthalpy H = U + pV, the Helmholtz free energy
A =1U ~TS, and the Gibbs free energy G = U - TS + pV.
Moreover, from the independence of the order of differentiation
of each of the characteristic functions U = U(S,V,n), H =
H(S,p,n), A = A(T,V,n), and G = G(T,p, n) with respect
to any two of its variables, we obtain the Maxwell relations

aT\ _ (0p
<5‘7) Sn <55>v,n ®)
6;1,) (5T>
= — fori=1,2,..., r (9)
(65 Vo On; S5 Vn
)= (5)
-1 = = —— fori=1,2,..., r (10)
<6V Sin On; SVn
0T> <5V>
- == 11
<3p Sn oS o (1)
6;1,') <6T)
-t = | = fori=1,2,...,r (12)
<85 p.n On; S.p,n
<2&> = <—6-Y-> forz=1,2,.... r (13)
P/ Sn on; S.pn
a8 dp
it = [ == 14
<5V>T.n <6T>V,n (e
8/1,') 35) . 5 -
] | = =1.2 1
<5T, Vin <5nf TV fori=1 T
5#;) ( P ) fort=1,2 r
-t [ =1,2..... (186)
( V Tn 8n,' T.V.a
05 61') -
ot = | o 17)
<ap>Tn <8T p.n (
(QJ.) = -—<Q§—-> fori=1,2..... r (18)
BT . afl{ Tp n

(?f.’.) = <?.I'.) fori=1,2,....r (19)
D /)Tn \ONi)Tpn

We reiterate that all these results are valid for any amounts
of constituents. including a single particle with only one trans-
lational degree of freedom in any of its stable equilibrium states.
There are other results, however, which obtain only for systems
with large values of the amounts of constituents.

3. SIMPLE SYSTEMS

3.1 Definition

We define a system as simple if it has volume as the only
parameter. and if it satisfies the following two additional re-
quirements.
(a) If in any of its stable equilibrium states it is partitioned into
a set of contiguous subsystems in mutual stable equilibrium. the
system is such that the effects of the partitions are negligible.
{b) In any of its stable equilibrium states, the instantaneous
“switching on or off” of one or more internal reaction mecha-
nisms causes negligible instantaneous changes in the values of

System A
(o partiticas)
ia a stadle

equildricm
state

(a)

System B
(ene partition)
(b) i a stable
equildriem

state

System K
(k-1 partitions)

(c)

& a stable
equil@rium
state

Z | .

Figure 1.

the energy, entropy, volume, and amounts of constituents.

In general, when Conditions (a) and (b) are satisfied. we find
that results obtained for stable equilibrium states of a simple
system with one set of values of the amounts of constituents and
the volume can be readily extended to other sets of values, and
that certain properties and variables are explicitly interrelated.

In this paper, we explore the implications of the validity of
Condition {a). The discussion of the implications of both Con-
ditions {a) and (b) is given in Ref.8, Chapter 30.

3.2 Implications of Partitioning

We consider systems 4 and B shown schematically in Fig-
ures la and 1b. System A4 is in a stable equilibrium state with
energy U A volume V., and amounts of constituents nf. m_?l,

. n;fl. System B consists of two subsystems, each identi-
cal to system 4 but in a stable equilibrium state with energy
U172, volume /2, and amounts of constituents n‘fl/:?. n:?/?.
ces n‘;l/.?. Being in identical stable equilibrium states. the two
subsystems have identical values of temperature T, pressure p.
and chemical potentials uy, pa, ..., gr, that is. they are in mu-
tual stable equilibrium and, therefore. system B is in a stable
equilibrium state. It is noteworthy that system B is not iden-
tical to system A because it requires two parameters, that is,
a volume for each of the two subsystems. rather than just one
volume.

By virtue of the fundamental relation for systems with vol-
ume as the only parameter (Equation 2). and the additivity of
entropy, systems A and B have entropies

SA — SA(UA,VA.TIA) (20)

and
§B =254/ vija.nty) (21)



In general, S is not equal to S B because of the presence of the
partition that separates the two subsystems of system B. For
example, if each of the two subsystems of B contains only one
particle, then it can be shown with the tools of quantum theory
that the particle is not uniformly distributed in the available
space, it is more rarefied near the confining walls and, therefore,
the wall partitioning system B into the two subsystems imposes
a significant difference between the properties of systems A and
B.

However, it can also be shown with the tools of quantum the-
ory that such differences become less and less important, and
negligible for all practical purposes, as the values of the amounts
of constituents in each subsystem increase beyond a relatively
small number{7.8]. Hence, if the amounts of constituents are
large, we can neglect the effects of the partition, write 58 = g4
without appreciable error, neglect the differences between sys-
tems A and B, and conclude that the stable equilibrium state
of A is the same as the state of B, and that the temperature,
pressure, and chemical potentials of 4 have the same values as
the respective properties of each subsystem of B.

We can repeat the preceding reasoning for the systems A
and I shown in Figures la and lc. System A consists of a
large number & of subsystems, eachina stable equilibrium state
with energy U-1/k, volume V4 /k, and amounts of constituents
nf/k. n‘2'1/k, ..., ni/k. For large amounts of constituents. we
conclude again that the effects of the partitions can be neglected.
and that

SK = kSAUA /R VA knd kg k0 k= ST (22)

Of course. we reiterate that the influence of partitions is not
negligible if the number of particles in any of the subsystems
is verv small. Hence. the results just cited cannot hold for ar-
bitrarily large values of k. However, because we are usually
concerned with amounts of constituents that correspond to very
large numbers of particles. the effect of partitions is negligible
up to a very large number of subdivisions, so that each sub-
system resulting from such a subdivision can be considered for
all practical purposes infinitesimal as compared to the overall
system.

Subject to the restriction just cited, we can write the relation
between the entropies of 4 and each subsystem of /v in Figure
1 in the form

S(U.Vin) =k S(U/EV/k.n/k) (23)

where we drop the superscript “ A" for simplicity.

Using Equation 3. we write U4 = U454, v4 nt). Because
each of the subsystems of K is in a stable equilibrium state
with entropy S/, volume V4 /k, and amounts of constituents
n/k. its energy must be UASA/k, V4 /k, n/k). Because the
effects of the partitions are negligible and energy is additive,
U4 = UK and, therefore.

U(S.V,n) = kU(S/k, V/k. njk) (24)

where again we drop the superscript “A" for simplicity.

From Equations 23 and 24, we conclude that each of the
functions § = S(U,V.n) and U = U(S,V. n) is homogeneous
of degree one with respect to each of its variables. Moreover, if

(a)

e e e

(b)

(c)

the homogeneity holds for any integer number 4. it holds also for
any real number &k because such & can always be approximated
by a sequence of ratios of integers k/ks that tend to A.

The homogeneities of degree one of the fundamental relation
§ = S(U,V.n) and the energy relation U’ = U(S,V.n) are
the main consequences of Condition (a) in the definition of a
simple system. From these consequences follow many results
that simplify the study of the stable equilibrium states of any
substance. For example, experimental values of properties of a
simple system corresponding to given vaiues U, V', n can be
readily extended to any other larger or smailer values of these
variables. We discuss this result in more detail in Sections 3.5
and 3.6.

From Equation 24 we see that the stable equilibrium proper-
ties of a simple system with entropy 5. volume V. and amounts
of constituents n are identical to those of a composite of k sub-
systems each of which is identical to the overall system but in
a stable equilibrium state with entropy. volume. and amounts
of constituents & times smaller. Being identical and in iden-
tical states. all such subsystems have the same temperature,
pressure, and chemical potentials. and these are also the tem-
perature, pressure and chemical potentials of the overall system.
Because the number k can be chosen very large, a simple system
in a stable equilibrium state can always be viewed as a compos-
ite of a contiguous collection of infinitesimal simple subsystems.
all in mutual stable equilibrium.

3.3 Euler and Gibbs-Duhem Relations

We consider a simple system (Figure 22) in a stable equilib-
rium state having entropy S, volume V. amounts of constit-
uents n, energy U(S,V,n), temperature I'. pressure p, and
chemical potentials g1, 42, ..., pr. e subdivide this system
into a contiguous collection of infinitesimal subsystems, each



having the same temperature T, pressure p, and chemical po-
tentials py1, g9, ..., pr as the system itself, and entropy dS,
volume dV', amounts of constituents dnj, dnsg, ..., dn,, and
energy dU.

Alternatively, the differential dU may be regarded as the
difference in energy between two neighboring stable equilibrium
states (Figures 2b and 2c) differing in entropy by dS, in volume
by dV, and in amounts of constituents by dny, dng, ..., dn,.
As such, it is given by Equation 7, the Gibbs relation. This
relation imposes a restriction on the differences dU, dS, dV,
and dn; for ¢ = 1, 2, ..., r beiween two neighboring stable
equilibrium states and the values of T, p, and y; for 1 =1, 2,

.., r of one of these states.

The additive properties energy U and entropy S, the additive
volume V', and the additive amounts ny, na, ..., np of the
simple system can each be viewed as the sum or integral of the
energies, entropies, volumes, and amounts, respectively, of all
the infinitesimal subsystems in a given partition of the spatial
extension of the simple system.

Thus, for given values of T', p, uy, p9, ..., ir, we can think
of the simple system in Figure 2a as resulting from successive
additions of infinitesimal parts which build up the value of each
of U, S, V, ny, ng, ..., n, from zero to the value of the simple
system, while maintaining each of the properties T', p, p1, uo,
..., pr unchanged throughout all the additions. At each step
(Figures 2b and 2¢) the increments dU. dS. dV, dnj. dna,

.., dn, are related by the Gibbs relation. Hence, upon inte-
gration of Equation T at constant T', p. g1, p2,.... 4r, we find
the Euler relation, that is,

U=TS ~pV +uiny+uana+--+prnr (25)

Clearly, Equation 25 is valid for any set of values T. p, uy, u9,
..., pr consistent with the values of S. V', ny, no, ..., nr and.
therefore, it is valid for all such values.

The Euler relation can be derived also by a different proce-
dure, based directly on the homogeneity of degree one of the
energy relation. Indeed. we define the variables §' = S/k, V' =
V/k,and n’ = n/k, so that Equation 24 becomes /(5. V. n) =
EU(S', V', n'). Differentiating this equation with respect to &
at constant S', V', n’. we find

U LU ‘L‘) et
<65>an5 °r<av>5.n‘ Z(@n, 5",1"”"_'”5" .n')

(26)
This equation holds for all values of k. including k¥ = 1. But
then §' = 5, V/ =V, n’ = n and. recalling the definitions of
T,p,and p; for i =1, 2..... r, we obtain Equation 23.
Upon writing the differential of Equation 25 in the form

dU =TdS + 5SdT — pdV — Vdp
+ pydny + nydyy + podng + nadps + -+ + prdny +npdpr
(27)

and substituting dU from Equation 7. we find another impor-

tant and useful result, the Gibbs-Duhem relation
SdT - Vdp+nyduy +nadps+---+nrdur =0 (28)

This relation imposes a restriction on the differences dT, dp,

and dp; for 1 = 1, 2, ..., r between two neighboring stable
equilibrium states, and the values of S, V, and n; for 1 =1, 2,
..., r of one of these states.

3.4 Extensive and Intensive Properties
For a simple system in a stable equilibrium state, and for any
number k, the temperature T(S,V,n) = (6U/8S)y ,, , pressure

p(S,Vin) = —(8U/8V)g,, and chemical potentials
#i(S,V,n) = (0U/On;i)gy n, for i = 1, 2, ..., r, satisfy the
relations
T(S,V.n) = T(S/k,V/k,n/k) (29)
p(S.Vin) = p(S/k,V/k,n/k) (30)

ui(S,Von) = u(S/k,V/knjk) fori=1,2 ..., r (31)
namely, if each of the values of the additive vamables 5, V',
ni, n9, .... np is altered by a factor k, the values of the tem-
perature T, the pressure p, and the chemical potentials 1, ua,
..., ir remain unaltered.

To provide a proof, we define the variables §' = S/k. V' =
V/k and n’ = n/k so that Equation 24 becomes U(5.V.n) =
EU(S',V',n"). Differentiating this equation with respect to S
at constant V". n and k, we find

7 7 1

T(S.V,n)= (g%) = k(%) Ll =T(§'.V'.n")

Vin Vi
(32)
that is, Equation 29. Similarly, by differentiating U'(S.V, n)
with respect 10 V' at constant S, n and 4. we obtain Equa-
tion 30 and by differentiating U(S, V, n) with respect to n; at
constant S. V7. & and the remaining n's. we obtain Equation
31.

In contrast to T. p, and py;, other properties of a stable
equilibrium state change by a factor of & if each of the additive
variables S. 7. n changes by the same factor. For example, en-
ergy behaves in this manner (Equation 24). Again, the enthalpy
H(S,p,n). the Helmholtz free energy A(T.1. n). and the Gibbs
free energy G(T.p,n) exhibit the same behavior because they
satisfy the reiations

H(S.p,n)=k H(S/k.p.n/k) (33)
AT, Vin) =t AT V/k.n/k) (34)
G(T.p,n)=kG(T,p,njk) (35)

Indeed. consider the simple system as a composite of & iden-
tical simple subsystems all in mutual stable equilibrium with
temperature I . pressure p, chemical potentials p;, for i = 1, 2,

. r, emropy S/k, volume V/k, and amounts n;/k for : =
1, 2, ..., r. By Equations 23 and 29 to 31. the overall sim-
ple system with entropy §, volume V. and amounts n;, for
t=1, 2,....r, has energy U(S,V.n). temperature T. pres-
sure p, and chemical potentials p;, for i = 1. 2...., r. There-
fore, the enthalpy of the overall system is given by H(S,p,n) =
U5, V.n) = pV = kU(S/k.V/k.njk) + pV/k] =
k H(S/k,p.n/k) (Equation 33). Similar proofs yield Equations
34 and 35 for the Helmholtz free energy and the Gibbs free
energy, respectively.

It is noteworthy that the enthalpy, the Helmholtz free energy,
and the Gibbs free energy are defined only for stable equilibrium



states. For example, if a system is composed of two subsystems
each in a stable equilibrium state but not in mutual stable equi-
librium, then the enthalpy, the Helmholtz free energy, and the
Gibbs free energy are defined for each subsystem but not for the
overall system.

We call extensive any property of a stable equilibrium state
which remains unchanged if each of the additive variables S, V,
and n changes by a factor k. For example, the energy and the
enthalpy of a simple system are extensive properties because of
Equations 24 and 33, respectively.

We suggest that the concept of extensiveness should be used
exclusively for stable equilibrium states of simple systems and
not synonymously with the concept of additivity.

Every additive property is also extensive. but an extensive
property is additive only if restricted to systems in mutual equi-
librium and not for all systems in all states. For example, energy
is both extensive and additive, but enthalpy is only extensive
and not additive because, in general, the sum of the enthalpies
of two systems in stable equilibrium states does not represent
an enthalpy of the composite of the two systems unless they are
in mutual stable equilibrium.

We call intensive any property of a stable equilibrium state of
a simple system which remains unchanged if each of the additive
variables S, V', and n changes by a factor k. Mathematically,
a function of many variables which remains unchanged if some
of the variables change by a factor % is called homogeneous
of degree zero with respect to these variables. For example,
temperature, pressure, and chemical potentizls are all intensive
properties of stable equilibrium states of any simple system be-
cause of Equations 29 to 31. Again, any partial derivative of an
extensive property with respect to another extensive property is
intensive according to our definition because both the numera-
tor and the denominator of the partial derivative change by the
same factor as the common factor that denotes the change in
S, V,and n.

Other properties of stable equilibrium states of simple sys-
tems that are intensive are all the ratios of any two extensive
quantities such as U, S, V', ny, ng, ..., nr. H. 4. G, or ra-
tios of any linear combination of these quantities such as U and
either the total amount of constituents n = nj+ng+---+nr
or the mass m. Indeed, if each of S, V. n changes by a fac-
tor k. each extensive quantity changes by the same factor and.
therefore. the ratio of any two extensive quantities remains un-
changed. A ratio of two extensive quantities or properties is also
called a specific property.

Extensive and intensive properties are not all inclusive. Some
properties fail to conform to either definition. For example,
the square of the energy is a property that is neither extensive
nor intensive. No special name is provided for such properties
because they are not encountered very often in practice.

3.5 Dependences of Intensive Properties

In general. a property of a stable equilibrium state of a sim-
ple system with r constituents depends on r + 2 independent
variables such as S, V', nq, n2, .... nr. In contrast. each inten-
sive property depends at most on 7+ 1 independent variables
because each such property is independent of the total amount
of constituents.

We can verify the last assertion by considering any intensive

property. For example, if in Equation 29 for temperature we
assume that k = n, where n is the total amount of constituents,
n =ny +ng +---+ nr, then we find

T(S~ thlvnQ"' .,Tl,-) = T(Sav7 Y1, 425 '7yr) (36)

where s = S/n, v = V/n, yy = n1/n, yp =na/n, ..., yr =
ny/n. The function T(s,v,¥1,¥2:..-,yr) depends at most on
7+ 1 independent intensive variables because we can use the
relation y; +y2 + -+ +yr = 1 to eliminate one of the fractions
y;. The same conclusion can be reached for the pressure and
the chemical potentials, by examining Equations 30 and 31.

A consequence of these results is that the r+2 intensive prop-
erties T, p, 41, 42, .-+, Hr cannot all be varied independently
because they depend at most on 7 + 1 independent variables.
We reach the same conclusion by recognizing that the Gibbs-
Duhem relation {Equation 28) imposes a general restriction on
the possible changes in these properties.

Another illustration of the reduced number of independent
variables necessary to describe intensive properties is provided
by the dependences of ratios of extensive properties. Using the
Gibbs-Duhem relation, and evaluating it for different combina-
tions of differentials. we find

S <ap> S <6u,‘> Vv (3#,‘) (37)
=\ 5F — ==l a7 = | (o1
V 0T/, ni 0T ) ppu 7 o /)T,
where subscript “p 7 stands for all the p;’s being kept fixed
except for the one that appears in the partial derivative. We
see that each of the ratios of the extensive quantities 5, V',
a1, ng, ..., ne is determined by a partial derivative, and that
each function that is being differentiated depends at most on

r + 1 independent variables. For example, 5/V" depends on T'.
Bls H2y ovvs Hr-

3.6 Dependences of Extensive Properties

For simple systems, another important aspect of the reduced
dependences of intensive and specific properties is that they are
independent of the amount n. To verify this assertion, we con-
sider the specific internal energy u defined by the relation

u=U(5V,n.ng,...,n0)/n

Upon differentiating this relation, we find
du = ! iv - —C-—Z- dn
n n

1[/or ou
=~ [(79?) V’n(n ds 4+ sdn) + <5{/—> S‘n(n dv + vdn)

-
BU) U

+ —_— (ndy-—f—yidn)] ——dn
; (ani S,V,ﬂ ! n‘)‘

.
T'ds—pdv+ Zp,-dy,-

f=1

1/ R
~717<D -~ TS +pV "‘Z#i’%’) dn (39)

i=1

i

i

Each of the coefficients of the r+3 differentials in the right-hand



side of the third of Equations 39 represents a partial derivative
with respect to the variable in the corresponding differential.
In particular, the coefficient of dn equals (8u/8n);,, ,, where
the subscript “y” denotes that all mole fractions are kept fixed.
But U~TS+pV -3 I pini = 0 because of the Euler relation
(Equation 25), and therefore (Ju/0n),, , =0,

.
du=Tds—pdv+ Y pidy; (40)

i=1

and
u= U(S,U,ylyy%--wyr) (41)

subject to the relation y; +yg + -+ +yr = 1.

A similar procedure can be used to show that the specific
Gibbs free energy g = G/n is a function of T', p, and y only,
ie., g =g¢(T.p,y1,¥9,-..yr). Indeed, upon differentiating the
relation ¢ = G(T,p,n)/n we find

r ™
1
dg=~5dT+vdp+Zp,-dy;—-n—2-<G-—Zp,~n,~) dn
=1

i=1

.
= —s5dT + L’dp+2uidy,~

i=1

1/, L
——§-<C ~TS5+pV —Zu,‘n,-) dn

n i=1

r
= —sdT+L!dp+Z/iidy,' (42)

i=1

where the second of Equations 42 results from the relation G =
U —TS+pV, and the third from the Euler relation. Thus, we
verify that ¢ is a function of T'. p, and y only, independent of
n.

In particular, for a single-constituent simple system it also

follows that G = pun and, therefore,

G
p=—=g(T,p)=u+pv—-Ts=h~Ts (43)
n
i.e., the chemical potential is equal to the specific Gibbs free
energy, and can be expressed in terms of the specific enthalpy A
and the specific entropy s. Moreover, because for such a system
y =1 and dy = 0, Equations 40 and 42 become

du =Tds — pdv (44)
du=—sdT +vdp (45)
where in writing Equation 46 we use the result y = g {Equation
43). The last equation is the Gibbs-Duhem relation of the single-

constituent simple system in terms of its specific entropy and
specific volume.

Equations 38 and 41 imply that in order to evaluate the en-
ergy relation U = U(S,V,n1,n9,...,nr) for a simple system it

suffices to determine the relation u = u(s,v,y1,¥9,.--,¥r) and
then multiply by the total amount n, i.e.,
U(S,V,n)=nu(s,v,y) (46)

and therefore the number of independent variables is reduced
by one. In practice this result allows to obtain the values of
properties of an arbitrary amount of a pure substance (r = 1)
or a mixture with given proportions (r > 1) from data on the
properties of a unit amount, say, one mole. This result is so
useful and so powerful that it is often given for granted in most
expositions of thermodynamics. In this paper we emphasize
that it follows from the Euler relation, and therefore from the
homogeneity of degree one of the fundamental relation which
in turn is valid only when Condition (a) in our definition of a
simple system is satisfied.

CONCLUSIONS

If a phenomenon can be modeled as occurring in a simple
system in stable equilibrium states, a host of practical and pow-
erful results obtain. A prerequisite for such modeling is that the
system consist of relatively large amounts of constituents.

However. not all consequences of thermodynamics are sub-
ject to the restriction of large magnitudes of the amounts of
constituents. For example, all the results summarized in Sec-
tion 2 are valid regardless of the magnitudes of the amounts of
constituents. including microsystems.
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