WHAT 1S A CHEMICAL EQUILIBRIUM STATE?

Gian Paolo Beretta
Universita di Brescia, Italy, and
Massachusetts Institute of Technoliogy
Cambridge, Massachusetts

Elias P. Gyftopoulos
Massachusetts Institute of Technology
Cambridge, Massachusetts

Proceedings of the
International Symposium

EC0S'92

ON EFFICIENCY, COSTS, OPTIMIZATION
AND SIMULATION OF ENERGY SYSTEMS

ZARAGOZA, SPAIN
JUNE 15-18, 1992

sponsored by

Spain:

ENDESA —Empresa Nacional de Electricidad, S.A.
INH —Instituto Nacional de Hidrocarburos

ERZ, 8.A. —Eléctricas Reunidas de Zaragoza, S.A.
Ministerio de Educacién y Ciencia

Universidad de Zaragoza

U.S.A

Tennessee Technological University

with the participation of

The American Society of Mechanical Engineers

edited by

Antonio Valero

Universidad de Zaragoza (Spain)

Georges Tsatsaronis

Tennessee Technological University (USA)

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
United Engineering Center B 345 East47th Street B New York, N.Y. 10017



WHAT 1S A CHEMICAL EQUILIBRIUM STATE?

Gian Paolo Beretta
Universita di Brescia, Italy, and
Massachusetts Institute of Technology
Cambridge, Massachusetts

Elias P. Gyftopoulos
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

We review the chemical equilibrium equations. and conclude
that both their derivation and their meaning are problematic.
We find that these equations can be established for a suitably
defined simple system without chemical reactions.

1. INTRODUCTION

In authoritative discussions[1-3] of chemical equilibrium
among r constituents of a system A. the condition of equi-
librium in the presence of one chemical reaction mechanism 1s
presumably shown to be

-
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where v;., for i = 1.2.....r.is the i-th stoichiometric coeffi-
cient of the chemical reaction mechanism
r

N vid; =0 (

A/_d
i=1

™

4; denotes the i-th constituent. p; the chemical potential of the
i-th constituent. U the internal energy. V" the volume. ny. n2.
. n, are the amounts of constituents given by the relations

n; =N, + Ve fori=1.2.....r (3)

and nj,. for i=1,2. ..., r.is the amount of the i-th constit-
went for which the value of the reaction coordinate € is equal to
zero.
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For given values of .
Condition 1 yields the value ¢, for which the svystem is in a
chemical equilibrium or stable equilibrium state. Thus. at the
chemical equilibrium state the amounts of constituents are given
by the relations

Nip = Mg + Vi€o fori=1,2.....7 (4)

and the corresponding mole fractions or compositions by the
relations
. ! .
yiozw fori=1, 2. ....r (3)
Ng =+ Véo
where ng = Y. Rig and v = St v

In the discussions just cited{1-3], it is also stated that Condi-
tion 1 results from the requirement that. for an isolated system.
the value of the sum Y_i_; (U, V,n)dn; at the chemical equi-
librium state must be zero for any variations of the amounts of
constituents compatible with the stoichiometry of the reaction
mechanism.

Even though experience shows that Condition 1 leads to re-
<ults consistent with observations, its derivation and meaning
are problematic. According to the second law[4]. an isolated
system with one or more chemical reactions. and given values of
U. V. nig. N2 - Nra admits one and only one stable equi-
librium state. To that state corresponds a unique composition.
Any composition that deviates from that of the stable equilib-
rium state corresponds to a state that is not stable equilibrium
and. therefore, chemical potentials cannot be defined. So. what
functions w;(U. Viny.na,. ... ny) should be used in Condition 1
in order to find €, and the chemical equilibrium state”

We investigate this question and find a satisfactory answer for
any system A that is simple. For such a system, the chemical
potentials appearing in Condition 1 are those of a surrogate
simple system B consisting of the same constituents as 4 but
experiencing no chemical reactions|3].

In this paper, we summarize our findings. In Section 2 we
discuss the definition of a simple system. in Section 3 we derive
Condition 1 and show which chemical potentials are involved,
in Section 4 we express Condition 1 in terms of temperature,
pressure and mole fractions rather than energy. volume. and
amounts of constituents, and in Section 5 we present our con-
clusions.



2. SIMPLE SYSTEMS

We define a system as simple[6] if it has volume as the only
parameter, and if it satisfies the following two additional re-
quirements:

(a) If in any of its stable equilibrium states it is partitioned into
a set of contiguous subsystems in mutual stable equilibrium, the
system is such that the effects of the partitions are negligible:
and

(b) In any of its stable equilibrium states, the instantaneous
switching on or off of one or more internal reaction mecha-
nisms, such as a chemical reaction, causes negligible instan-
taneous changes in the values of the energy, the entropy, the
volume, and the amounts of constituents.

In general, either the introduction of partitions, or the instan-
taneous switching on or off of chemical reaction mechanisms, or
both have definite effects on the system. For example, using the
tools of quantum theory{7,8], we can show that the switching on
of a reaction mechanism requires the switching on of an addi-
tional term in the Hamiltonian of the system which affects the
functional form of the fundamental relation for stable equilib-
rium states. Again, using the tools of quantum theory, we can
show that the switching off of a reaction mechanism requires the
“destruction” of correlations among constituents and. in general,
results in a reduction of the value of the entropy. Nevertheless.
we can also show that these effects become less and less impor-
tant, and negligible for all practical purposes, when the value of
the amount of each constituent is larger than a small number.
Hence. the definition of a simple system is applicable only to
systems with large values of amounts of constituents.

3. CHEMICAL EQUILIBRIUM STATES OF
A SIMPLE SYSTEM

In this section, we derive a necessary condition for a simple
system with one chemical reaction mechanism to be in a stable
equilibrium state.

We consider a simple system 4 with r constituents and a
chemical reaction. given values I of the energy, and 1" of the
volume, and values ny, ny, ..., n, of the amounts of constit-
uents that are obtained from given values ny4. n9g. ..., Nra.
as a result of the reaction mechanism. Such a system admits a
very large number of states. But the second law requires that
among all these states one and only one be stable equilibrium—
the chemical equilibrium state. At this state, the values of the

amounts of constituents. ny,, n2,. .... nyo. and the correspond-
ing value of the reaction coordinate. ¢,. satisfy Equations 4.
The values U, V., ng = {nig.n24,.... nrq}, and the stoi-

chiometric coefficients v = {v].1,...,vr} determine uniquely
the values of all the properties and quantities that characterize
the chemical equilibrium state, including the values of the en-
tropy, S, the reaction coordinate ¢,, and each nj,. We write
the dependences of the latter quantities in the forms

S =8(U,V.ng; v) (6)
€0 = €o(U, Ving: v) : (1)
Nip = Njp(U. Ving: v) fori=1.2.....r (8)

In general, we cannot find the explicit functional forms of
Equations 6 to 8. For simple systems. however. we can express

chemical equilibrium properties in terms of stable equilibrium
properties of a multiconstituent system in which the chemical
reaction mechanism is inhibited—switched off. To see how this
is done, we proceed as follows(5].

First, we consider a simple system B consisting of the same
r types of constituents as system 4 but with the chemical re-
action mechanism inhibited—switched off. Of course, 4 and B
are different systems because they are subject to different in-
ternal forces and constraints. We assume that B is in a stable
equilibrium state with values U of the energy, V' of the volume,
and n = {n1.n9,...,n;} of the amounts of constituents of its r
constituents. We denote the entropy at that stable equilibrium
state by the fundamental relation

SOH = SOff( LT? I’: Tl] (9)

where we use the subscript “off” to emphasize that the reaction
mechanism is switched off.

Next, we assume that the chemical reaction mechanism is
instantly switched on, that is, the reaction defined by the stoi-
chiometric coefficients v is no lenger inhibited. As a result. we
obtain again system A.

By virtue of the definition of a simple system, switching on of
the chemical reaction mechanism causes negligible instantaneous
changes in the values of entropy, energy, volume, and amounts
of constituents. Accordingly, immediately after switching on the
reaction mechanism the state of system A has the same values
of 5. U, V. ny.ny, ..., np as the corresponding values of the
stable equilibrium state of B. In general, however, this state of
A is not stable equilibrium. For example, if B is a quiescent
mixture of gasoline vapor and air at room temperature and we
activate the combustion mechanism by a minute spark. we in-
stantly produce a nonequilibrium state of a system A in which
the reaction is no longer inhibited—the burning of the gasoline
is proceeding—even though the instantaneous perturbations of
the values of S, U, V', ny. ny..... nr introduced by the spark
are entirely negligible.

Among all the states of 4 that may be obtained from B in
the manner just cited. we consider the subset that has given
values " of the energy and V' of the volume. and amounts of
constituents that are compatible with given values ny,. nag.

.+ Nprq. In the sense that the values of the amounts of constit-
uents satisfy the stoichiometric relations

n; =N e fori=1.2. ... r {10
We denote the resulting state by A,. Among all the states
Ae, the one with the highest entropy is the unique chemical
equilibrium state with energy U, volume V. and amounts of
constituents compatible with n,. We denote it by Aoy

To prove that indeed A, is a chemical equilibrium state.
we assume the contrary and reach a contradiction. We assume
that A, is the chemical equilibrium state corresponding to the
values U, V', ng. v, and that it differs from Aey- Then. S, <
S, because A, has the highest entropy. Now. starting from
Ao we switch off the chemical reaction mechanism. Because
system A is simple, and 4, is a stable equilibrium state. the
resulting state B, of surrogate svstem B has the same values
U. V., and no as 4, and. in particular. its entropy is S,.



If state B, were stable equilibrium, then upon switching the
chemical reaction mechanism back on, we would return to state
Ao, and conclude that it belongs to the family of states 4, and,
hence, coincides with A¢,. If instead state B, were not stable
equilibrium, then the stable equilibrium state of B with values
U. V. n, would have entropy S > S,, and switching on the
reaction beginning from this state would vield a state in the
family of the states A that has entropy S > So > Se,- The
conclusion that § > S, contradicts our stipulation that A,
has the highest entropy and, therefore, is invalid. So, A¢, must
be a chemical equilibrium state.

As a result of these observations, we see that we can express
the entropy Se of a state A in terms of the entropy Seg(U, ¥V, n)
of the state of the surrogate system to which A, corresponds.
Moreover, we can determine the chemical-equilibrium entropy
S(U,V, ng; v) (Equation 6) by a suitable maximization of the
function Sog(U,V,n).

To pursue this maximization, first we write the entropy Se

of a state A, in the form
Se = Sog(U. Ving+ev) (1D

where in the fundamental relation S.g = Seg(U, V., n) we sub-
stitute the short hand notation ng-+ev for the set of Equations
10. Then we note that in order for A, to be the state of highest
entropy among all the states A, with given U, V', ng, and v
the values ¢, must be such that

() -
e UV.ong,v

where the subscripts nq, and v denote, respectively, that each
of the amounts n;,, and each of the stoichiometric coeflicients
v; are kept fixed. Using Equation 11 in Equation 12, we find

asf> ¢ (asoﬁ) (571{)
<ae UVingv Z On; UVon e ng.v

=1 "
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where y; o is the chemical potential of constituent i. and Tog
the temperature of the stable equilibrium state of the surrogate
system B that corresponds to A¢,. and in writing the second of
Equations 13 we use the relation (85/dn;)p - p = —u;/T and
Equations 10. For finite values of T,g. we see from Equations
13 that a necessary condition that relates U, V', nq, v.and ¢
at chemical equilibrium is

r

> vi i of(U-Vona+eov) = 0 (14)

i=1

In Section 4, we show that p; (U, Ving+ev), for 1 =1, 2,
. 7. is also equal to the corresponding chemical potential of
the chemical equilibrium state of systemn 4. Thus, Equation
4 coincides with Equation 1. that is. the chemical equilibrium
equation.
For states other than chemical equilibrium, the expression
STy Vi tiof is well defined but different from zero. Its negative

has been called by de Donder the affinity of the reaction. It is
noteworthy that this affinity cannot be expressed in terms of
chemical potentials of system A because no such potentials can
be defined for states of 4 that are not chemical equilibrium.

For each given set of values U, V, ng, and v, Equation
14 is a necessary condition for chemical equilibrium. It may be
solved to yield Equations 6 to 8 and, therefore, all properties of
the chemical equilbrium state. It confirms the statement made
earlier to the effect that properties of chemical equilibrium may
be expressed in terms of properties of a multiconstituent sur-
rogate system with all chemical reaction mechanisms switched
off.

For the extremum corresponding to Condition 12 to be a
maximum, it is also necessary that the second differential of
S, with respect to the reaction coordinate € be negative. This
turns out to be true because the fundamental relation of surro-
gate system B (Equation 9) is concave with respect to all the
variables nj for i =1, 2, ..., r. To show that indeed the second
differential of S is negative, we use Equation 11 and find that

-
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where we use dn; = vjde for i = 1, 2, ..., r. The inequality is
always satisfied because the fundamental relation of the surro-
gate system B is concave with respect to every n;, fori=1,2,
o9l

Generalizations of the preceding results to many chemical
reaction mechanisms are discussed in Ref. 3.

4. THE CHEMICAL EQUILIBRIUM EQUATION IN
TERMS OF TEMPERATURE AND PRESSURE

Rather than using energy. volume, and amounts of constitu-
ents as independent variables. we can more conveniently express
the chemical equilibrium equation in terms of temperature, pres-
sure. and mole fractions. To this end. we assert that the stable
equilibrium state of the surrogate system B obtained by switch-
ing off the reaction mechanism at a chemical equilibrium state
of a system - has not only the same values of energy, entropy,
volume. and amounts of constituents as the chemical equilib-
rium state. but also the same values of temperature, pressure.
and chemical potentials.

To prove this assertion. first we recall the definitions of tem-
perature, pressure. and chemical potential of a constituent for
a simple system with a chemical reaction mechanism, namely,
T =1/(05/00 Vv p,p- P = (8S/0V) p g /(8S/0U )y s
and p; = —(85/0nia)y vingw/(0S/00)y qyy for i =1, 2,

. r, where the fundamental relation for the chemical equilib-
rium states is S = S(U, V. nq: v) (Equation 6).



P

Next, using Equation 7 in Equation 11, we find
S = soff(U, V. ng+eo(U.V, na; v) u) (16)

Thus, for the inverse temperature of a chemical equilibrium state

we have

v = ()
T(U,V,ng; v) T\oU Ving.w
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where in writing the second and the third of Equations 17 we
use Equation 16 and the definition of chemical potentials, re-
spectively, and in writing the fourth of Equations 17 we use the
chemical equilibrium equation (Equation 14). So. the tempera-
ture of a chemical equilibrium state equals the temperature of
the corresponding state of the surrogate system B.

For the pressure of the chemical equilibrium state we find

oS as
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where in writing the fourth of Equations 18 we vse Equation
14. So, the pressure of a chemical equilibrium state equals the
pressure of the corresponding state of the surrogate system B.

For each chemical potential of the chemical equilibrium state
we find

as as
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where in writing the fourth of Equations 19 we use Equation 14.

So, the chemical potential of the i-th constituent of a chemical

equilibrium state of system A equals the chemical potential of

the {-th constituent of the corresponding state of the surrogate

system B.

It is worth emphasizing that the identity of values of tem-
perature, pressure, and chemical potentials of a chemical equi-
librium state with the values of the respective properties of a
stable equilibrium state of the surrogate system obtains only
at chemical equilibrium because only then the chemical equilib-
rium equation (Equation 14) is satisfied. Away from chemical
equilibrium states, temperature, pressure, and chemical poten-
tials are not defined for system A because all such states are
not stable equilibrium.

Finally, we note that Equations 17 to 19 indicate that, geo-
metrically, the surfaces represented by the functions
S5 = S(U,V.ng; v) and Sog = Soq(U, V. na+ev) have a con-
tact of first degree for each given set of values of U, V', ng, and
v at € = eo(U,V, ng; v), namely, at each chemical equilibrium
state.

We recall that each chemical potential of a multiconstituent
system, in which the chemical reaction mechanism is switched
off, may be expressed in the form g; = pi(T,p, y1.y2,- -+ Yr)-
Using the stoichiometric relations, we write the mole fractions in
the form of Equations 3, and the chemical equilibrium equation
in the form

r i
Zyi#i(z-.p.nlaTVlfo.'.'?nra41/r60> -0 (20)

Ng+Veéy Ng+Veég

j=1]
Equation 20 represents the chemical equilibrium equation as a
function of T, p, and the mole fractions of the chemical equi-
librium state. The chemical potentials are those of surrogate
system B. For given values of T, p, ng, and v, we can solve
this equation for the unknown ¢, and. hence, determine the

chemical equilibrium composition, yie, Y20+ - .-+ Yro, and the
values of the amounts of constituents ny,, 799, - - Nro-
Conversely, if the values of T, p. y1. y2. .... ¥r are given

but do not satisfy Equation 20, we conclude that the state is
not chemical equilibrium but a state A, that can be described
using the stable-equilibrium properties of the surrogate system.
although A is either a nonequilibrium or a nonstable equilibrium
state. Then. of course. the values of T and p refer to the state
of the surrogate system B.

The results can be summarized pictorially with the help of the
energy versus entropy graphs introduced in Ref.10. For given
values of V. ngy. and v three projections of states are superim-
posed on the single [ versus S diagram shown in Figure 1: (1)
the projection of the states of system A: (2) the projection of the
states of the surrogate system B with values n| = ng +¢) ¥
and (3) the projection of the states of the surrogate system B
with values no = ng -+ e v. where €] and ¢ are two different
values of the reaction coordinates ¢. The curves that repre-
sent the stable equilibrium states of the surrogate system B
corresponding to the two sets of values n) = n, + ¢ v and
ng = ng -+ ey v also represent the loci of all the states 4, and
A, of system H.

The value €] is chosen so that e; = e(U].V.ng v and.
therefore. at the energy U} the locus of states A is tangent
to the curve of the chemical equilibrium states of 4. Similarly.
the value €2 is such that e = ,(L2. V. ng: v} and. therefore.
at the energy Uy the locus of states A, is tangent to the curve
of the chemical equilibrium states of A. We see that the curve
of the chemical equilibrium states is the envelope of the loci



of states 4, for all possible values of e. We also see that for
U s U, the states A, represent states of system A that are not
stable equilibrium. In general, they are either nonequilibrium
or nonstable equilibrium states, and yet can be described using
the stable-equilibrium properties of the surrogate system.

A
()

(2)

Energy U

(1)/

Fixed values of

o
)

V', ng,and v

e

Entropy S

Figure 1. Energy versus entropy diagram of the states of simple system 4
with given values of V', ng and v. Curve (1) represents the states Aey and
coincides with the curve of the stable equilibrium states of surrogate system
B for the given value V' of the volume and fixed values n| = ng 4+ ¢j v
of the amounts of constituents. that is, a fixed ¢ . Curve (2) represents the
states e, and coincides with the curve of the stable equilibrium states of
surrogate system B for the given value V' of the volume and fixed values
n9 = nq-+¢o v of the amounts of constituents. that is. a fixed ¢o. Curve (3)
represents the chemical equilibrium states of system A for the given values

of V. ng.and v.

Finally. for given values of temperature T. pressure p, stoi-
chiometric coefficients v . and values of the amounts of constitu-
ents n compatible with given values n, according to Equations
10. we show that the lowest value of the Gibbs free energy of the
surrogate system B obtains at the state of B that corresponds
to the chemical equilibrium state of 4.

For the surrogate simple system B. the Gibbs free energy
Goff = Gl T p.ny.na. . ... ny). If the amounts of constituents
are compatible with n, and the chemical reaction mechanism.
we may rewrite G in the form

Gogi = Gog{T.p.ng+ev) (21)

For given T. p, and nq. an extreme value of G, obtains when

(%) = (50, (F)
e T.png.v On; Tpmn e ng,v

i=1
r

= Hiof¥i =0 (22)
f=1

where we use the equation (BG/an,')Typ’n = y; for 1 =1, 2,
., r. These conditions are satisfied when the chemical poten-
tials satisfy the chemical equilibrium equation (Equation 14),
that is, when the stable equilibrium state of the surrogate sys-
tem corresponds to the chemical equilibrium state of A.
All these results are readily extended to systems with many
chemical reaction mechanisms{3)].

CONCLUSIONS

If a phenomenon involving chemical reactions can be modeled
as occurring in a simple system. a host of practical and powerful
results obtain. The prerequisites for such modeling are that
the system consist of relatively large values of the amounts of
constituents, and that volume is the only parameter[11].

In particular, the study of the stable or chemical equilibrium
states is greatly simplified by using the stable-equilibrium-state
relations valid for systems without chemical reactions. In ad-
dition, a large family of nonequilibrium states—the family 4.
discussed in Section 3~—can also be characterized in terms of re-
lations valid for simple systems without chemical reactions. This
characterization is the starting point of the theory of chemical
kinetics.

REFERENCES

1. E.A. Guggenheim, Thermodynemics, Fifth, Revised Edi-
tion, North-Holland, Amsterdam. 1967. pp. 35-38.

2. K. Denbigh. The Principles of Chemical Equilibrium. Sec-
ond Edition. Cambridge University Press, London. 1966.
pp. 139-140.

3. M. Modell and R.C. Reid. Thermodynamics and Its Appli-
cations, Prentice Hall, Englewood Cliffs. New Jersey. 1974,
pp. 389-391.

4. E.P. Gyfropoulos and G.P. Beretta,
Foundations and Applications. Nacmillan, New York, 1991.

Thermodynamics:

E.P. Gyftopoulos and G.P. Beretta. op.cit.. Chapter 30.

E.P. Gyftopoulos and G.P. Beretta, op.cit.. Chapter 17.

. J.C. Slater. Quantum Theory of Molecules and Solids. Vol.
2, McGraw-Hill, New York. 1963.

G.N. Hatsopoulos and E.P. Gyftopoulos ., Thermionic
Energy Conversion. Vol. 2, MIT Press, Cambridge,
Massachusetts. 1979, pp. 82-100. and pp. 168-182.

o2

9. E.P. Gyftopoulos and G.P. Beretta, op.cit.. Section 10.3.
10. E.P. Gyftopoulos and G.P. Beretta. op.cit.. Chapter 13.

11. All the results can be readily extended also to systems with
other parameters in addition to volume. such as, for exam-
ple. the location in a uniform gravity fleld, and the intensity
of a uniform electrostatic or magnetostatic fleld.





