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ABSTRACT

For a non chemical-equilibrium state of an isolated system A
that has constituents with
{n14, "84, .-, Pra}, and that is subject to v chemical reac-
tion mechanisms, temperature, pressure, and chemical poten-
tials cannot be defined. As time evolves, the values of the
amounts of constifuents vary a.ccordmg to the stoichiometric
relations ng(t) = nig + 30 IV( ¢5{t), where V(J) is the stoi-
chiometric coeflicient of the t-th constituent in the j-reaction
mechanism and e;() the reaction coordinate of the j-th reae-

r mitial amounts ng

tion at time {.

For such a state, we approximate the values of all the prop-
erties at time # with the corresponding properties of the stable
equilibriuni state of a surrogate system B consisting of the same
constituents as A with amounts equal to ni(t) for ¢ = 1, 2,

., r but experiencing no chemical reactions.

Under this apprommatmn, the rate of entropy generatxon is
given by the expression Sy = €-Y, where é is the row vec-
tor of the 7 rates of change of the reaction coordinates, & =
{&1,€2,...,&r}, Y the column vector of the T ratios Aj/Toﬂ'
for j =1,2,...,
affinity of the stable equilibrium state of the surrogate system
B, p;of and To are the chemical potential of the i-th constit-
uent and the temperature of the stable equilibrium state of the
surrogate system.

Under the same approximation, by further assuming that e
can be represented as a function of ¥ only, that is, €(Y7), with

&(0) = 0 for chemical equilibrium, we show that
¢ = LY + (higher order terms in ¥')

where L is a 7 X7 matrix that must be nonnegative definite and
symmetric, that is, such that the matrix elements L;; satisfy the
Onsager reciprocal relations, Ly; = Ly;

1 Aj = = Y0 v s o, that is, the j-th

It is noteworthy that, for the first time, the Qnsager relations
are proven without reference to microscopic reversibility. In our
view, if a process is irreversible microscopic reversibility does

not exist.

NOMENCLATURE

A system

A i-th constituent in a chemical reaction mechanism

A== o

A a state of system A that has the same values of energy,
volume, and amounts of constituents as a stable equi-
librium state of surrogate system D having amounts
n,_nm-{—z Jforz—l,Z,...,

Ae, a cheinical equlhbnum state of system A

B surrogate system of A

L 7 X 7 matrix with elements Ly;

Li; = (0¢k /0Dy v mg v, ¥ =0
n = n{t}={ny,ng,...,nr}
g = {nlm N2, .- ->Tra}

N = ) i Mg .

n;, ni{t) amount of i-th constituent at time ¢
Mg amount of i-th constituent for which values of ali re-
action coordinates are zero

g, (U, V, ng; v) amount of i-th constituent at a chemical

equilibrium state of system A

Poff pressure of surfogate system B
r number of constituents
S, S(t)} entropy of system A at time ¢
Se entropy of a state A,
’ S'irr rate of entropy generation in system A4
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Saffs Ser(U, V, n) entropy of stable equilibrium states of surro-
gate system B

S(U,V, ng; v) entropy of chemical equilibrium states of A

i time

Togr temperature of surrogate system B

Y column vector of r ratios A; [ Tage forj=1,2,...,7

Y; = Aj/Top

Yt row vector of 7 ratios A;/Tog for j=1,2,..., 7

Yio mole fraction of i-th constituent of a chemical equilib-
rium state of system A

U internal energy

v volume

Greek symbols

€= €(t) = {e1,69,...,¢r}
€, £(Y) row vector of the r rates of change of the reaction
~ coordinates

€j, €;(t) reaction coordinate of the j-th reaction mechanism at
time ¢

€ rate of change of the j-th reaction coordinate

€0, €jo(U, Vi na; v} value of the j-th reaction coordinate for
which system A is in a chemical equilibrium state

€o = {€16+ €20+ - - - 1670} .

i, pi{U,V,n) chemical potential of i-th consiituent

chemical potential of i-th constituent of surrogate sys-

tem B

v ={v£"f) fori=1,2,...,vrand j=1,2,..., 7}

Vz(J)

L off

stoichiometrie coeflicient of i-th constitfuent in j-th
chemical reaction mechanism

w0 =377 V§j)

T number of chemical reaction mechanisms

1. INTRODUCTION .

In authoritative discussions{1-3] of chemical equilibrium
among r constituénts of a system A, the conditions of equi-
librium in the presence of v chemical reaction mechanisms is
presumably shown to be

»
ZV;(J) ,(Li(U,V,nl,ﬂg,..-,nr) = 0 forj: 17 27 ceen T (1)
i=1 -

where ng), fori=1,2,...,rand j =1,2,..., 7,is the :-th

stoichiometric coefficient of the j-th chemical reaction mecha-

nism .
Z ugj)Ai =1
i=1

A; denotes the i-th constituent, p; the chemical potential of the
i-th constituent, U the internal energy, V' the volume, ny, ng,

{2)

.., Ty are the amounts of constituents given by the relations
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-
n,-:nia-kZVgJ)ej fori=1,2 ".., r (3)
st

and ng,, for 1 = 1, 2, ..., r, is the amount of the ¢-th con-
stituent for which the values of the reaction coordinates ¢, eg,
.., € are all equal to zero.

For given values of U7, V, ny,, n2g, ---, Brg, and ygj), for
1=1,2, ...,rand j =1, 2, ..., 7, the 7 Conditions }
yield the values €3,, €34, ..., €ro for which the system is in
a chemical equilibrium (stable equilibrium) state. Thus, at the
chemical equilibrium state the amounts of constituents are given
by the relations

T
nio:nia+ZV§J}€jo fori=1,2,...,r
j=1

4)

and the corresponding mole fractions or composition by the re-
lations
i = Nig + E}:l yzg-?)éjo
1/ M ]
g + E;—Il V(J)ejo

(5)

fori=1,2 ..., r

where ng = 3 .i_y ny, and W) = P vg(j).

In the discussions just cited[1-3), it is also stated that Condi-
tions 1 result from the requirement that, for an iselated system,
the value of the suin 3 _y (U, V, n) dn; at the chemical equi-
Bbrinm state must be zero for any variations of the amounts of
constituents compatible with the stoichiometries of the reaction
mechanisms. ‘

Even though experience shows that Conditions 1 lead to re-
sults consistent with observations, their derivation and meaning
are problematic. According to the second law(4], an isolated sys-
tem with one or more chemical reactions, and given valites of U,
V, n1g, N9g, -.., Nrg admits ene and only one stable equilib-
rium state. This state is characterized by a unigite composition.
Any composition that deviates from that of the stable equilib-
rium state corresponids to a state that is ot stable equilibrium
and, thereforé, chemical potentials caninot be defined. So, what
functions p;(U, V,nq,ne,...,ny) should be used iri Conditions
1 in order to find the €j,’s and the chemical equilibrium state? -

We investigate this question in References {5] and [6] and find
a satisfactory answer for any system A that is simple. For such
a system, the chemical potentials appearing in Conditions 1 are
those of a surrogate simple system B consisting of the same
comstituents as A but experiencing no chemical reactions[5]. In
this paper, we summarize our findings about system A and its
siirrogate system B because the ideas are not widely known yet.

Then we use the expression for the entropy of the stable equi-
librium states of B, and estimate the rate of entropy géneration
in a simple system A with 7 chemical reaction mechanisms. It
turns out that, for. states that are not too far from chemical
equilibrium, the esfimate is a quadratic form in the r rates of
change of the reaction coordinates.



Finally, we write the rate of change of each reaction coordi-
nate as a function of the affinities. We show that the linear parts
of these functions have coefficients that satisfy Onsager recipro-
cal relations. In contrast to other derivations, for the first time

the proof of the reciprocal relations is achieved without use of’

the concept of microscopic reversibility. This is a confirmation
of our view that irveversibility is a physical rather than a statis-
tical phenomenon, and that microscopic reversibility does not
apply to irreversible processes.

The paper is organized as follows. In Section 2 we provide a
summary of the concept of a surrogate system, and the deriva-
tions of Conditions 1. In Section 3 we express the rate of entropy
generation in a system A with 7 chemical reaction mechanisms
in terms of the rates of change of the reaction coordinates. In
Section 4 we express each rate of change of a reaction coordinate
as a function of the affinities, and show that the linear parts of
these functions have coeflicients that satisfy Onsager reciprocal
relations. In Section 5 we present our conclusions.

2. CHEMICAL EQUILIBRIUM STATES OF A
SIMPLE SYSTEM

We define a system as simple[6] if it has volume as the only
parameter, and if it satisfies the following two additional re-
guirements:

(a) ¥ in any of its stable equilibrium states it is partitioned into
& set of contiguous subsystems in mutwal stable equilibrium, the
system is such that the effects of the partitions are negligible;
and

{(b) In any of its stable equilibrium states, the instantaneous
switching on or off of one or more internal reaction mecha-
nisms, such as a chemical reaction, causes negligible instan-
taneous changes in the values of the energy, the entropy, the
volume, and the amounts of constituents.

In general, either the introduction of partitions, or the instan-
taneous switching on or off of chemical reaction mechanisms, or
both have definite effects on the system. These effects become
less and less important, and negligible for all practical purposes,
if the vatue of the amount of each constituent is larger than a
small number. Hence, the definition of a simple system is ap-
plicable only to systems with large values of the amounts of
constituents.

Now, let us consider a simple system A consisting of r con-
stituents, subject to 7 chemical reaction mechanisms, and hav-
ing given values U of the energy, and V of the volume, and
values ny, ng, ..., ny of the amounts of constituents that are
obtained from given values ny,, nag, -.., Nra, as a result of
the 7 reaction mechanisms. Such a system admits a very large
number of states. But the second law requires that among all
these states one and only one be stable equilibrium—the chem-
ical equilibrium state, At this state, the values of the amounts
of constituents, nyy, nag, ..., fre, and the corresponding val-
uves of the reaction coordinates, ¢j, for 1 =1, 2, ..., 7, satisfy
Equations 4.

The values U, V, ng

ichiometric coefficients #

- {nlq:RQa,---anra}y and the sto-
1,2, ...,

r and

— 7 ;
= {;" for i

J=1,2,..., 7} determine uniquely the values of all the prop-
erties and quantities that characterize the chemical equilibrinm
state, including the values of the entropy, 5, the reaction co-
ordinates €0 = {€10,€2,..-,€¢r0}, and each ;. We write the
dependences of the latter quantities in the forms

S=8(U,V,ng; v) (6)
gio= el Vimgy #)  forj=1,2, ..., 1 (7}
nig = (U, Ving; ) fori=1,2, ..., r {8)

In general, we canmot find the explicit functional forms of
Equations 6 to 8. For simple systems, however, we can express
chemical equilibriumn properties in terms of stable equilibrium
properties of a multiconstituent system in which the chemical
reaction mechanisms are inhibited—switched off. To see how
this is done, we proceed as follows[5].

First, we consider a simple system B consisting of the same r
types of constituents as system. A but with all chemical reaction
mechanisms inhibited—switched off. We call B the surrogate
of A. Of course, A and B are different systems because they
are subject to different internal forces and constraints. We as-
sume that B is in a stable equilibrfim state with values 7 of
the energy, V of the volume, and n = {ny,ns,...,ny} of the
amounts of constituents of its r constituents. We denote the
entropy at that stable equilibrium state by S,q, where we use
the subseript “off” to emphasize that the reaction mechanisms

~ are switched off. By virtué of the state principle, S, depends
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only on U, V, n, that is,

St = So(U, V) 9

Next, we assume that the chemical reaction mechanisms are
instantly switched on, that is, the reactions defined by the sto-
ichiometxic coeflicients ¥ are no longer inhibited. As a result,
we obtain again system A. :

By virtue of the definition of & simple system, switching on
of the chemical reaction mechanisms causes negligible instan-
taneous changes in the values of entropy, energy, volume, and
amounts of constituents. Accordingly, immediately after switch-
ing on the reaction mechanisms the state of system A has the
same values of §, U, ¥, ny, na, ..., n; as the corresponding
values of the stable equilibrium state of the surrogate system B.
In general, however, this state of A is not stable equilibrium.

Among all the states of A that may be obtained from B in
the manner just cited, we consider the subset that has given
values U of the energy and V of the volume, and amounts of
constituents that are compatible with given values ni,, naq,
..., Nrq, in the sense that the values of the amounts of constit-

uents satisfy the stoichiometric relations

T
niznm+2v§])q fori=1,2, ..., r (10}
=1

We denote the resulting state by A,. Among all the states
A, we can prove that the one with the highest entropy is the
unique chemical equilibrium state with energy ¥/, volume V',



and amounts of constituents compatible with n,. We denote it
by Ae,-

As a result of these observations, we see that we can ex-
press the entropy S¢ of a state 4, in terms of the entropy
So(U,V, n) of the state of the surrogate system to which A,
corresponds. Moreover, we can determine the chemical-equili-
brium entropy S(U, V, ny; v) (Equation 6) by maximization of
the function

Sf = oﬂ{Uav:")zSoﬁ(UrV;na+y'E) (11)

where in writing the second of Equations 11, we substitute in
Sof(U, V, n) the short hand notation ng + v-€ for the set of
Equations 10. Indeed, for A, to be the state of highest entropy
among all the states A, with given U, V', ng, and v, the values
€, must be such that

(5)
‘ 36_]' UV ng,v,c

where the subscripts ng, v and € denecte, respectively, that
each of the amounts n,, each of the stoichiometric coeflicients
vi(J), and each of the reaction coordinates that do not appear

in the partial derivative are kept fixed. Using Equation 11 in

=0 fory=1,2, ..., r {12)

Equations 12, we find

(%)
O¢;

*

205 (3)
On; Uvn -aEJ' ng Ve

UVmgre

r

Bioff () _

=—Z_—T- v =0
=1 off

(18)

forj=1,2, ..., 7

where p1; i is the chemical potential of constituent ¢, and Tof
the temperature of the stable equilibrium state of the surrogate
system B. For finite values of T,gq, we see from Fquations 13
that the necessary conditions that relate U, V, ng, v, and 6,
at chemical equilibrium are ‘

r
SuD pi U Vingtv-€) =0 forj=1,2, ..., 7 (14)
i=1

They can be cxpressed also in terms of temperature, -pressure,

and composition of the surrogate system, that is,

r .
Z Uz'(j) f*"i,oif(Toﬂ'a Pofts Ylo» Y20+« - s Yro) = 0
i=1

forj=1,2, ..., T (15)

where each y;, is given by Equation 5. Moreover, we can show

that the extremum determined by either Equations 13 or Equa-
tions 15 is a maximum.

Yor states other than chemical equilibrium, the expressions
St u}j) pioff for j =1,2,..., 7 are well defined but different
from zero. The negative of each such expression has been called
by de Donder the effinity of the reaction. It is noteworthy that
this affinity cannot be expressed in terms of chemical potentials
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of system A because no such potentials can be defined for states
of A that are not chemical equilibrium.

3. ENTROPY GENERATION RATE

In thie course of chemical reactions in an isolated system A
with r constituents and 7 chemical reaction mechanisms, the
system passes through a sequence of nonequilibrium states, and
entropy is generated until the system reaches chemical equilib-
rium, At chemical equilibrium, all changes cease—the rate of
change of each réaction cocrdinate is zero—and, thereafter, the
system remains in the stable equilibrium state.

The evaluation of the evolutions of the properties of the sys-
tem as functions of time from any state that is not stable equi-
librium to a. chemical or stable equilibrium state and, therefore,
the entropy generation are not possible at present. In principle,
such an evaluation would require the solution of a general equa-
tion of motion that is still to be established. The discovery of
the equation of motion remains one of the most challenging and
ouistanding problems at the frontiers of physics.

Despite this deficiency, we can derive an estirnate of the rate
of entropy generation in terms of the T affinities of the surrogate
system B of A, and the rates of change of the reaction coordi-
nates of the v chemical reaction mechanisms. We will see that
this estimate is informative both about what might be consid-
ered as the driving forces of the reactions, and about whether
the so-called principle of microscopic reversibility plays any role
in entropy generation. To derive this estimate, we proceed as
follows.

For given values U of the energy, and V of the volume, at
an instant of time ¢ the values of the amounts of the r con-
stituents n = n(t) = {ny,ny,...,n,} satisfy Equations 3 and,
in general, are functions of time. Moreover, the entropy of A
can be regarded as a function of time S(¢) because it depends
on a large number of independent properties each of which is a
function of time, except if 1t is a constant of the motion.

The value of 5{2) is smaller than the value S (U, V,n(1))
of the surrogate system B, that is,

S(t) < Sop(T,V, (1)) = Soq(V, V,ng + v-€(t) (16}
where the equal sign applies only for the chemical equilibrium
state. The justification of Equation 16 is that, by definition,
Sae(U, V, n(t)) corresponds to the entropy of a stable equilib-
rium state and the entropy of that state is larger than the en-
tropy of any other state with the same values of U7, V', n{t).
Because at chemical equilibrium both S{¢) and Syg(U, V, rn(t))
assume the same value, an estimate of the rate of entropy gener-
ation Sh.r —the rate of entropy generated by irreversibility in the
isolated system A—is obtained by assuming that A is always
in one of the states A, defined in Section 2, so that the values
of all the properties are equal to the corresponding properties
of the stable equilibrium states of the surrogate system B.



Under the cited assumption,

dS.r(U, V,ng + v-€(t))

) r BS an
Siry = dt = ;(ﬁ)yvn(#)nmv
- Sty 3 (e,

i=l T - J=li=1

T

=Y Yjij =&Y (17)

i=1
where £ is the row vector of the T rates of change of the reaction
coordinates ¢, €9, ..., &, ¥ the column vector of the T ratios
Yj=AjfTygfor j=1,2,...,7,and A; =37 ng)#.iioﬁ‘,
that is, the j-th affinity of a stable equilibrium state of the
sutrogate system B.

From Equations 11 and 13, we see that each of the functions
Sof and ¥ for j=1,2,..
coordinates ¢; for i =1, 2, ...

., T depends solely on the reaction
, T. Accordingly, we can write

:i: (k) Fi oft
B g Olat ]
i1 Toﬂ'

BSoi(U, V,n0a + 16}

ey,
= Vi (U, V,na + v-€) (18}
O25.a(U,V,na + v-€) _ 02Sou(V,V,ma + v-¢) (19a)
66}366,‘, - aekaq
or, equivalently,
(2%) - (2) (1ot
663 UVnag,ve ey, UV, aq,v,¢

Equation 19b indicates that the 7 X 7 matrix with elements
Apy = (BY,,/Bq)U,V’,,a,,,’E is symmetric, that is, ape = ag for
all values of e€. Moreover, if we invert the relations

Y=Y, (U, Vineg+v-e) Hfork=12 ..., 7 (20)

with respect to the variables €1, €3, ..., &, to obtain the rela-
tions

e =eU,V,ngv,Y) for =1, 2, , T (21)
we can easily show using the properties of Jacobians that also
the matrix with elements bgy = (9ex/0Yg)y v ng v,y 15 sym-

metric, that is,

(5 sy = (550)
) uvmanwy N/ Uyngwy

for both zero and nonzero values of ¥ .

Relations 19b and 22 are among the many Maxwell relations
that can be established for the stable equilibrium states of a
multiconstituent system—here, the surrogate system B. Re-
lation 22 implies that for the staie of the surrogate system to
remain a stable equilibrium state, of the four changes deg, deg,

(22)
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dYy, d¥p, we can specify only three arbitrarily and indepen-
dently. We use this result in the next seckion.

4. DEPENDENCES OF ¢ ON Y

We proceed under the asswmption-approximation that the
state of the chemically reacting system A belongs at each instant
of time to the family of states A.. For fixed values of U , V. ng
and v, we regard Y7, Y5, ..., Y7 as the independent variables
of the family of A, states, and we further assume that the rate
of change of each resction coordinate is a sole function of the

elements of vector ¥ so that

e=&(Y) (234)
with
{0)=0 (235)
ond o 0%
: .
(5—}%) UVngrY - (B_Yi)U,V,ﬂa,v,Y (236)

fork=1,2,...,7andf=1, 2, ..., r. Condition 23b is valid
because at chemical equilibrium all the ¥'s are zero (Equations
14), and the rates of change of all the reaction coordinates are
also zero. Condition 23c¢ is valid because Relation 22 for each %
and ¢ is required in order to guarantee that along the time evo-
lution the surrogate system proceeds through stable equilibrium
states, and so indeed systeri A proceeds through states A . For
the first time, this condition is derived not only withoui any ref-
erence to microscopic reversibility but also for all values of ¥,
that is, even for states that are not chemical equilibrium.

Finally, we can expand each of the 7 Equalions 23a into a
Taylor series around the chemical equilibrium state at which
Y = 0. The expansions can be wrttten in the form

&¢ = LY + (higher order terms in ¥') (24)

where I is a T X 7 mairix of coefficients, each defined by the

relation
¢

Ly = ( ayk ) {25)
L/ U Vng,w,¥Y=0 .

fork=1,2,...,7rand £=1,2,..., 7
Upon using Equations 23c¢ in Equation 25, we conclude that
the matrix L is symmetric, that is, that the matrix elements Ly
ohey the Onsager reciprocal relations Ly = Ly, for k=1, 2,
., rand £ =1, 2,
these Onsager relations are obtained without any reference o

.., 7. Moreover, as we noted already,
microscopic reversiblity]7-8), or use of postulates in addition o
those of thermodynamies, except the assumptions that the state
of A proceeds through states A, and that € iz a sole function
of Y, for given values of U, V, ny and v. This is a very im-
portant conclusion because microscopic reversibility cannot and
shouid not be the cause of entropy generation by irreversibility.



For small values of Y, that is, for states of A near the chem-
ical equilibrium state, the linear term predominates in Equation
24, and the rate of entropy generation becomes

S ¥VLL.Y (25)
where ¥ is the row vector of the ratios AjfTof for j =1, 2,
..., 7. Because Sy, > 0 in general, and the right-hand side of
Equation 25 is a quadratic form, the matrix I must be positive
semidefinite. .

Our results can be interpreted in the customary manner of
the so-called “thermodynamics of irreversible processes”. Fach
Y, for j=1,2,..., 7, can be regarded as a driving force, and
cach rate of change of a reaction coordinate ¢;, for j =1, 2,

vy T, as a fux that depends on all the forces, that is, forces
and fluxes are coupled. If the fluxes are expressed as functions of
the forces, the coeflicients of the linear terms form a symmetric
matrix, that is, obey Onsager reciprocal relations.

CONCLUSIONS -

An approximate expressien for the rate of entropy generation
in a system A with r chemical reaction mechanisms is derived
in terms of the rates of change of the reaction coordinates and
the affinities of a surrogate system without chemical reactions.

The rates of change of the reaction coordinates can be ex-
pressed in terms of the affinities, and the coefficients of the linear
approximations of these expressions are shown to obey Onsager
reciprocal relations. The reciprocal relations are valid both for
states that are chemical equilibrium and for states that are not.
This result and its derivation are novel to thermodynamics.
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