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By using the tools of quantum physics, we {ind conditions for ideal-gas behavior for
any system consisting of either one structureless particle, or many atoms or
molecules.

For one structureless particie of mass m, confined in a volume V at tcmperature
T and pressure p, ideal-gas behavior is obtained only if

KT > h%/8mv2? |
where k and h are the Boltzmann and Planck constants, respectively. This
condition is valid at relatively high temperatures but independent of pressure. The
equation of state is pV = KT.

For n atoms or molecules, each of mass m, confinedin V at T and p, ideal-

gas bebavior is obtained only if

_ ph/Qrm)¥2 (K1Y « g exp(ey/KT)
where g is the partition function — sum over states — of the internal structure of

the atom or molecule, and e, the lowest energy eigenvalue of the internal structure

of the atom or molecule. Here the condition is valid at relatively high ieiﬁperatures
and relatively low pressures. The equation of state is pV = nkT.

NOMENCLATURE

A Helmholiz free energy

by, admissible values for any of the occupation numbers vy

L specific heat per molecule at constant pressure

¢, specific heat per molecule at constant volume

Dy - exP( pk'i‘e j]

E, i-th energy eigenvalue of a simple system .
g number of degenerate energy eigenstates of a point (siructureless) particle
G, i-th energy eigenstate of a simple system

h Planck’s constant

h =hiZn

Indernal

Hamiltonian operator for the internal structure of a molecule
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Hamiltonian operator of one molecule in a potential that depends-only on the

i coordinates of that molecule
ﬁx Hamiltonian operator of a point particle in a force-free box
k Boltzmann’s constant
m mass of either a point partlclc or a molecule
n {expectation) value of the number of molecules of a simple system
n, i-th number of molecules eigenvalue of a simple system
L . maximum eigenvalue of the number of molecules
p pressure
q, partition function of mternal structure of a molecule
Q partition function of a point particle in a box
Q, grand partition function of a simple system
Ty Tpp Iy positive integers. .
R gas constant
5 specific entropy per molecule
s enlropy '
T temperature
r specific internal energy per molecule
U internal energy .
v specific volume per molecule
Y volume
X, ' quantum—mcchamcal (not statistical) probability that upon an energy measurement

~ the result is E,, and upon a number of molecuies measurement the result js ny
epe(is),€, one-particle energy eigenvalues '

e, ‘ lowest energy eigenvalue of the internal structure of a molecule

e, energy eigenvalue of the internal structure of a molecule for s = 0,1,2,..

B chemical potential

vy ij-th occupation number, that is, numbcr of molecules of i-th energy eigenstate of &

simple system having one-particle energy €
vy (expectation) value of v or one-particle distribution function

L. INTRODUCTION
At fciatively high temperatures T and sufficiently low pressures p, every substance behaves
as a single-phase fluid in which each molecule is so weakly coupled to the other molecules that it

hardly experiences their presence. Under such conditions and {o a very high degree of accuracy, it

is found experimentally that the equation of state is given by the relation
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pV = nRT . - &)

where V and n are the volume and the amount of the substance, and R is the gas constant. If
the amount is expressed in number of molecules, R = k = Boltzmann’s constant =

1.38066'3](K molecule), and if it is expressed in moles, R = 8.3145 J(K mol).

If equation (1) is valid, we say that the substance behaves as an idea.l gas or is an ideal gas.
It is noteworthy that the term "ideal” refers strictly to the mathematical simplicity of the equation
of state, and not (o any ﬂlermddynamic optimality, such as reduction of the detrimental efTects of
irreversibilily. '

In the literature, it is agreed that equation (1’; is valid for nonzero temperatures {1} such

that

KT > h*8mV )

and moderate pressures, where h is Planck’s constant, and m the mass of each molecule,
Condition (2) is necessary in order for the partition function or sum over states to be replaced by
an integral or, equivalently, for the épectrum of discrete energy eigenvalues of the system to be
approximated by a continuum. However, no explicit condition is provided for the pi;éssure.

The purpose of this paper is to review the quantum-thermodynamic justification of and the

sufficient conditions for the validity of equation (1) both for a system consisting of one structureless

particle (point mass) in a box, and for P simple system [2] consisting of m molecules, each having
translational, rofational, vibraﬁ'onal, and electrenic degrees of freedom. The derivations were first

presented in Reference [3].
2, TEMPERATURES AND PRESSURES FOR IDEAL GAS BEHAVIOR

2.1 One Structureless Particle in a Box |
As a first example of conditions for ideal gas behavior, we consider a system consisting ‘of

one structureless (point) particle of mass m, confined in a field-free volume V. Without loss of

generality, we assume that the volume is cubical. Thus, the Hamiltonian operator f!l and its
- ] ’

energy eigenvalues are

N 2l a2 - ]
H1=—_},',ML_+_U__+_Y_ (3}
2m ax2 ay2 azz
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smvm [r + 1y + 1] . @

where 'rx, Ky and r, are positive intcgers, and % = bf2x.

If each energy cigenstate is g-fold degenerate because of spin considerétions, the partition

function or sum over states is

3
2 o thz e
Q=g -———--—--—-r2.+r-2+r2.=g exp| ~ ————— &)
E—l ):1 r§. |1 8mV*PkT ey x) El SmV*PKT
Moreover, if the temperature satisfies condition (2), the summation over the positive integers r
can be closely approximated by an integral so that
- 22 Y )P | 32 |
Q =g exp -.___h_.l;.._..._.. dr| = £ 2nmkT Y . (6)
o Sm VKT h? o

The partition function can be used to find the Helinholiz free energy A, the pressure p, the

internal energy U, and the entropy S by means of the relations

A = -kTIhQ = -kTInV - -;imn'r - kT'ln-g;a’Zlmg;:!()né- m
A\ _ kT '

- [9A) _ KT V = KT 8
P (av]'r Y xR ' ®
T24D) 3y ®

3inT 2
$ = '(‘Qé) - kip Es P EDTY 3, (19)

aT )y n’ .2

So, if condition (2) is satisfied, we see (equation (8)) that a particle in a box behaves as an ideal
gas.

TFor very small temperatures, 0 < kT < h¥8mV*?, only a few terms predominate in the

partition function. Retaining only the largest four terms, we find that the partition function is

given by the relation

-172-



' 3 6h?
Q ~ glexp} -~ |+ 3 exp|-———— (11)
8mV*PKT SmV*PkT
and that pV # KT, that is, the point particle in the box does not behave as an ideal gas aithough

no forces are exerted on it by any other particle!
22 Simplé Systems

As a second example of conditions for ideal gas behavior, we consider a simple system [2]
consisting of identical molecules of mass m that interact only with short-range forces, and on

which a measurement of energy yields an energy cigenvalue of one of many Hamiltonian operators
associated with the system. Each Hamiltonian operator corresponds to an integer number of |
molecules, and this number ranges from 1 to a maximum value n_,_ < «. Each molec'ﬁle has
three translational degrees of freedom, plus other dcgrees of freedom associated with its internal
structure. The latter degrees of freedom are rotational, vibrational, and electronic.
‘ Such a description of the system is novel to quantum thermodynamics. [t yields the grand
canonical distribution for stable equilibrium states in terms of quantum probabilities rather than
statistical probabilities. _
The system admits many energy eigenstaies, each characterized by an energy.eigenvalue and

an integer number of molecules. For convenience, we number all the energy eigenstates
sequentially as G,,G,,..+Gy..., and denote the energy eigenvalues as E, E,,.,E,.., the integer

number of molecules eigenvalues as nl,nz, I T and the quantum-mechamcal probabllmes

associated with a stable equilibrium state as xl,xz, ,xi, .. In this notation, a different symbaol is
used for each energy eigenstate characteristic even though two or more of these symbols may
represent the same value. For example, different symbols E, and E, are used for two of the

energies of a 2-fold degenerate energy eigenstate even though these two energies are numericaﬂy

equal. Again, different symbols m, and n, are used for the numbers of molecules eigenvélues of

two energy eigenstates of the same Hamiltonian operator even though these two numbers of

molecules are equal,
For a stable equilibrium state at temperature T and chemical potentml p., and

(cxpectatlon) values U of the internal energy, and m of the number of molecules we have the

followmg relations
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o expl(un,~E)KT]

i E Q, S w
Q, - zp{i‘-ﬁ-"i] | | o
U - Zi:x?El (14)
n - T - | as)

where @, is the grand partition function, and U and n vary continuously even though E, and m,

for all i vary discretely. In addition, the eéntropy S of this state is given by the relation

S = kY xlinx{ : 5
i

Though identical in appearance, here the entropy S is a property of the system and not a measure
of ignorance because the probabilities x? are quantum-mechanical (inherent to the nature of

physical systems) and not probabilities resulting from ignorance. In #ddi.ti'on, and most
importantly, they are a dénumerable set because they are associated with the energy eigenstates
only and not'w.ith every possible wave-function state of the system. 7
Upon substituting equation (12) in equation (16), using equations (13) to (15) and the Euler
refation [4] | ' '

U="TS-pV+ pn (27
we find
PVAT =aQ, = . . (18)

We see from equations (1) and (18) that the simple sysi~mn hehaves as an ideal gas only if InQ,

(equation (13)) is equal to the number of molecules m. So the question arises "under what
conditions on temperature and pressure is this equality achieved?"

To answer this question, we should at least evaluate the energy eigenvalues E,. However,

ot only the evaluation of the energy eigenvalues but also the manipulation of the transcendental
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relations of stable equilibrium staies are very difficult if not practically impossible mathematical
tasks. Explicit results can be found only under certain limiting conditions, We introduce some of
these limiting conditions under the headings of dilute gases, onc-pariicle approximation, and
constant-potential approximation in the next three subsections.

Dilute gases. We assume that the cigenvalues of the number of molecules range between 1

and m,, . < e, and that the (expectation) value of the number of molecules n < n_,_. Clearly, the

larger the temperature and the smaller the pressure for a given volume, the smaller the value of n,

and the more likely that the system béhaves as a dilute gas. A numerical justification of the
condition n < By ig provided Jater. 7

One-particle approximation. For a given eigenvalue #, of the number of molecules, we

assume that the intermolecular force on a molecule is given approximately by a function of the

coordinates of the particular molecule and not of the relative distance of that molecule and others.

It is evident that the approxitmation is better the smaller the value of n,. Nevertheless, it is used
for ali values of m, of a dilute gas.

‘As a result of this approximation, the Hamiltonian operator corresponding to n, can be

expressed as a sum of Hamiltonian operators each associated with one molecule, that is, the
Hamiltonian operator can be separated into additive parts, each of which depends on the
coordinates of one molecule only. Each of the separated Hamiltonian operators defines a one-
particle energy eigenvalue problem. The one-particle energy eigenstates can be combined to
approximate the energy eigenstates of the dilute gas and then to compute equations of stable
equilibrium states. '‘When this is done the analysis is said to be approached by means of the
method of the one-particle approximation.

The one-particle approximation is appropriate for dilute gases because the properties of

such gases depend primarily on the energy eigenstates corresponding to small values n,. For
example, because in equation (15) n is much smaller than m,,. and all xf are positive, the

dependence of m on m, > n is weak, and errors introduced by the one-particle approximation are
neg‘iigible..

Denoting the one molecule Hamiltonian operator by ﬁml and its energy eigenvalues by €y
we can express the energy eigenvalﬁes 6f the dilufe gas as follows. In the energy eigenstate G, of

energy E; and number of molecules n,, the gas can be thought of as made up of v,, molecules
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with one-particle energy €, v;, molecules with one-particle energy ey,.., vy molecules with one

particle energy ;... so that K, is given by the relation

Ei - vnel + vuez A e vijej s = EVHEJ for aui (19)
]
where
?v“ =m, for all i - _ (20)

Each of the integers v is called an occupation number. Using equations (19) and (20) in

equations (12}, (13), and (15), we find

. exp(ij; Wl - <)

! - @
g

- -4 22
- Tonlpn ] e
n:?x:nl =-¥xle:vﬂ=§:¥x?v“ ~--;vj (23)

where v, is the (expeclation) value of the number of molecules having one-particle energy €

This value is called the one-particle distribution function, and satisfies the relation
s
vy = zl:x, vy - 2

As shown in the Appendix, depending on whether the molecules are fermions or Bosons,
equations (22) to (24) become

11
nQ, = ¥ ln[l . exp[" ' ei)] ' (25)

- E[exp[eik;,"]_i_l]" | o9
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where the plus sign in = holds for fermions and the minus sign for bosons. :
We can easily show that InQ, is almost equal to a if the chemical potential  is very much
smaller than zero because then exp[(p - € j)Ik'l‘} (equation (25}) is much smaller than unity, and

expl(e; - u)/KT] (equzitio}n (26)) much larger than unity for all j. To translate this conclusion

into explicit restrictions on’temperature and pressure, however, we need to introduce another
approximation.

~ Constant-potential approximation. In the constant-potential approximation, the one-

molecule Hamiltonian operator I:Iml is writien as a sum of two operators, that is,

Lol B (28)

where we assume that the translational potential energy is zero and, therefore, f{s is given by

equation (3} and depends only on the transiational degrees of freedom x,y,z of the center of mass
of a molecule, and H,,,_, is the Hamiltonian operator that dcscri-bes the internal structure of the
nolecule and depends on its rotational, vibrational, and e’lef:tronic degréesof freedom.!

Because here F ol is separable into two Hamiltonian operators, ifs j-th energy e:genvalue

satisflies the relation

gy(rys) = € + ¢, (29)

where e, is any one of the eigenvalues of ﬁn (equation (4)), and e, any one of the energy
eigenvalues of B, .. For the sake of clarity, we emphasize that if there are M energy

eigenvalues e, of 11}, and N energy eigenvalues €, of I} g, the molecule has M x N energy

eigenvalues e j(r, 8).

1f the transtational potential energy differs from zero, we approxxmate it by a constant (potential
energy mdcpendent of x, y, z), and accordingly modify the results.
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If relation (2) is valid, and the chemical potential p is 5o negative that

B~ &,
- KT

<0 - . ey

then each exponential in equation (25) is much smailer than unity, and each exponential in

equation (26) is much larger than unity, and these two equations and equation (18) yield

- & -
kT =InQ, - Eexp( KT )"

e 3 o 2
= exp{-L LBl B Nl L () o [2mkT
exP'( kT) Z:oexp[ k'l‘][f mp( 8mV2KT TPT) BT M

where

E exp[ ] ' ‘ (32)
.23} _ . . .

We see that conditions (2) and (30) are sufficient for the molecules to behave as an ideal pas, that
is, for pV to equal nkT ((irst line of equation (31)). Moreover, we note that g, (equation (32}) is
the partition function of the internal structure of the molecule.

Now, upon combining the first and last terms in equation (31), solving for u, and

substituting the result in relation (30),. we find

i = kTin ph’ (3
4. 2rm) P KT)
e - P kT | -

Thus we conclude that relatively high temperatures and relatively low pressures that satisfy relation
(34) correspond to ideal gas behavior of the molecules, '

Of course, the chemical potential (equation (33)} may be used to obtain practical
expressions for the specific energy, the specific entropy, and the specific heats of the ideal gas, all

expressed per molecule. Indeed,

u=Un = -Tz[w]- RV Y . ) (35)
£ A 2 glnT
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’ i} iz : '
Loy N7 LS (36)

s_s]n—m(fﬂ)=k1n Sk + KT
ar), ph? 2 3T
' dlng Fln :
e =[] - Sk 4 okrlnds | g2 0% @an
» " GT), T 2 3T 312
aln i
I LA B PP i T . 38)
aTf, 2 oF oT?

3., CONCLUSIONS

We introduce the novel idea that, in general, an energy measurement resuit on a simple
system yields both an énergy eigenvalue and a number of molecules eigenvalue. These eige‘hvélues
are necessary to the evaluation of the grand partition function as well as (expectation) values of
other stable equilibrium state properties of the system.

By a series of judiciously chosen approximations, we find explicit conditions on the

temperatures and pressures for which any substance behaves as an ideal gas.

REFERENCES

1. C. Kittel and H. Kroemer, "Thermal Pliysics," Second Edition, W. H. Freeman, San
Francisco, 1980, pp. 72-73.

2. E.P. Gyftopoulos and G.P. Beretta, "Thermodynamics: Foundations and Applications,"
Macmillan, New York, 1991, Chapter 17,

3. GN. Hétsopou]os and E.P. Gyftopoulos, "Thermionic Energy Conversion, Volume If:
Theory, Technology, and Application," MIT Press, Cambridge, 1979, pp. 144-146 and 1568-
182. :

4. E.P. Gyftopoulos and G.P. Beretta, "Thermodynamics: Foundations and Applications,”
Macmillan, New York, 1991, p. 266. '

APPENDIX: Fermions and Bosons

Depending on the nature of the identical molecules of a system, the admissible energy
eigenfunctions can be either antisymmetric or symmetric. Antisymmetric energy eigenfunctions are

admissible for a collection of molecules called fermions, and symmetric energy eigenfunctions are
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admissible for a collection of molecules called bosons. For example, electrons are fermions, and

photons are bosons. The distinction between fermions and bosons can also be stated in terms of
the admissible values of the occupation numbers vy
~ Fermions. Each one- particic energy eigenstate can be occupred by at most one fermion,

that is, the admissible values of vy are
vy=0or1l foralliandj : - (A1)

For example, a spin-orbital of an atom can be either empty or occupied by only one electron.
Bosons. Each one-particle energy eigenstate can be occupied by any number of bosons,

that is, the admissible values of vy are
vy = 0,1,2,.. for all i and j (A-2)

For example, any nuntber of photons may occupy the same one-particle energy cigenstate.

Explicit use of the admissible .\iaiues of vy in equations (22), (23), and (24) results in

simplified forms for Qs’ n, and v 5 Indeed, if we introduce the short-hand notation

D, = exp[u];rej) for all j (A-‘3)

and by,by,,.. are the admissible values for any of the numbers 0 then we can easily verify that

equation (22) can be written in the forms

E D" DD = (D + D + <)y + Dy 4 (D + D 4 ) A

If the dilute gas consists of fermions, the admissible vaiues of vy are b, =0, b, = 1, and

b, = 0 for i =2 3. Accordingly, equation (A-4) becomes

Q, = {1 + Dy)(L + D))~(1 + D)- =I,I i+ exp(“l: T“":ﬂ @A)
Q, = ); En[l + exp(l'll;rel)} ‘ (A-6)
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