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ABSTRACT

Numerous expressions exist in the scientific fiterature
purporting 10 represent entropy. Are they all acceptabie? To
answer this question, we review the thermodynamic definition
of entropy, and establish eight criteria that must be satistied by
it. The definition and criteria are obiained by vsing solely the
general, nonstatistical statements of the first and second laws
presented in Thermodynamics: Foundations and Applications by
Gyitopounlos and Beretia (1991).

We apply the eight criteria to each of the expressions
proposed in the literature and, for the first time, find that only
the relation S = —kTrplnp satisfies all the criteria, provided
that the density operator p corresponds to 2 homogeneous
ensemble of identical systems, identically prepared,
Homogeneous ensemble means that every member of the
ensemble is described by the same density operator p as any
other member, that is, the ensémble is not a statistical mixture
of projectors (wave functions).

NOMENCLATURE

a system

ith state of system A

acceleration

a system

ith state of system B

a composite of two subsystems A and B

positive constant that depends on the
reservoir R only

E energy

lowest energy for which a system with given
values of n and V can exist

E, energy of ith state of system A
energy of system A at time

nE = >

313

<o oA

enérgy transferred from the environment to
system X; positive if transfer is into system
X, and negative if transfer is out of sysiem X
force

gravitational acceleration

Hamiltonizn operator

Pianck’s constant b divided by 2=n
Boltzmann’s ¢onstant

tnass of a weight

mass

number of positive eigenvalucs of p

vector of amounts of r constitueits
probability of ith condition

largest eigenvalue. of density operator p

& reservoir

entropy

Daréezy entropy

Hartley entropy

eniropy of ith state of system A

infinife norm entropy

entropy generated spontaneously within a
system; it is nonnegative

chyi entropy

von Neumann entropy

entropy transferred from the environment to
system X; positive if transfer is into system
X, and negative if transfer is out of system X
femperature

temperature of any ground-energy state
time

volune



elevation of point { in a gravity field

a positive constant different from unity
vector of values of s parameters

energy eigenvalue of a two-energy level
systew {spin)

p density operator that corresponds toa
homogeneous ensemble of identical systems,
identically prepared; it is not & mixture of
projectors (wave functions)

the fargest eigenvalue of p

generalized adiabatic availabifity

generalized available energy of system A
with respect to a given auxiliary reservoir R

® w p N

generalized available energy of the ith state
of system A with respect to-g given auxiliary
reservoir R

INTRODUCTION

In his authoritative review "General properties of entropy,”
‘Wehrl (1978) writes: "It is paradoxical that although entropy is
one of the most important quaniities of physics, its main
properties are rarely listed in the usual textbooks on statistical
mechanics." We concur fully with this assessment, and add that
the main characteristics of entropy are rarely listed even in the
usual textbooks on thermodynamics, despite the fact that
entropy is clearly a thermodynamic {(not mechanical) concept.

The lack of specificity has resulted in a plethora of
expressions purporting to  represeni  the entropy of
thermodynamics, and perhaps influenced ven Neuinann to
respond {0 Shannon’s question "What should I call -, p;lnp;
7" by saying "You should call it ‘entropy’ for two reasons; first,
the function is already in use in. thermodynamics. under that
name; second, and more importanily, most people don't know
what entropy reatly is, and if you use the word entropy you will
win every time!" (Tribus, 1963).

The purposes of this paper are to redress he omissions, and
to prove that, as a well-defined property: of matter, entropy is
represented only by the quantum-theoretic funclional
8§ = —kTrpinp. Even though the expression is very well
known and niore often than not rejected in statistical quantum
mechanics, here the proof is solely thermodynamic and novel.

The paper is organized as follows. In the second section we
provide a general thermodynamic definition of entropy for any
system (large or small} in any state (thermodynamic equilibrium
or not thermodynamic equilibrium). In the third section we list
eight sensible characteristics of this entropy which can be used
as criteria of acceptance of any analytic expression purporting to
represent eatropy. In the fourth section we summarize a
number of quantum expressions for eéntropy that have appeared
in the literature, and idvestigate whether one or more of these
expressions conform with the eight criteria listed in the
preceding section.
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As a resuit of this investigation, for the first time we prove
that only the expression S = —kTrplnp conforms with al the
criteria, provided that the density operator p represents the
quantum-theoretic probabilities derivable from a homogeneors
ensemble of identical systems, identically prepared.

‘The homogeneous ensemble is a generalization of the concept
introduced by von Neumann (1955). It is an ensemble of
identical. members in which each membcr is described by the
same density opetator p {p 2 p ) as any other member,
that is, the ensernble is not a statistical mixture of projectors
(wave functions). In other words, physically as opposed to.
algebraicafly, the density operator compatible with
thermodynamics is the seat of quantum-theoretic probabilities
only, and not a mixture of quanium probabilities derived from
projectors, and classical statisticat probabilities introduced
because of either ignorance or lack of interest in the details of
the system, or both.

GENERAL THERMODYNAMIC DEFINITION OF ENTROPY
A-system A in any state. Ay has many properties. Two of
these properties are: energy E;, and generalized available

energy Q? with respect to a given auxiliary reservoir R (the
definitions of energy and generalized available energy are briefly
discussed in the Appendix). Compiete proofs 0f each and every
staterent in both this and the next section are provided in
Gyftopoulos and Beretta {1991}

Energy and generalized available énergy determine a third

_property called entropy, and denoted by the symbol §. Itisa

property in the same sense that emergy i a property, or
momentum is a property. For a state A;, $; can be
evalnated by means of an auxiliary reservoir- R, a reference
stale Ag, with energy Eg and generalized available energy

Q][}, to which is assigned a reference value S and the
€xpressiorn

H ~Eg) = (@} - af)

=85 + 1|8, (1)
R

where ¢y is a well-defined positive constant that depends on
the auxiliary reservoir R only. Entropy S is shown to be
independent of the reservoir, that is, indeed the reservoir is
auxiliary and is used only because it facilitates the definition of
S. It is also shown that S can be assigned absolute values
that are nonnegative, and that vanish for all the states
encountered in mechanics.

The concept of entropy introduced here differs from and is
more generafl than that of most textbooks. It does not involve
the concepts of temperature and heat; it is not restricted to
large systems; it applies to macroscopic as well as microscopic
systems, including a system with one spin, or a system with one
particle with only one (translational) degree of freedom; it is not
restricted to stable {thermodynamic) equitibrium states; it is
defined for both stable equilibfium and not stable



(thermodynamic) equilibrium  states because energy and
generalized available energy are defined for all states; and most
certainly, it is not statistical — it is a property of matter. To
emphasize the difference and generality of the concept, we
recall contrary statements by Mebmer (1970), "A careful study
of the thermodynamics of electrical networks has given
considerable insight into these problems and also produced a
very interesting result: the nonexistence of a unique entropy
value in a state which is obtained during an irreversible
process,..., I would say I have done away with entropy,” and
Callen (1985), "it must be stressed that we postulate the
existence of the eatropy only for equsilibrium states and that our
postulate makes no reference whatsogver to nonequilibrium
states."

Like energy, entropy is an additive property. Whereas energy
remains constant in time if the system. experiences cither a
spontaneous process or a zero-net-effect mechanical interaction,
it is shown that the entropy defined by equation (1) remains
constant. if either of these processes is reversible, and increases
if either of thésé processes is irreversible. These features are
known as the principle of nondecrease of entropy. A process is
reversible if both the system: and it§ environment can be
restored to their respective initial stafes. A process is
irreversible if the restoration just cited is impossible.

The entropy created as time proceeds during an irreversible
process is called entropy generated by irreversibility. It is positive.
The entropy nondecrease is a time-dependent result, Here it is
obiained without use of the general equation of motion.

Like energy, entropy can be transferied between systems by
means of intéractions. Denotmg by §A~  the amount of
entropy transferred from systems in the environment to system
A as a result of all interactions involved in a process in which
the stdte of A changes ffom A; tfo A, we derive a very
important. analytical tool, the entropy balance, that is,

1€y

where 8;, s positive or at least zero and represents the
entropy generated spontaneously within system A during the
time interval from t; to t, required to affect the change from
stale A; tostate Ay, Spoataneous entropy generation within
a system oceurs if the system is in a nonequilibrium state in
which the internal dynamics precipitate the natural tendency
towards stable equilibrium.

The dimensions of S depend on the dimensions of both
energy and cg. It turns out that the dimensions of cp are
independent of mechanical dimensions, and are the same as
those of temperature.

= QA~
Sz Sl)system A=ST A8,

" GENERAL CHARACTERISTICS OF ENTROPY
From the discussions in the preceding section and the
Appendix, we conclude that any expression that purports to
represent the entropy of thermadynamics must have at least the
following eight characteristics or, equivalently, conform to the
following eight criteria.
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1. The expression must be well defined for every system

(farge or small), and every state (stable equilibriunt or not

stable equilibrium).

The expression must be invariant in all reversible adiabatic

processes, and increase in any irreversible adiabatic process.

3. The expression must be additive for all systems and all
staies.

4. The expression must be nonnegative, and vanish for all the
states encountered in mechanics,

5. For given values of energy, amounts of constituents, and
parameters, one and only one state must correspond to the
largest value of the expression.

6. For given values of the amounts of constituents and

parameters, the graph of energy versus entropy of stabie
equilibrium  states must be convex and smooth.
Equivalently, the fundamental relation entropy versus .
energy must be concave and smooth.
7. For a composite C of two subsystems A and B, the
expression. must be such that the entropy maximization
procedure for (ctiterion no. §) yields identical
thermodynamic potentials (for example, temperature,
chemical potentials, and pressure) for alt thrée systems A,
B, and C.
For stable equilibrium states, the expression must reduce
to relations that have béen established experimenially and
that express the entropy in terms of the values of energy,
amounts of constituents, and parameters,

QUANTUM EXPRESSICNS FOR ENTROPY

Ever since the enunciation of the first and second laws of
thermodynam:cs by Clausius aboiit 130 years ago, ali
expressions for entropy that are not based on temperature and
heat involve probabilities. Invariably, the probabilities are
statistical (as opposed to inherent to the mature of physical
phenomena), and are introduced as a means to partially
overcome the enormous computational and informationat
difficulties resulting from the complexity of the "actual state"
(classical or quantum) of a large system. Thus, each expression
of entropy is usually construed as a subjectivé meéasure of
information rather than an analyticat description of an objective
property of matter:

Over the past two.decades, a different point 6f view has been
developed consistént with the idea that eatropy is a property of
matter. Hatsopoulos and Gyftopoulos (1976d) observed that
the von Neumann concept of a homogeneous ensemble of
identical systems that represents a projector (every member of
the ensemble is described by the same projector, p = p2,
wave function as any other member) can be readily extended to
density operators (every member of the‘ ensemble is described
by the same density operator, p > p , @s any other member,
that is, the ensemble is not a statistical mixture of projectors).
This extension is accomplished without any changes of the
quantim-theoretic postulates about observables, measurement
results, and valués of observables. An identical conelusion is
reached by other scietists (Jauch, 1968).
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One benefit of the observation just cited is the elimination of
the monstrosity of the concept of mixed state that concerned
Schroedinger (1936) and Park (1968, 1988).

Another evén more important benefit i that the extension
results in a unified quantum theory which encompasses within
a single structure of concepts and mathematical representatives
both mechanics and thermodynamics without any need for
statistical ~ (subjective or informational) probabilities
{Hatsopouios and Gyftopoulos, 1976a,b,c). The unified theory
applies to all systems, small or large, including a one spin
system, and all states, unsteady, stéady, nonequilibrium,
equilibrium, and stable (thermodynaimic) equilibrium.

Next, Hatsopoulos and Gyftopoulos postulated that the
special class of unitary transformations of p with respect 10
time obey the von Neumann equation of mation

dp i .

= =~-_[H, 3

3 = glibPl 3
for both isolated systems (Hamiltonian operators H

independent of time), and nonisolated systems (Hamiitonian
operators H explicitly dependent on time). It i$ noteworthy
that equation (3) must be introduced as a postulate because it
cannot be derived from the Schroedinger eguation since p is
not a mixture of wave functions.

As it is well known, the processes described by equation (3)
are reversible adiabaticc.  However, neiiher all reversible
adiabatic processes correspond to. unitary transformations of p
with respect to time, nor all adiabatic processes are reversible,
Aocordlngly, as an equation of motion of physics, equation (3)
is incomplete.! Its completion is one of the most challenging
outstanding problems of contemporary physics.

1Many efforts have been made to complete the equation of motion.
For commerts and concrete results see Wehrl (1978), Hatsopoulos and
Gyftopoulos. (1976a,b,c,d), Park and Situmons (1983), Bergita et al.
(1984, 1985), Korsch- and Steffen (1987), Lindblad (1976), and
Cubukgu (1993).
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if there exist constants of the motions of all the reversible
adiabatic processes described by equation (3), Hatsopoulos and
Gyftopoulos (1976a,b,c) concluded that each such constant must
be a functional solely of the eigenvalies of p because these
are the only guantities that remain invariant in the course of all
unitary transformations with respect to time.

In the light of the new point of view, and the eight criteria of
the preceding section, we conclude that: (a) expressions for
entropy based on temperature and heat are not acceptable
because they are restricted t0 thermodynamic equilibrium states
only; (b)-expréssions for entropy proposed in statistical classical
mechanics dre not acceptable because they are based on
statistical ~(subjective) rather than quantal (inherent)
probabilities, and the resuliing entropy is not a property of
matter; and (¢) expressions for entropy proposed in statistical
quantumi mechanics (Tolman, 1962; Jancel, 1969) that depend
on variables other than the cigenvalues of p are not
acceptable because they fail criterion 2 for processes in which
the changes of p are unitary. Some quantum functionals that
are proposed in the literature, and that are candidates as
possible expressions. for entropy are the following.

The Dardezy entropy (Dardezy, 1970)

1
Sp = 21fa-—-z('fm"‘ -1 )
where o >0, o = 1.
The Hartley entropy (Hartley, 1928)
Sy = kInN{p) (3

where N(p) is the number of positive eigenvalues of p.



The infinite norm entropy

S. = -kinfpl, ®
where fpl = Plargest = the largest cigenvalue of p.
The Rényi entropy (Rényi, 1966)
Sg = 5 In(Trp%) )
1-«
where e > 0, a = 1.
The von Neumann entropy (von Neumann, 1929)
8, = ~kTrplnp (8)

Applying critéria 1 to 8 of the preceding section to
expressions 4 to 8, we find the results fisted in Table. 1.

Specifically, the Daréezy entropy satisfies criteria 1 and 2 but
fails criterion 3 — is not additive. Accordingly; Sy is not
acceptable as an expression for entropy.

The Hartley entropy satisfies criteria 1 to 4 but fails. criterion
3. For given values of energy E, amounts of constituents n,
and parameters f; many density operators have the same
number of positive eigenvalues as the density operator that
corresponds to the unique stable equilibrium state associated
with E, =, B. It follows that the Hartley entropy . is not
acceptable,

it can be easily shown that the infinite norm entropy
conforms to criteria 1to 5 (Cubukgu, 1993). To probe criterion
6, we consider a system that hasonly two encrgy eigenvalues, —e

and +e (spin system). For this systém and a given value of

the energy E; we can show (Cubukgu, 1993} that the largest.
cigenvalue, p,_... ©Of the density operator of the
corresponding staﬁe equilibrium state satisfies the relation

* E] 9

Prargest = i[ p
where the + sign appliesif E > 0, and — signif E < 0.
Thus, the E versus S graph is neither convex fior smooth as
required by the laws of thermodynamics (criterion 6). It is
concave both in the posilive and the negative temperature
ranges. Accordingly, the infinite norm entropy is not acceptable.

Next, we cani show that the Rényi entropy satisfies criteria 1
to 6 but fails criterion 7 (Cubukgu, 1993). All the proofs are
straightforward, but some are algebraically lengthy and are not

-repeated here. So the Rényi entropy is not acceptable.

The von Neumann entropy satisfies alf the criteria 1 to 8. So,
it is the only known quantum expression of entropy that is
acceptable,

Because the von Neumann entropy appears il practically
every textbook on statistical quantum mechanics, some
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additional remarks are necessary here. In statistical Quantum
mechanics, several different derivations of are given
(Tolman, 1962; Jaynes, 1957; Aczél et al, 1974; Ochs, 1975).
Each of these derivations, however, introdiices hypotheses or
axioms which afe not consistent with the idea that entropy is a
property of matter. For example, von Neumann's derivation
(Tolman, 1962; von Neumann, 1929) is based on the premise
of mixing pure states (projectors). Such a premise léads to
contradictions (Hatsopoulos.and Gyftopoulos, 1976d; Park and
Simmons, 1983). Again, Ochs’ derivation (Ochs, 1975) is based
on the assumptions that the expression for entropy must satisfy
the condiions of “"partial isomeétric invariance" and
"subadditivity,” conditions which are not justified by the laws of
thermodynamics.

The first proof that &, is the quantum expression for
entropy is given by Hatsopoulos and Gyftopoulos (1976a,b,c).
Hawever, certain features of their derivation are mathematically
faulty. So, the conclusion that S, is the only known quanium
expression for entropy is. a novel result presented hére for the
first time.

CLOSING REMARK

In addition to shedding some light on the meaning of entropy
as a properity of matter, density eperators that satisfy the
relation p > pz, and that cannot be physically (as opposed to
numerically) decompesed into mixtures of pure states open
several interesting. questions at the frontier of contemporary
physics. Both from the theoretical and the engineering points
of view, the most important of these questions relates to the
form of the complete equation of motion, the equation that
applies. to all reversible adiabatic processes, and to all
irreversible processes.

APPENDIX: THERMODYNAMICS

-General remarks

We include this appendix because the definition of entropy
we use in this paper is not well known.

Meany scientists and engineers have expressed concerns about
the completencss and clarity of the usual expositions of
thermodynamics, For example, in the preface of his book
Concepts of Thermodynamics, Obert (1960} writes: "Maost
students will agree that the subject of engineering
thermodynamics is confusing to the student despite the
simplicity of the usual undergraduate presentation.” Again,
Tisza (1970) states: "The motivation for choosing a point of
departure for a derivation is evidently subject to more ambiguity
than the technicalities of the derivation...Jn contrast to errors in
experimental and mathematical techniques, awkward and
incorrect points of departure have a chancé to survive for a long
time." And again, in their textbook, Gyftopoulos and Beretta
(1991) comment: "In our experience, the major source of
confusion is the lack of logicat consistency and completeness in
the maay presentations of the foundations of thermodynamics,



The definition of a system as just the ‘subject of analysis’ or
‘anything that is enclosed by a surface in space’ is incomplete.
The definition of propertles in terms of the state is circular if
the definition of state is in terms of the properties. The
definition of heat as anything that is not work (or the energy
exchanged across a temperature difference) is incomplete and
ambiguous. The definition of thermal equilibrium in terms of
temperature is circular if the definition of temperature is in
terms of thermal equilibrium. The restriction to equilibrium
states is artificial if the purpose: is the use of heat and cycles to
define entropy. Even if entirely oninterested in the foundations,
the studernit cannot avoid but sense this ambiguity and lack of
logical consistency and develop the incorrect conviction that
thermodynamics is a confusing, ambiguous, hand-waving subject.
Unfortunately, such a conviction is quite widespread..."

In response to numerous such conceérns, (yftopoulos and
Beretta (1991) have compased a novel exposition in which all
basic concepts of thermodynamics are definéd completely and
without circular arguments in terms of well known mechanical
ideas. Many of these definitions are new.

The order of introduction of concepts and prmcxples is:
system (types and amounts of constituents, forces between
constituents, and external forces or parameters); properties;
states; the first law; encrgy (without work and heat); energy
palance; classification of states in terms of time evolutions;
stable equilibrium states; second law (without temperatore, heat,
and entropy); generalized available energy; entropy of any state,
stable equilibrium or not, in terms of energy and generalized
available energy and not in terms of temperature and heat;
entropy balance; fundamental relation for stable equilibrivm
states only; temperature, total potentials, and pressure in terms
of energy, entropy, amounis of constituents and parameters for
stable equilibrium states only; the third law; work in terms of
energy; heat in terms of energy, entropy, and temperature; and
graphical representations of resulls on an energy versus entropy
plane. '

All concepts and principles are valid for all systems
{macroscopic or microscopic), and all states (thermodynamw or
stable equilibrium or not stable equlhbnum)

To facilitate the reading of this paper, in what follows we
repeat briefly some of the concepts. For a comprehensive
discussion we refer the reader to Gyftopoulos and Bereita
{1991).

General Thermodynamics

We define generat thermodynamics or simply thermodynamics
as the study of motions of physical constituents (particles and
radiations) resulting from externally applied forces, and from
internal forces (the actions and reactions between constituents).
"This definition is identical o that given by Timoshenko and
Young (1948) about mechanical dynamics. However, becanse
of the second law, the definition encompasses a much broader
spectrum of phenomena than mechanical dynamics.
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Kinematics: Conditions at an instant of Time

In kinematics we give verbal definitions of the térms system,
property, and state so that each definition is valid without
change in any physical theory, and involves no statistizs
attributable to lack of informaiion. The definitions include
innovations. To the best of our knowledge, they violate no
theoretical principle and no experimental resuit.

A systemn is defined as a collection of constitiients subject to
internal intermolecular forces and external forces.

Everything that is not included in the system is the
environment.

For a system with 1 constituents, we denote their amounts by
the vector m = {ny,n,,...n.}. For a system with external forces
described by s parameters we denote the parameters by the
vector B = {By,Py—B,}- One parameter may be volume,
g, =V.

At any instant of time, the amount of each constituent, and
the parameters of each external force have specific values. We
denote these valués by n and § with or without additional
subscripts.

By themselves, the values of the amounis of constituents and
of the parameters at an instant of time do not suffice to
charactetize completely the condition of the system at that time.
Wealso need thée values of all the properties at the same instant
of time. Each property is an attribute that can be evaluated at
any given instant of time by means of a set’ of measurements
and operations that are performed on the system and result in
a numerical valug — the value of the property. This value i
indépendent of the measuring devices, other systems in the

‘environment, and other instants of time.

For a giveén system, the values of the amounts of all the
constituents, the values of the parameters, and the values of a
complete set of independent propérties encompass all that can
be said about the system at an instant of time and about the
resuits of any measurements that may be performed on the
system at that same instant of time. We call this complete
characterization of the system at an instant in time the state of
the system. This definition of state is novel and, without
change, applies to any branch of physics.

Dynamics: Changes of State with Time

The state of a system may change with time either
spontaneously due to the internal forces or as a result of
interactions with other systems, or both.

The relation that describes the evolution of the state of an
isolated system - spontaneous changes of state — as a function
of time is the equation of motion. Certain time evolutions obey
Newton’s equation which relates the total force ¥ on each
systern particle to its mass m and acceleration a so that
F = ma. Other evolutions. obey the time-dependent
Schroedinger eguation, that is, the quantum-mechanical
equivalent of Newton’s equation. Other expérimentally
observed time evolutions, however, do not obey either of these
equations. So the equations of motion that we have are
incomplete. The discovery of the complete equation of motion




that describes all physical phenomena: remains a subject of
research at the frontier of science — one of the most intriguing
and challenging problems in physics (see footnote 1).

Many features of the equation of motion have already been
discovered. These features provide not only guidance for the
discovery of the complete equation but also a powerful
alternative procedure for analyses of many time-dependent,
praciical problems. Two of the most general and well-
established features are captured by the: consequénees of the
first and second laws of thermodynamics: discussed later.

Energy and Enerdy Balance

Energy is a concept that underlies our understanding of all
physical phenomena, yet its meaning is. subtle and difficult to
grasp. It emerges from & fundamental principle known as the
first law of thermodynarnics.

The first Iaw nsserts that any two stafes of a system may
always be the initial and final states of a change (weight process)
that involves no met effects external to. the system except the
change in elevation between z; and z, of a weight, that is, a
mechanical effect. Moreover, for a given weight, the value of
the expression Mg(z;
the system, where M is the mass of the weight, and g the
gravitational acceleration.

The main consequence of this law is that every systém A in
any state Ay has a property called enérgy, with a value denoted
by the symbol E;. The energy E; can be evaluated by a
weight process that connects. A; and a reference state Ay to
which is assigned an arbitrary reference value Ej so that

E; = By — Mglzy - z) (10)

Energy is an additive property, that is, the energy of a
composite system is the sum of the energies of its subsystems.
Moreover, energy has the same value at the final time as at the
initial time if the system experiences a zero-net-effect weight
process, Or remains invariant in time if the process is
spontaneous. In either of the last two processes, Zy =Z; and
E(ty) = E(ty) for time t, greater than t,, that is, energy is
conserved. Energy conservation is a time-dependent result.
Here it is obtained without use of the- general equation of
motion.

Energy can be transferred between systems by means of
interactions. Denoting by EA" the amount of energy
transferred from the environment to system A in a process
that changes the state of A from A, to Aj; we can derive
the energy balance. This balance is based on the additivity of
energy and energy conservation, and reads

(B, ~ Egstem & = BN (11)

In words, the energy change of a system must be accounted for
by the energy transferred across the boundary of the sysiem.

~ z,) i fixed only by the end states of
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Iypes of States
Because the number of independent properties of a system

is infinite even for a system consisting of a single particle with
a single transiational degree of freedom ~ & single variable that
fixes the configuration of the system in space — and because
most properties can vary over a range of values, the number of
possible states of a system is infinite. The discussion of these
states is facilitated if they are classified into different cafegories
according 1 fime evolutions. This classification brings forth
many important aspects of physics, and provides a readily
understandable motivation for the introduction of the second
law of thermodynarmics..

The classification congisis of: unsteady states; steady states;
nonequilibriom states; and equilibrium states. An equilibrium
state is one that does not change as a function of time while the
system is isolated - & state that does not chanige spontaneously.
An unstable equilibriium state is an equilibrivm state that may be
caused to proceed spontanecusly (0 a sequence of entirely
different states by means of a minute and short-lived intéraction
that has only an infinitesimal temporary effect on the state of
ihe environment. A stable eguilibrium. siate is an eguilibrium
state that can be altered to & different state only by intéractions
that leave net effects in the environment of the systeril. These
definitions are identical to the corresponding definitions in
mechanics but include a much broader spectrum of states than
those encountered in mechanics. The broader spectrum is due
to the second law- discussed later.

Starting either from a nonequilibrium state or frorn an
equilibrium state that is not stable, a system can transfer energy

- outand affect a mechanical effect-without leaving any Other net

changes in the state of the environment. In contrast, experience
shows thal, starting from a stable equilibrium state, a system.
cannot affect the mechanical effect just cited. This impossibility
is one of the most striking consequences of the first and sécond
laws of thermodynamics. It is consistent with innumerable
experiences. The second. law is introduced in the next section.

Generalized Available Energy ‘
The existence of stable equilibrium states is not self-evndent

It was first recognized by George Nicholas Hatsopoulos and
Joseph Henry Keepan (1965) as the essence of all correct
stateménts of the second law: Gyftopouios and Beretta concur
with this. recognition, and state the second law as follows
(simpiified version): Among all the states of a system with a-
given vaive of energy, and given values of the amounts of
constituents and the parameters, there exists one and only one
stable equilibrium state,

The existence of stabie equilibrium states for the conditions
specified and, therefore, the second law cannot be derived from
the faws of mechanics. Within mechanics; the stability analysis
yields that among all the allowed states of a system with fixed
values of amounts of constituents and parameters, the only
stable equilibrium state is that of lowest energy. In contrast the
second law avers the existence of a stable equilibrium state for
cach value of the energy. As a result, for every system the



second law implies the existence of a broad class of states in
addition to the states contemplated by mechanics.

The existence of stable equilibrium states for various
conditions of matter has many theoretical and practical
consequences. One consequence is that, starting from a stable
equilibriura state of any system, no energy ¢an be used to affect
a mechanical effect while the values of the amounts of
constituents and parameters. of the systeth experience o net
changes. ‘This consequence is often referred to as the
impossibility of the perpetual motion machine of the second
kind (FMM2). In some expositions of thermodynamics, it is
taken as the statement of the second law. In the new exposi-
tion, it is only one. aspeci of both the Brsi and the second laws.

Another consequence is that not ail staies of a system can be
changed to a state of lowest energy by means of a mechanical
effect. This is a generalization of the impossibility of a PMM2.
In essence, it is. shown that a novel importani property €xists
called generalized adiabatic availability and denoted by ¥.
The generalized adiabatic availability of & system in a given state

represents the oplimum amount of energy ihat can be |

exchanged betweéa the system and a weight in a weight process.
It differs from:energy. Like energy, this property is well defined
for all systems and ail states. Unlike energy it is not additive.

In striving to define an additive property that captures the
important .features of generalized adiabatic availability,
Gyftopouios and Beretta introduce a special reference system,
called a reservoir, and discuss the. possible weight processes that
the composite of a system and the reservoit may experience:
Thus, they disclose a third consequence of the first and second
laws,.that is, a-limit on the optimuin amount of energy that can

- beé. exchanged between a weight and a composite of a system.

and a reservoir R — the optirmum mechanical effect. They call
the optimum value generalized available energy, denote it by
QR-, and show that it is additive. It is'a generalization of the
concept of motive power of fire first introduced by Carnot. It
is a generalization because he assumed that both systems of the
composite acted as reservoirs with fixed values of their
respective amounts of constituents and parameters, whereas
Gyftopoulos and Beretta do not use this assumption. The
definition of a reservoir is given in Gyftopoulos and Beretta
(1991).

In contrast to energy, generalized available energy is
conserved in reversibie adiabatic processes but decreases in
irreversible adiabatic processes.

It is noteworthy that energy and generalized available energy
are defined for any state of any system, regardiess of whether
thé state is steady, unsteéady, equilibrium, nonequilibrium, or
stable equilibrium, and regardless of whether the system has
many degreés of freedom or one degree of freedom, or whether
the size of the system is large or small.

As discussed in the second section of the paper, energy and
generalized available energy are used to define entropy.

For discussions of stable eguilibrium states, the fundamental
relation, temperature, total potentials, pressure, work, and heat
see Gyftopoulos and Beretta ¢1991).
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Energy Versus Entropy Graphs
Because they are defined in terms of the. values of the

amounts of constituents, the parameters, and a complete set of
independent properties, states can in principle be represented by
points in a- multidimensional geometrical space with oneaxis for
each amount, parameter, and independent property. Such a
representation, however, would not be enlightening because the
munber of independent properties is very large. Nevertheless,
useful information can be suinmarized by first cutting the
muitidifmensional space with a surface corresponding to given
values of each of the amounts of constituents and each of the
parameters, and then projecting the result onto a two-
dimensional plane -~ a plane of two property axes. The energy
versus entropy plane is very useful because:it illustrates many of
the basic concepis of thermodynamics.

We consider & system with volume V as the only parameter,
and no upper bound on the value of the energy: For given
vatues of the amounts of constituents and the volume, we
project the multi-dimensiobal state space of the system onto the
Eversus 5 plane. This projection incluties both - stable
equilibrium states and other siates thal are not stable
equilibrivm. The laws of thermodynamics imply that the
projection must kave the shape of the cross-hatched area shown
in Figure A-1, that is, ali the states that share the given
characteristics have property values that. project on the area
between the vertical line denoted as the line of zero-entropy
states, and the curve of the stable equilibrium states.

Iy Linc of the \ Curvé of the stahle
/ wro-cattupy cyuiltbrinm states

stateg for fixed nand V

Energy E

g \ '\

Ag

S =SEnrV)
or

E = E(§,n.V)

Siope = g__Eg:) =T
Et Y

Enwopy S-_
FIGURE A-1

A point either inside the eross-hatched area or on the vertical
line S =0 represents a large number of states. Each such
state has the same values of amounts of constituents, volume,
energy and entropy, bui differing values of other properties, and
is not a stable equilibrium state. It can be any state except a
stable equilibrium state.

A point on the convex curve of stabie equilibrium states
represents one and only one state. For each of these states, the
value of any property is uniquely determined by the values of
the amounts of constituents, the volume, and either E or §
of the point on the curve.
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. value of this temperature is equal to zero.

The zero-entropy states correspond to states contemplated in
mechanics. All other states belong to the broad class of
nonmechanical states whose existence is implied and required by
the second law. So mechanics can be regarded as a special case
of thermodynamics — zero-entropy physics.

For the given values n, V, the energy Eg is the lowest
energy for which the system can exist. ]t corresponds to zero
entropy and zero temperature. If we were using quantum-
theoretical concepts; we would be able to show thaf all ground-
energy states have the same temperature and that the
ﬁstead we note
that this important conclusion of the qoantum-theorétical
treatment cannot be drawn as a logical conclusion of the
statements of the first and seécond laws, but here: must be

presented as an additional fundamental postulate. It is known

as the third law of thermodynamics or the Nernst principle and
can be stated as follows. For each given set of values of the
amounts of constituents and the parameters of a system, there
exists one stable equilibrium state with zero temperature.

The stable-equilibrium-state. curve represents the relations
S = 8(EnV) of E=ESnV). Each stable equilibrium
state has either the lowest energy for a given entropy, of the
highest entropy for a given energy.

Because each stable equilibrium state is unique, the tempet-
ature T = (3E/aS), y, at each point on the curve. Temper-
ature is not defined for states that are not stable equilibrium
because then E, S, B, V are independent and, therefore, the
partial derivative of E with respect to § is meaningless.

Startmg from a state Ay, the system cannot transfer energy
to affect a mechanical effect without net changes in n and V
because no state of lower energy exists that has an entropy
equal {0 or greater than the entropy of Ag. This is a graphical
iifustration of the impossibility of PMM2. It is sometimes
expressed as the nonexistence of a Maxweliian demon. The
impossibility does not apply to states, such as A, that are not
stable equilibrivm.
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